xref: /openbmc/linux/arch/arm/mm/ioremap.c (revision 43ffe817)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/ioremap.c
4  *
5  * Re-map IO memory to kernel address space so that we can access it.
6  *
7  * (C) Copyright 1995 1996 Linus Torvalds
8  *
9  * Hacked for ARM by Phil Blundell <philb@gnu.org>
10  * Hacked to allow all architectures to build, and various cleanups
11  * by Russell King
12  *
13  * This allows a driver to remap an arbitrary region of bus memory into
14  * virtual space.  One should *only* use readl, writel, memcpy_toio and
15  * so on with such remapped areas.
16  *
17  * Because the ARM only has a 32-bit address space we can't address the
18  * whole of the (physical) PCI space at once.  PCI huge-mode addressing
19  * allows us to circumvent this restriction by splitting PCI space into
20  * two 2GB chunks and mapping only one at a time into processor memory.
21  * We use MMU protection domains to trap any attempt to access the bank
22  * that is not currently mapped.  (This isn't fully implemented yet.)
23  */
24 #include <linux/module.h>
25 #include <linux/errno.h>
26 #include <linux/mm.h>
27 #include <linux/vmalloc.h>
28 #include <linux/io.h>
29 #include <linux/sizes.h>
30 
31 #include <asm/cp15.h>
32 #include <asm/cputype.h>
33 #include <asm/cacheflush.h>
34 #include <asm/early_ioremap.h>
35 #include <asm/mmu_context.h>
36 #include <asm/pgalloc.h>
37 #include <asm/tlbflush.h>
38 #include <asm/system_info.h>
39 
40 #include <asm/mach/map.h>
41 #include <asm/mach/pci.h>
42 #include "mm.h"
43 
44 
45 LIST_HEAD(static_vmlist);
46 
47 static struct static_vm *find_static_vm_paddr(phys_addr_t paddr,
48 			size_t size, unsigned int mtype)
49 {
50 	struct static_vm *svm;
51 	struct vm_struct *vm;
52 
53 	list_for_each_entry(svm, &static_vmlist, list) {
54 		vm = &svm->vm;
55 		if (!(vm->flags & VM_ARM_STATIC_MAPPING))
56 			continue;
57 		if ((vm->flags & VM_ARM_MTYPE_MASK) != VM_ARM_MTYPE(mtype))
58 			continue;
59 
60 		if (vm->phys_addr > paddr ||
61 			paddr + size - 1 > vm->phys_addr + vm->size - 1)
62 			continue;
63 
64 		return svm;
65 	}
66 
67 	return NULL;
68 }
69 
70 struct static_vm *find_static_vm_vaddr(void *vaddr)
71 {
72 	struct static_vm *svm;
73 	struct vm_struct *vm;
74 
75 	list_for_each_entry(svm, &static_vmlist, list) {
76 		vm = &svm->vm;
77 
78 		/* static_vmlist is ascending order */
79 		if (vm->addr > vaddr)
80 			break;
81 
82 		if (vm->addr <= vaddr && vm->addr + vm->size > vaddr)
83 			return svm;
84 	}
85 
86 	return NULL;
87 }
88 
89 void __init add_static_vm_early(struct static_vm *svm)
90 {
91 	struct static_vm *curr_svm;
92 	struct vm_struct *vm;
93 	void *vaddr;
94 
95 	vm = &svm->vm;
96 	vm_area_add_early(vm);
97 	vaddr = vm->addr;
98 
99 	list_for_each_entry(curr_svm, &static_vmlist, list) {
100 		vm = &curr_svm->vm;
101 
102 		if (vm->addr > vaddr)
103 			break;
104 	}
105 	list_add_tail(&svm->list, &curr_svm->list);
106 }
107 
108 int ioremap_page(unsigned long virt, unsigned long phys,
109 		 const struct mem_type *mtype)
110 {
111 	return ioremap_page_range(virt, virt + PAGE_SIZE, phys,
112 				  __pgprot(mtype->prot_pte));
113 }
114 EXPORT_SYMBOL(ioremap_page);
115 
116 void __check_vmalloc_seq(struct mm_struct *mm)
117 {
118 	unsigned int seq;
119 
120 	do {
121 		seq = init_mm.context.vmalloc_seq;
122 		memcpy(pgd_offset(mm, VMALLOC_START),
123 		       pgd_offset_k(VMALLOC_START),
124 		       sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
125 					pgd_index(VMALLOC_START)));
126 		mm->context.vmalloc_seq = seq;
127 	} while (seq != init_mm.context.vmalloc_seq);
128 }
129 
130 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
131 /*
132  * Section support is unsafe on SMP - If you iounmap and ioremap a region,
133  * the other CPUs will not see this change until their next context switch.
134  * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
135  * which requires the new ioremap'd region to be referenced, the CPU will
136  * reference the _old_ region.
137  *
138  * Note that get_vm_area_caller() allocates a guard 4K page, so we need to
139  * mask the size back to 1MB aligned or we will overflow in the loop below.
140  */
141 static void unmap_area_sections(unsigned long virt, unsigned long size)
142 {
143 	unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
144 	pmd_t *pmdp = pmd_off_k(addr);
145 
146 	do {
147 		pmd_t pmd = *pmdp;
148 
149 		if (!pmd_none(pmd)) {
150 			/*
151 			 * Clear the PMD from the page table, and
152 			 * increment the vmalloc sequence so others
153 			 * notice this change.
154 			 *
155 			 * Note: this is still racy on SMP machines.
156 			 */
157 			pmd_clear(pmdp);
158 			init_mm.context.vmalloc_seq++;
159 
160 			/*
161 			 * Free the page table, if there was one.
162 			 */
163 			if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
164 				pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
165 		}
166 
167 		addr += PMD_SIZE;
168 		pmdp += 2;
169 	} while (addr < end);
170 
171 	/*
172 	 * Ensure that the active_mm is up to date - we want to
173 	 * catch any use-after-iounmap cases.
174 	 */
175 	if (current->active_mm->context.vmalloc_seq != init_mm.context.vmalloc_seq)
176 		__check_vmalloc_seq(current->active_mm);
177 
178 	flush_tlb_kernel_range(virt, end);
179 }
180 
181 static int
182 remap_area_sections(unsigned long virt, unsigned long pfn,
183 		    size_t size, const struct mem_type *type)
184 {
185 	unsigned long addr = virt, end = virt + size;
186 	pmd_t *pmd = pmd_off_k(addr);
187 
188 	/*
189 	 * Remove and free any PTE-based mapping, and
190 	 * sync the current kernel mapping.
191 	 */
192 	unmap_area_sections(virt, size);
193 
194 	do {
195 		pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
196 		pfn += SZ_1M >> PAGE_SHIFT;
197 		pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
198 		pfn += SZ_1M >> PAGE_SHIFT;
199 		flush_pmd_entry(pmd);
200 
201 		addr += PMD_SIZE;
202 		pmd += 2;
203 	} while (addr < end);
204 
205 	return 0;
206 }
207 
208 static int
209 remap_area_supersections(unsigned long virt, unsigned long pfn,
210 			 size_t size, const struct mem_type *type)
211 {
212 	unsigned long addr = virt, end = virt + size;
213 	pmd_t *pmd = pmd_off_k(addr);
214 
215 	/*
216 	 * Remove and free any PTE-based mapping, and
217 	 * sync the current kernel mapping.
218 	 */
219 	unmap_area_sections(virt, size);
220 	do {
221 		unsigned long super_pmd_val, i;
222 
223 		super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
224 				PMD_SECT_SUPER;
225 		super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
226 
227 		for (i = 0; i < 8; i++) {
228 			pmd[0] = __pmd(super_pmd_val);
229 			pmd[1] = __pmd(super_pmd_val);
230 			flush_pmd_entry(pmd);
231 
232 			addr += PMD_SIZE;
233 			pmd += 2;
234 		}
235 
236 		pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
237 	} while (addr < end);
238 
239 	return 0;
240 }
241 #endif
242 
243 static void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
244 	unsigned long offset, size_t size, unsigned int mtype, void *caller)
245 {
246 	const struct mem_type *type;
247 	int err;
248 	unsigned long addr;
249 	struct vm_struct *area;
250 	phys_addr_t paddr = __pfn_to_phys(pfn);
251 
252 #ifndef CONFIG_ARM_LPAE
253 	/*
254 	 * High mappings must be supersection aligned
255 	 */
256 	if (pfn >= 0x100000 && (paddr & ~SUPERSECTION_MASK))
257 		return NULL;
258 #endif
259 
260 	type = get_mem_type(mtype);
261 	if (!type)
262 		return NULL;
263 
264 	/*
265 	 * Page align the mapping size, taking account of any offset.
266 	 */
267 	size = PAGE_ALIGN(offset + size);
268 
269 	/*
270 	 * Try to reuse one of the static mapping whenever possible.
271 	 */
272 	if (size && !(sizeof(phys_addr_t) == 4 && pfn >= 0x100000)) {
273 		struct static_vm *svm;
274 
275 		svm = find_static_vm_paddr(paddr, size, mtype);
276 		if (svm) {
277 			addr = (unsigned long)svm->vm.addr;
278 			addr += paddr - svm->vm.phys_addr;
279 			return (void __iomem *) (offset + addr);
280 		}
281 	}
282 
283 	/*
284 	 * Don't allow RAM to be mapped with mismatched attributes - this
285 	 * causes problems with ARMv6+
286 	 */
287 	if (WARN_ON(pfn_valid(pfn) && mtype != MT_MEMORY_RW))
288 		return NULL;
289 
290 	area = get_vm_area_caller(size, VM_IOREMAP, caller);
291  	if (!area)
292  		return NULL;
293  	addr = (unsigned long)area->addr;
294 	area->phys_addr = paddr;
295 
296 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
297 	if (DOMAIN_IO == 0 &&
298 	    (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
299 	       cpu_is_xsc3()) && pfn >= 0x100000 &&
300 	       !((paddr | size | addr) & ~SUPERSECTION_MASK)) {
301 		area->flags |= VM_ARM_SECTION_MAPPING;
302 		err = remap_area_supersections(addr, pfn, size, type);
303 	} else if (!((paddr | size | addr) & ~PMD_MASK)) {
304 		area->flags |= VM_ARM_SECTION_MAPPING;
305 		err = remap_area_sections(addr, pfn, size, type);
306 	} else
307 #endif
308 		err = ioremap_page_range(addr, addr + size, paddr,
309 					 __pgprot(type->prot_pte));
310 
311 	if (err) {
312  		vunmap((void *)addr);
313  		return NULL;
314  	}
315 
316 	flush_cache_vmap(addr, addr + size);
317 	return (void __iomem *) (offset + addr);
318 }
319 
320 void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
321 	unsigned int mtype, void *caller)
322 {
323 	phys_addr_t last_addr;
324  	unsigned long offset = phys_addr & ~PAGE_MASK;
325  	unsigned long pfn = __phys_to_pfn(phys_addr);
326 
327  	/*
328  	 * Don't allow wraparound or zero size
329 	 */
330 	last_addr = phys_addr + size - 1;
331 	if (!size || last_addr < phys_addr)
332 		return NULL;
333 
334 	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
335 			caller);
336 }
337 
338 /*
339  * Remap an arbitrary physical address space into the kernel virtual
340  * address space. Needed when the kernel wants to access high addresses
341  * directly.
342  *
343  * NOTE! We need to allow non-page-aligned mappings too: we will obviously
344  * have to convert them into an offset in a page-aligned mapping, but the
345  * caller shouldn't need to know that small detail.
346  */
347 void __iomem *
348 __arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
349 		  unsigned int mtype)
350 {
351 	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
352 					__builtin_return_address(0));
353 }
354 EXPORT_SYMBOL(__arm_ioremap_pfn);
355 
356 void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
357 				      unsigned int, void *) =
358 	__arm_ioremap_caller;
359 
360 void __iomem *ioremap(resource_size_t res_cookie, size_t size)
361 {
362 	return arch_ioremap_caller(res_cookie, size, MT_DEVICE,
363 				   __builtin_return_address(0));
364 }
365 EXPORT_SYMBOL(ioremap);
366 
367 void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size)
368 {
369 	return arch_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED,
370 				   __builtin_return_address(0));
371 }
372 EXPORT_SYMBOL(ioremap_cache);
373 
374 void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size)
375 {
376 	return arch_ioremap_caller(res_cookie, size, MT_DEVICE_WC,
377 				   __builtin_return_address(0));
378 }
379 EXPORT_SYMBOL(ioremap_wc);
380 
381 /*
382  * Remap an arbitrary physical address space into the kernel virtual
383  * address space as memory. Needed when the kernel wants to execute
384  * code in external memory. This is needed for reprogramming source
385  * clocks that would affect normal memory for example. Please see
386  * CONFIG_GENERIC_ALLOCATOR for allocating external memory.
387  */
388 void __iomem *
389 __arm_ioremap_exec(phys_addr_t phys_addr, size_t size, bool cached)
390 {
391 	unsigned int mtype;
392 
393 	if (cached)
394 		mtype = MT_MEMORY_RWX;
395 	else
396 		mtype = MT_MEMORY_RWX_NONCACHED;
397 
398 	return __arm_ioremap_caller(phys_addr, size, mtype,
399 			__builtin_return_address(0));
400 }
401 
402 void *arch_memremap_wb(phys_addr_t phys_addr, size_t size)
403 {
404 	return (__force void *)arch_ioremap_caller(phys_addr, size,
405 						   MT_MEMORY_RW,
406 						   __builtin_return_address(0));
407 }
408 
409 void __iounmap(volatile void __iomem *io_addr)
410 {
411 	void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
412 	struct static_vm *svm;
413 
414 	/* If this is a static mapping, we must leave it alone */
415 	svm = find_static_vm_vaddr(addr);
416 	if (svm)
417 		return;
418 
419 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
420 	{
421 		struct vm_struct *vm;
422 
423 		vm = find_vm_area(addr);
424 
425 		/*
426 		 * If this is a section based mapping we need to handle it
427 		 * specially as the VM subsystem does not know how to handle
428 		 * such a beast.
429 		 */
430 		if (vm && (vm->flags & VM_ARM_SECTION_MAPPING))
431 			unmap_area_sections((unsigned long)vm->addr, vm->size);
432 	}
433 #endif
434 
435 	vunmap(addr);
436 }
437 
438 void (*arch_iounmap)(volatile void __iomem *) = __iounmap;
439 
440 void iounmap(volatile void __iomem *cookie)
441 {
442 	arch_iounmap(cookie);
443 }
444 EXPORT_SYMBOL(iounmap);
445 
446 #ifdef CONFIG_PCI
447 static int pci_ioremap_mem_type = MT_DEVICE;
448 
449 void pci_ioremap_set_mem_type(int mem_type)
450 {
451 	pci_ioremap_mem_type = mem_type;
452 }
453 
454 int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr)
455 {
456 	BUG_ON(offset + SZ_64K - 1 > IO_SPACE_LIMIT);
457 
458 	return ioremap_page_range(PCI_IO_VIRT_BASE + offset,
459 				  PCI_IO_VIRT_BASE + offset + SZ_64K,
460 				  phys_addr,
461 				  __pgprot(get_mem_type(pci_ioremap_mem_type)->prot_pte));
462 }
463 EXPORT_SYMBOL_GPL(pci_ioremap_io);
464 
465 void __iomem *pci_remap_cfgspace(resource_size_t res_cookie, size_t size)
466 {
467 	return arch_ioremap_caller(res_cookie, size, MT_UNCACHED,
468 				   __builtin_return_address(0));
469 }
470 EXPORT_SYMBOL_GPL(pci_remap_cfgspace);
471 #endif
472 
473 /*
474  * Must be called after early_fixmap_init
475  */
476 void __init early_ioremap_init(void)
477 {
478 	early_ioremap_setup();
479 }
480