xref: /openbmc/linux/arch/arm/mm/ioremap.c (revision 3b64b188)
1 /*
2  *  linux/arch/arm/mm/ioremap.c
3  *
4  * Re-map IO memory to kernel address space so that we can access it.
5  *
6  * (C) Copyright 1995 1996 Linus Torvalds
7  *
8  * Hacked for ARM by Phil Blundell <philb@gnu.org>
9  * Hacked to allow all architectures to build, and various cleanups
10  * by Russell King
11  *
12  * This allows a driver to remap an arbitrary region of bus memory into
13  * virtual space.  One should *only* use readl, writel, memcpy_toio and
14  * so on with such remapped areas.
15  *
16  * Because the ARM only has a 32-bit address space we can't address the
17  * whole of the (physical) PCI space at once.  PCI huge-mode addressing
18  * allows us to circumvent this restriction by splitting PCI space into
19  * two 2GB chunks and mapping only one at a time into processor memory.
20  * We use MMU protection domains to trap any attempt to access the bank
21  * that is not currently mapped.  (This isn't fully implemented yet.)
22  */
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/mm.h>
26 #include <linux/vmalloc.h>
27 #include <linux/io.h>
28 #include <linux/sizes.h>
29 
30 #include <asm/cp15.h>
31 #include <asm/cputype.h>
32 #include <asm/cacheflush.h>
33 #include <asm/mmu_context.h>
34 #include <asm/pgalloc.h>
35 #include <asm/tlbflush.h>
36 #include <asm/system_info.h>
37 
38 #include <asm/mach/map.h>
39 #include <asm/mach/pci.h>
40 #include "mm.h"
41 
42 int ioremap_page(unsigned long virt, unsigned long phys,
43 		 const struct mem_type *mtype)
44 {
45 	return ioremap_page_range(virt, virt + PAGE_SIZE, phys,
46 				  __pgprot(mtype->prot_pte));
47 }
48 EXPORT_SYMBOL(ioremap_page);
49 
50 void __check_kvm_seq(struct mm_struct *mm)
51 {
52 	unsigned int seq;
53 
54 	do {
55 		seq = init_mm.context.kvm_seq;
56 		memcpy(pgd_offset(mm, VMALLOC_START),
57 		       pgd_offset_k(VMALLOC_START),
58 		       sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
59 					pgd_index(VMALLOC_START)));
60 		mm->context.kvm_seq = seq;
61 	} while (seq != init_mm.context.kvm_seq);
62 }
63 
64 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
65 /*
66  * Section support is unsafe on SMP - If you iounmap and ioremap a region,
67  * the other CPUs will not see this change until their next context switch.
68  * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
69  * which requires the new ioremap'd region to be referenced, the CPU will
70  * reference the _old_ region.
71  *
72  * Note that get_vm_area_caller() allocates a guard 4K page, so we need to
73  * mask the size back to 1MB aligned or we will overflow in the loop below.
74  */
75 static void unmap_area_sections(unsigned long virt, unsigned long size)
76 {
77 	unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
78 	pgd_t *pgd;
79 	pud_t *pud;
80 	pmd_t *pmdp;
81 
82 	flush_cache_vunmap(addr, end);
83 	pgd = pgd_offset_k(addr);
84 	pud = pud_offset(pgd, addr);
85 	pmdp = pmd_offset(pud, addr);
86 	do {
87 		pmd_t pmd = *pmdp;
88 
89 		if (!pmd_none(pmd)) {
90 			/*
91 			 * Clear the PMD from the page table, and
92 			 * increment the kvm sequence so others
93 			 * notice this change.
94 			 *
95 			 * Note: this is still racy on SMP machines.
96 			 */
97 			pmd_clear(pmdp);
98 			init_mm.context.kvm_seq++;
99 
100 			/*
101 			 * Free the page table, if there was one.
102 			 */
103 			if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
104 				pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
105 		}
106 
107 		addr += PMD_SIZE;
108 		pmdp += 2;
109 	} while (addr < end);
110 
111 	/*
112 	 * Ensure that the active_mm is up to date - we want to
113 	 * catch any use-after-iounmap cases.
114 	 */
115 	if (current->active_mm->context.kvm_seq != init_mm.context.kvm_seq)
116 		__check_kvm_seq(current->active_mm);
117 
118 	flush_tlb_kernel_range(virt, end);
119 }
120 
121 static int
122 remap_area_sections(unsigned long virt, unsigned long pfn,
123 		    size_t size, const struct mem_type *type)
124 {
125 	unsigned long addr = virt, end = virt + size;
126 	pgd_t *pgd;
127 	pud_t *pud;
128 	pmd_t *pmd;
129 
130 	/*
131 	 * Remove and free any PTE-based mapping, and
132 	 * sync the current kernel mapping.
133 	 */
134 	unmap_area_sections(virt, size);
135 
136 	pgd = pgd_offset_k(addr);
137 	pud = pud_offset(pgd, addr);
138 	pmd = pmd_offset(pud, addr);
139 	do {
140 		pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
141 		pfn += SZ_1M >> PAGE_SHIFT;
142 		pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
143 		pfn += SZ_1M >> PAGE_SHIFT;
144 		flush_pmd_entry(pmd);
145 
146 		addr += PMD_SIZE;
147 		pmd += 2;
148 	} while (addr < end);
149 
150 	return 0;
151 }
152 
153 static int
154 remap_area_supersections(unsigned long virt, unsigned long pfn,
155 			 size_t size, const struct mem_type *type)
156 {
157 	unsigned long addr = virt, end = virt + size;
158 	pgd_t *pgd;
159 	pud_t *pud;
160 	pmd_t *pmd;
161 
162 	/*
163 	 * Remove and free any PTE-based mapping, and
164 	 * sync the current kernel mapping.
165 	 */
166 	unmap_area_sections(virt, size);
167 
168 	pgd = pgd_offset_k(virt);
169 	pud = pud_offset(pgd, addr);
170 	pmd = pmd_offset(pud, addr);
171 	do {
172 		unsigned long super_pmd_val, i;
173 
174 		super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
175 				PMD_SECT_SUPER;
176 		super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
177 
178 		for (i = 0; i < 8; i++) {
179 			pmd[0] = __pmd(super_pmd_val);
180 			pmd[1] = __pmd(super_pmd_val);
181 			flush_pmd_entry(pmd);
182 
183 			addr += PMD_SIZE;
184 			pmd += 2;
185 		}
186 
187 		pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
188 	} while (addr < end);
189 
190 	return 0;
191 }
192 #endif
193 
194 void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
195 	unsigned long offset, size_t size, unsigned int mtype, void *caller)
196 {
197 	const struct mem_type *type;
198 	int err;
199 	unsigned long addr;
200  	struct vm_struct * area;
201 
202 #ifndef CONFIG_ARM_LPAE
203 	/*
204 	 * High mappings must be supersection aligned
205 	 */
206 	if (pfn >= 0x100000 && (__pfn_to_phys(pfn) & ~SUPERSECTION_MASK))
207 		return NULL;
208 #endif
209 
210 	type = get_mem_type(mtype);
211 	if (!type)
212 		return NULL;
213 
214 	/*
215 	 * Page align the mapping size, taking account of any offset.
216 	 */
217 	size = PAGE_ALIGN(offset + size);
218 
219 	/*
220 	 * Try to reuse one of the static mapping whenever possible.
221 	 */
222 	read_lock(&vmlist_lock);
223 	for (area = vmlist; area; area = area->next) {
224 		if (!size || (sizeof(phys_addr_t) == 4 && pfn >= 0x100000))
225 			break;
226 		if (!(area->flags & VM_ARM_STATIC_MAPPING))
227 			continue;
228 		if ((area->flags & VM_ARM_MTYPE_MASK) != VM_ARM_MTYPE(mtype))
229 			continue;
230 		if (__phys_to_pfn(area->phys_addr) > pfn ||
231 		    __pfn_to_phys(pfn) + size-1 > area->phys_addr + area->size-1)
232 			continue;
233 		/* we can drop the lock here as we know *area is static */
234 		read_unlock(&vmlist_lock);
235 		addr = (unsigned long)area->addr;
236 		addr += __pfn_to_phys(pfn) - area->phys_addr;
237 		return (void __iomem *) (offset + addr);
238 	}
239 	read_unlock(&vmlist_lock);
240 
241 	/*
242 	 * Don't allow RAM to be mapped - this causes problems with ARMv6+
243 	 */
244 	if (WARN_ON(pfn_valid(pfn)))
245 		return NULL;
246 
247 	area = get_vm_area_caller(size, VM_IOREMAP, caller);
248  	if (!area)
249  		return NULL;
250  	addr = (unsigned long)area->addr;
251 
252 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
253 	if (DOMAIN_IO == 0 &&
254 	    (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
255 	       cpu_is_xsc3()) && pfn >= 0x100000 &&
256 	       !((__pfn_to_phys(pfn) | size | addr) & ~SUPERSECTION_MASK)) {
257 		area->flags |= VM_ARM_SECTION_MAPPING;
258 		err = remap_area_supersections(addr, pfn, size, type);
259 	} else if (!((__pfn_to_phys(pfn) | size | addr) & ~PMD_MASK)) {
260 		area->flags |= VM_ARM_SECTION_MAPPING;
261 		err = remap_area_sections(addr, pfn, size, type);
262 	} else
263 #endif
264 		err = ioremap_page_range(addr, addr + size, __pfn_to_phys(pfn),
265 					 __pgprot(type->prot_pte));
266 
267 	if (err) {
268  		vunmap((void *)addr);
269  		return NULL;
270  	}
271 
272 	flush_cache_vmap(addr, addr + size);
273 	return (void __iomem *) (offset + addr);
274 }
275 
276 void __iomem *__arm_ioremap_caller(unsigned long phys_addr, size_t size,
277 	unsigned int mtype, void *caller)
278 {
279 	unsigned long last_addr;
280  	unsigned long offset = phys_addr & ~PAGE_MASK;
281  	unsigned long pfn = __phys_to_pfn(phys_addr);
282 
283  	/*
284  	 * Don't allow wraparound or zero size
285 	 */
286 	last_addr = phys_addr + size - 1;
287 	if (!size || last_addr < phys_addr)
288 		return NULL;
289 
290 	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
291 			caller);
292 }
293 
294 /*
295  * Remap an arbitrary physical address space into the kernel virtual
296  * address space. Needed when the kernel wants to access high addresses
297  * directly.
298  *
299  * NOTE! We need to allow non-page-aligned mappings too: we will obviously
300  * have to convert them into an offset in a page-aligned mapping, but the
301  * caller shouldn't need to know that small detail.
302  */
303 void __iomem *
304 __arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
305 		  unsigned int mtype)
306 {
307 	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
308 			__builtin_return_address(0));
309 }
310 EXPORT_SYMBOL(__arm_ioremap_pfn);
311 
312 void __iomem * (*arch_ioremap_caller)(unsigned long, size_t,
313 				      unsigned int, void *) =
314 	__arm_ioremap_caller;
315 
316 void __iomem *
317 __arm_ioremap(unsigned long phys_addr, size_t size, unsigned int mtype)
318 {
319 	return arch_ioremap_caller(phys_addr, size, mtype,
320 		__builtin_return_address(0));
321 }
322 EXPORT_SYMBOL(__arm_ioremap);
323 
324 /*
325  * Remap an arbitrary physical address space into the kernel virtual
326  * address space as memory. Needed when the kernel wants to execute
327  * code in external memory. This is needed for reprogramming source
328  * clocks that would affect normal memory for example. Please see
329  * CONFIG_GENERIC_ALLOCATOR for allocating external memory.
330  */
331 void __iomem *
332 __arm_ioremap_exec(unsigned long phys_addr, size_t size, bool cached)
333 {
334 	unsigned int mtype;
335 
336 	if (cached)
337 		mtype = MT_MEMORY;
338 	else
339 		mtype = MT_MEMORY_NONCACHED;
340 
341 	return __arm_ioremap_caller(phys_addr, size, mtype,
342 			__builtin_return_address(0));
343 }
344 
345 void __iounmap(volatile void __iomem *io_addr)
346 {
347 	void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
348 	struct vm_struct *vm;
349 
350 	read_lock(&vmlist_lock);
351 	for (vm = vmlist; vm; vm = vm->next) {
352 		if (vm->addr > addr)
353 			break;
354 		if (!(vm->flags & VM_IOREMAP))
355 			continue;
356 		/* If this is a static mapping we must leave it alone */
357 		if ((vm->flags & VM_ARM_STATIC_MAPPING) &&
358 		    (vm->addr <= addr) && (vm->addr + vm->size > addr)) {
359 			read_unlock(&vmlist_lock);
360 			return;
361 		}
362 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
363 		/*
364 		 * If this is a section based mapping we need to handle it
365 		 * specially as the VM subsystem does not know how to handle
366 		 * such a beast.
367 		 */
368 		if ((vm->addr == addr) &&
369 		    (vm->flags & VM_ARM_SECTION_MAPPING)) {
370 			unmap_area_sections((unsigned long)vm->addr, vm->size);
371 			break;
372 		}
373 #endif
374 	}
375 	read_unlock(&vmlist_lock);
376 
377 	vunmap(addr);
378 }
379 
380 void (*arch_iounmap)(volatile void __iomem *) = __iounmap;
381 
382 void __arm_iounmap(volatile void __iomem *io_addr)
383 {
384 	arch_iounmap(io_addr);
385 }
386 EXPORT_SYMBOL(__arm_iounmap);
387 
388 #ifdef CONFIG_PCI
389 int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr)
390 {
391 	BUG_ON(offset + SZ_64K > IO_SPACE_LIMIT);
392 
393 	return ioremap_page_range(PCI_IO_VIRT_BASE + offset,
394 				  PCI_IO_VIRT_BASE + offset + SZ_64K,
395 				  phys_addr,
396 				  __pgprot(get_mem_type(MT_DEVICE)->prot_pte));
397 }
398 EXPORT_SYMBOL_GPL(pci_ioremap_io);
399 #endif
400