xref: /openbmc/linux/arch/arm/mm/init.c (revision d42ce812)
1 /*
2  *  linux/arch/arm/mm/init.c
3  *
4  *  Copyright (C) 1995-2002 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/config.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/ptrace.h>
14 #include <linux/swap.h>
15 #include <linux/init.h>
16 #include <linux/bootmem.h>
17 #include <linux/mman.h>
18 #include <linux/nodemask.h>
19 #include <linux/initrd.h>
20 
21 #include <asm/mach-types.h>
22 #include <asm/hardware.h>
23 #include <asm/setup.h>
24 #include <asm/tlb.h>
25 
26 #include <asm/mach/arch.h>
27 #include <asm/mach/map.h>
28 
29 #define TABLE_SIZE	(2 * PTRS_PER_PTE * sizeof(pte_t))
30 
31 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
32 
33 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
34 extern void _stext, _text, _etext, __data_start, _end, __init_begin, __init_end;
35 extern unsigned long phys_initrd_start;
36 extern unsigned long phys_initrd_size;
37 
38 /*
39  * The sole use of this is to pass memory configuration
40  * data from paging_init to mem_init.
41  */
42 static struct meminfo meminfo __initdata = { 0, };
43 
44 /*
45  * empty_zero_page is a special page that is used for
46  * zero-initialized data and COW.
47  */
48 struct page *empty_zero_page;
49 
50 void show_mem(void)
51 {
52 	int free = 0, total = 0, reserved = 0;
53 	int shared = 0, cached = 0, slab = 0, node;
54 
55 	printk("Mem-info:\n");
56 	show_free_areas();
57 	printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
58 
59 	for_each_online_node(node) {
60 		struct page *page, *end;
61 
62 		page = NODE_MEM_MAP(node);
63 		end  = page + NODE_DATA(node)->node_spanned_pages;
64 
65 		do {
66 			total++;
67 			if (PageReserved(page))
68 				reserved++;
69 			else if (PageSwapCache(page))
70 				cached++;
71 			else if (PageSlab(page))
72 				slab++;
73 			else if (!page_count(page))
74 				free++;
75 			else
76 				shared += page_count(page) - 1;
77 			page++;
78 		} while (page < end);
79 	}
80 
81 	printk("%d pages of RAM\n", total);
82 	printk("%d free pages\n", free);
83 	printk("%d reserved pages\n", reserved);
84 	printk("%d slab pages\n", slab);
85 	printk("%d pages shared\n", shared);
86 	printk("%d pages swap cached\n", cached);
87 }
88 
89 struct node_info {
90 	unsigned int start;
91 	unsigned int end;
92 	int bootmap_pages;
93 };
94 
95 #define O_PFN_DOWN(x)	((x) >> PAGE_SHIFT)
96 #define V_PFN_DOWN(x)	O_PFN_DOWN(__pa(x))
97 
98 #define O_PFN_UP(x)	(PAGE_ALIGN(x) >> PAGE_SHIFT)
99 #define V_PFN_UP(x)	O_PFN_UP(__pa(x))
100 
101 #define PFN_SIZE(x)	((x) >> PAGE_SHIFT)
102 #define PFN_RANGE(s,e)	PFN_SIZE(PAGE_ALIGN((unsigned long)(e)) - \
103 				(((unsigned long)(s)) & PAGE_MASK))
104 
105 /*
106  * FIXME: We really want to avoid allocating the bootmap bitmap
107  * over the top of the initrd.  Hopefully, this is located towards
108  * the start of a bank, so if we allocate the bootmap bitmap at
109  * the end, we won't clash.
110  */
111 static unsigned int __init
112 find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages)
113 {
114 	unsigned int start_pfn, bank, bootmap_pfn;
115 
116 	start_pfn   = V_PFN_UP(&_end);
117 	bootmap_pfn = 0;
118 
119 	for (bank = 0; bank < mi->nr_banks; bank ++) {
120 		unsigned int start, end;
121 
122 		if (mi->bank[bank].node != node)
123 			continue;
124 
125 		start = O_PFN_UP(mi->bank[bank].start);
126 		end   = O_PFN_DOWN(mi->bank[bank].size +
127 				   mi->bank[bank].start);
128 
129 		if (end < start_pfn)
130 			continue;
131 
132 		if (start < start_pfn)
133 			start = start_pfn;
134 
135 		if (end <= start)
136 			continue;
137 
138 		if (end - start >= bootmap_pages) {
139 			bootmap_pfn = start;
140 			break;
141 		}
142 	}
143 
144 	if (bootmap_pfn == 0)
145 		BUG();
146 
147 	return bootmap_pfn;
148 }
149 
150 /*
151  * Scan the memory info structure and pull out:
152  *  - the end of memory
153  *  - the number of nodes
154  *  - the pfn range of each node
155  *  - the number of bootmem bitmap pages
156  */
157 static unsigned int __init
158 find_memend_and_nodes(struct meminfo *mi, struct node_info *np)
159 {
160 	unsigned int i, bootmem_pages = 0, memend_pfn = 0;
161 
162 	for (i = 0; i < MAX_NUMNODES; i++) {
163 		np[i].start = -1U;
164 		np[i].end = 0;
165 		np[i].bootmap_pages = 0;
166 	}
167 
168 	for (i = 0; i < mi->nr_banks; i++) {
169 		unsigned long start, end;
170 		int node;
171 
172 		if (mi->bank[i].size == 0) {
173 			/*
174 			 * Mark this bank with an invalid node number
175 			 */
176 			mi->bank[i].node = -1;
177 			continue;
178 		}
179 
180 		node = mi->bank[i].node;
181 
182 		/*
183 		 * Make sure we haven't exceeded the maximum number of nodes
184 		 * that we have in this configuration.  If we have, we're in
185 		 * trouble.  (maybe we ought to limit, instead of bugging?)
186 		 */
187 		if (node >= MAX_NUMNODES)
188 			BUG();
189 		node_set_online(node);
190 
191 		/*
192 		 * Get the start and end pfns for this bank
193 		 */
194 		start = O_PFN_UP(mi->bank[i].start);
195 		end   = O_PFN_DOWN(mi->bank[i].start + mi->bank[i].size);
196 
197 		if (np[node].start > start)
198 			np[node].start = start;
199 
200 		if (np[node].end < end)
201 			np[node].end = end;
202 
203 		if (memend_pfn < end)
204 			memend_pfn = end;
205 	}
206 
207 	/*
208 	 * Calculate the number of pages we require to
209 	 * store the bootmem bitmaps.
210 	 */
211 	for_each_online_node(i) {
212 		if (np[i].end == 0)
213 			continue;
214 
215 		np[i].bootmap_pages = bootmem_bootmap_pages(np[i].end -
216 							    np[i].start);
217 		bootmem_pages += np[i].bootmap_pages;
218 	}
219 
220 	high_memory = __va(memend_pfn << PAGE_SHIFT);
221 
222 	/*
223 	 * This doesn't seem to be used by the Linux memory
224 	 * manager any more.  If we can get rid of it, we
225 	 * also get rid of some of the stuff above as well.
226 	 *
227 	 * Note: max_low_pfn and max_pfn reflect the number
228 	 * of _pages_ in the system, not the maximum PFN.
229 	 */
230 	max_low_pfn = memend_pfn - O_PFN_DOWN(PHYS_OFFSET);
231 	max_pfn = memend_pfn - O_PFN_DOWN(PHYS_OFFSET);
232 
233 	return bootmem_pages;
234 }
235 
236 static int __init check_initrd(struct meminfo *mi)
237 {
238 	int initrd_node = -2;
239 #ifdef CONFIG_BLK_DEV_INITRD
240 	unsigned long end = phys_initrd_start + phys_initrd_size;
241 
242 	/*
243 	 * Make sure that the initrd is within a valid area of
244 	 * memory.
245 	 */
246 	if (phys_initrd_size) {
247 		unsigned int i;
248 
249 		initrd_node = -1;
250 
251 		for (i = 0; i < mi->nr_banks; i++) {
252 			unsigned long bank_end;
253 
254 			bank_end = mi->bank[i].start + mi->bank[i].size;
255 
256 			if (mi->bank[i].start <= phys_initrd_start &&
257 			    end <= bank_end)
258 				initrd_node = mi->bank[i].node;
259 		}
260 	}
261 
262 	if (initrd_node == -1) {
263 		printk(KERN_ERR "initrd (0x%08lx - 0x%08lx) extends beyond "
264 		       "physical memory - disabling initrd\n",
265 		       phys_initrd_start, end);
266 		phys_initrd_start = phys_initrd_size = 0;
267 	}
268 #endif
269 
270 	return initrd_node;
271 }
272 
273 /*
274  * Reserve the various regions of node 0
275  */
276 static __init void reserve_node_zero(unsigned int bootmap_pfn, unsigned int bootmap_pages)
277 {
278 	pg_data_t *pgdat = NODE_DATA(0);
279 	unsigned long res_size = 0;
280 
281 	/*
282 	 * Register the kernel text and data with bootmem.
283 	 * Note that this can only be in node 0.
284 	 */
285 #ifdef CONFIG_XIP_KERNEL
286 	reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start);
287 #else
288 	reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext);
289 #endif
290 
291 	/*
292 	 * Reserve the page tables.  These are already in use,
293 	 * and can only be in node 0.
294 	 */
295 	reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
296 			     PTRS_PER_PGD * sizeof(pgd_t));
297 
298 	/*
299 	 * And don't forget to reserve the allocator bitmap,
300 	 * which will be freed later.
301 	 */
302 	reserve_bootmem_node(pgdat, bootmap_pfn << PAGE_SHIFT,
303 			     bootmap_pages << PAGE_SHIFT);
304 
305 	/*
306 	 * Hmm... This should go elsewhere, but we really really need to
307 	 * stop things allocating the low memory; ideally we need a better
308 	 * implementation of GFP_DMA which does not assume that DMA-able
309 	 * memory starts at zero.
310 	 */
311 	if (machine_is_integrator() || machine_is_cintegrator())
312 		res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
313 
314 	/*
315 	 * These should likewise go elsewhere.  They pre-reserve the
316 	 * screen memory region at the start of main system memory.
317 	 */
318 	if (machine_is_edb7211())
319 		res_size = 0x00020000;
320 	if (machine_is_p720t())
321 		res_size = 0x00014000;
322 
323 #ifdef CONFIG_SA1111
324 	/*
325 	 * Because of the SA1111 DMA bug, we want to preserve our
326 	 * precious DMA-able memory...
327 	 */
328 	res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
329 #endif
330 	if (res_size)
331 		reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size);
332 }
333 
334 /*
335  * Register all available RAM in this node with the bootmem allocator.
336  */
337 static inline void free_bootmem_node_bank(int node, struct meminfo *mi)
338 {
339 	pg_data_t *pgdat = NODE_DATA(node);
340 	int bank;
341 
342 	for (bank = 0; bank < mi->nr_banks; bank++)
343 		if (mi->bank[bank].node == node)
344 			free_bootmem_node(pgdat, mi->bank[bank].start,
345 					  mi->bank[bank].size);
346 }
347 
348 /*
349  * Initialise the bootmem allocator for all nodes.  This is called
350  * early during the architecture specific initialisation.
351  */
352 static void __init bootmem_init(struct meminfo *mi)
353 {
354 	struct node_info node_info[MAX_NUMNODES], *np = node_info;
355 	unsigned int bootmap_pages, bootmap_pfn, map_pg;
356 	int node, initrd_node;
357 
358 	bootmap_pages = find_memend_and_nodes(mi, np);
359 	bootmap_pfn   = find_bootmap_pfn(0, mi, bootmap_pages);
360 	initrd_node   = check_initrd(mi);
361 
362 	map_pg = bootmap_pfn;
363 
364 	/*
365 	 * Initialise the bootmem nodes.
366 	 *
367 	 * What we really want to do is:
368 	 *
369 	 *   unmap_all_regions_except_kernel();
370 	 *   for_each_node_in_reverse_order(node) {
371 	 *     map_node(node);
372 	 *     allocate_bootmem_map(node);
373 	 *     init_bootmem_node(node);
374 	 *     free_bootmem_node(node);
375 	 *   }
376 	 *
377 	 * but this is a 2.5-type change.  For now, we just set
378 	 * the nodes up in reverse order.
379 	 *
380 	 * (we could also do with rolling bootmem_init and paging_init
381 	 * into one generic "memory_init" type function).
382 	 */
383 	np += num_online_nodes() - 1;
384 	for (node = num_online_nodes() - 1; node >= 0; node--, np--) {
385 		/*
386 		 * If there are no pages in this node, ignore it.
387 		 * Note that node 0 must always have some pages.
388 		 */
389 		if (np->end == 0 || !node_online(node)) {
390 			if (node == 0)
391 				BUG();
392 			continue;
393 		}
394 
395 		/*
396 		 * Initialise the bootmem allocator.
397 		 */
398 		init_bootmem_node(NODE_DATA(node), map_pg, np->start, np->end);
399 		free_bootmem_node_bank(node, mi);
400 		map_pg += np->bootmap_pages;
401 
402 		/*
403 		 * If this is node 0, we need to reserve some areas ASAP -
404 		 * we may use bootmem on node 0 to setup the other nodes.
405 		 */
406 		if (node == 0)
407 			reserve_node_zero(bootmap_pfn, bootmap_pages);
408 	}
409 
410 
411 #ifdef CONFIG_BLK_DEV_INITRD
412 	if (phys_initrd_size && initrd_node >= 0) {
413 		reserve_bootmem_node(NODE_DATA(initrd_node), phys_initrd_start,
414 				     phys_initrd_size);
415 		initrd_start = __phys_to_virt(phys_initrd_start);
416 		initrd_end = initrd_start + phys_initrd_size;
417 	}
418 #endif
419 
420 	BUG_ON(map_pg != bootmap_pfn + bootmap_pages);
421 }
422 
423 /*
424  * paging_init() sets up the page tables, initialises the zone memory
425  * maps, and sets up the zero page, bad page and bad page tables.
426  */
427 void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc)
428 {
429 	void *zero_page;
430 	int node;
431 
432 	bootmem_init(mi);
433 
434 	memcpy(&meminfo, mi, sizeof(meminfo));
435 
436 	/*
437 	 * allocate the zero page.  Note that we count on this going ok.
438 	 */
439 	zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
440 
441 	/*
442 	 * initialise the page tables.
443 	 */
444 	memtable_init(mi);
445 	if (mdesc->map_io)
446 		mdesc->map_io();
447 	flush_tlb_all();
448 
449 	/*
450 	 * initialise the zones within each node
451 	 */
452 	for_each_online_node(node) {
453 		unsigned long zone_size[MAX_NR_ZONES];
454 		unsigned long zhole_size[MAX_NR_ZONES];
455 		struct bootmem_data *bdata;
456 		pg_data_t *pgdat;
457 		int i;
458 
459 		/*
460 		 * Initialise the zone size information.
461 		 */
462 		for (i = 0; i < MAX_NR_ZONES; i++) {
463 			zone_size[i]  = 0;
464 			zhole_size[i] = 0;
465 		}
466 
467 		pgdat = NODE_DATA(node);
468 		bdata = pgdat->bdata;
469 
470 		/*
471 		 * The size of this node has already been determined.
472 		 * If we need to do anything fancy with the allocation
473 		 * of this memory to the zones, now is the time to do
474 		 * it.
475 		 */
476 		zone_size[0] = bdata->node_low_pfn -
477 				(bdata->node_boot_start >> PAGE_SHIFT);
478 
479 		/*
480 		 * If this zone has zero size, skip it.
481 		 */
482 		if (!zone_size[0])
483 			continue;
484 
485 		/*
486 		 * For each bank in this node, calculate the size of the
487 		 * holes.  holes = node_size - sum(bank_sizes_in_node)
488 		 */
489 		zhole_size[0] = zone_size[0];
490 		for (i = 0; i < mi->nr_banks; i++) {
491 			if (mi->bank[i].node != node)
492 				continue;
493 
494 			zhole_size[0] -= mi->bank[i].size >> PAGE_SHIFT;
495 		}
496 
497 		/*
498 		 * Adjust the sizes according to any special
499 		 * requirements for this machine type.
500 		 */
501 		arch_adjust_zones(node, zone_size, zhole_size);
502 
503 		free_area_init_node(node, pgdat, zone_size,
504 				bdata->node_boot_start >> PAGE_SHIFT, zhole_size);
505 	}
506 
507 	/*
508 	 * finish off the bad pages once
509 	 * the mem_map is initialised
510 	 */
511 	memzero(zero_page, PAGE_SIZE);
512 	empty_zero_page = virt_to_page(zero_page);
513 	flush_dcache_page(empty_zero_page);
514 }
515 
516 static inline void free_area(unsigned long addr, unsigned long end, char *s)
517 {
518 	unsigned int size = (end - addr) >> 10;
519 
520 	for (; addr < end; addr += PAGE_SIZE) {
521 		struct page *page = virt_to_page(addr);
522 		ClearPageReserved(page);
523 		set_page_count(page, 1);
524 		free_page(addr);
525 		totalram_pages++;
526 	}
527 
528 	if (size && s)
529 		printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
530 }
531 
532 /*
533  * mem_init() marks the free areas in the mem_map and tells us how much
534  * memory is free.  This is done after various parts of the system have
535  * claimed their memory after the kernel image.
536  */
537 void __init mem_init(void)
538 {
539 	unsigned int codepages, datapages, initpages;
540 	int i, node;
541 
542 	codepages = &_etext - &_text;
543 	datapages = &_end - &__data_start;
544 	initpages = &__init_end - &__init_begin;
545 
546 #ifndef CONFIG_DISCONTIGMEM
547 	max_mapnr   = virt_to_page(high_memory) - mem_map;
548 #endif
549 
550 	/*
551 	 * We may have non-contiguous memory.
552 	 */
553 	if (meminfo.nr_banks != 1)
554 		create_memmap_holes(&meminfo);
555 
556 	/* this will put all unused low memory onto the freelists */
557 	for_each_online_node(node) {
558 		pg_data_t *pgdat = NODE_DATA(node);
559 
560 		if (pgdat->node_spanned_pages != 0)
561 			totalram_pages += free_all_bootmem_node(pgdat);
562 	}
563 
564 #ifdef CONFIG_SA1111
565 	/* now that our DMA memory is actually so designated, we can free it */
566 	free_area(PAGE_OFFSET, (unsigned long)swapper_pg_dir, NULL);
567 #endif
568 
569 	/*
570 	 * Since our memory may not be contiguous, calculate the
571 	 * real number of pages we have in this system
572 	 */
573 	printk(KERN_INFO "Memory:");
574 
575 	num_physpages = 0;
576 	for (i = 0; i < meminfo.nr_banks; i++) {
577 		num_physpages += meminfo.bank[i].size >> PAGE_SHIFT;
578 		printk(" %ldMB", meminfo.bank[i].size >> 20);
579 	}
580 
581 	printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
582 	printk(KERN_NOTICE "Memory: %luKB available (%dK code, "
583 		"%dK data, %dK init)\n",
584 		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
585 		codepages >> 10, datapages >> 10, initpages >> 10);
586 
587 	if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
588 		extern int sysctl_overcommit_memory;
589 		/*
590 		 * On a machine this small we won't get
591 		 * anywhere without overcommit, so turn
592 		 * it on by default.
593 		 */
594 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
595 	}
596 }
597 
598 void free_initmem(void)
599 {
600 	if (!machine_is_integrator() && !machine_is_cintegrator()) {
601 		free_area((unsigned long)(&__init_begin),
602 			  (unsigned long)(&__init_end),
603 			  "init");
604 	}
605 }
606 
607 #ifdef CONFIG_BLK_DEV_INITRD
608 
609 static int keep_initrd;
610 
611 void free_initrd_mem(unsigned long start, unsigned long end)
612 {
613 	if (!keep_initrd)
614 		free_area(start, end, "initrd");
615 }
616 
617 static int __init keepinitrd_setup(char *__unused)
618 {
619 	keep_initrd = 1;
620 	return 1;
621 }
622 
623 __setup("keepinitrd", keepinitrd_setup);
624 #endif
625