1 /* 2 * linux/arch/arm/mm/init.c 3 * 4 * Copyright (C) 1995-2005 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/kernel.h> 11 #include <linux/errno.h> 12 #include <linux/swap.h> 13 #include <linux/init.h> 14 #include <linux/mman.h> 15 #include <linux/sched/signal.h> 16 #include <linux/sched/task.h> 17 #include <linux/export.h> 18 #include <linux/nodemask.h> 19 #include <linux/initrd.h> 20 #include <linux/of_fdt.h> 21 #include <linux/highmem.h> 22 #include <linux/gfp.h> 23 #include <linux/memblock.h> 24 #include <linux/dma-contiguous.h> 25 #include <linux/sizes.h> 26 #include <linux/stop_machine.h> 27 28 #include <asm/cp15.h> 29 #include <asm/mach-types.h> 30 #include <asm/memblock.h> 31 #include <asm/memory.h> 32 #include <asm/prom.h> 33 #include <asm/sections.h> 34 #include <asm/setup.h> 35 #include <asm/system_info.h> 36 #include <asm/tlb.h> 37 #include <asm/fixmap.h> 38 #include <asm/ptdump.h> 39 40 #include <asm/mach/arch.h> 41 #include <asm/mach/map.h> 42 43 #include "mm.h" 44 45 #ifdef CONFIG_CPU_CP15_MMU 46 unsigned long __init __clear_cr(unsigned long mask) 47 { 48 cr_alignment = cr_alignment & ~mask; 49 return cr_alignment; 50 } 51 #endif 52 53 static phys_addr_t phys_initrd_start __initdata = 0; 54 static unsigned long phys_initrd_size __initdata = 0; 55 56 static int __init early_initrd(char *p) 57 { 58 phys_addr_t start; 59 unsigned long size; 60 char *endp; 61 62 start = memparse(p, &endp); 63 if (*endp == ',') { 64 size = memparse(endp + 1, NULL); 65 66 phys_initrd_start = start; 67 phys_initrd_size = size; 68 } 69 return 0; 70 } 71 early_param("initrd", early_initrd); 72 73 static int __init parse_tag_initrd(const struct tag *tag) 74 { 75 pr_warn("ATAG_INITRD is deprecated; " 76 "please update your bootloader.\n"); 77 phys_initrd_start = __virt_to_phys(tag->u.initrd.start); 78 phys_initrd_size = tag->u.initrd.size; 79 return 0; 80 } 81 82 __tagtable(ATAG_INITRD, parse_tag_initrd); 83 84 static int __init parse_tag_initrd2(const struct tag *tag) 85 { 86 phys_initrd_start = tag->u.initrd.start; 87 phys_initrd_size = tag->u.initrd.size; 88 return 0; 89 } 90 91 __tagtable(ATAG_INITRD2, parse_tag_initrd2); 92 93 static void __init find_limits(unsigned long *min, unsigned long *max_low, 94 unsigned long *max_high) 95 { 96 *max_low = PFN_DOWN(memblock_get_current_limit()); 97 *min = PFN_UP(memblock_start_of_DRAM()); 98 *max_high = PFN_DOWN(memblock_end_of_DRAM()); 99 } 100 101 #ifdef CONFIG_ZONE_DMA 102 103 phys_addr_t arm_dma_zone_size __read_mostly; 104 EXPORT_SYMBOL(arm_dma_zone_size); 105 106 /* 107 * The DMA mask corresponding to the maximum bus address allocatable 108 * using GFP_DMA. The default here places no restriction on DMA 109 * allocations. This must be the smallest DMA mask in the system, 110 * so a successful GFP_DMA allocation will always satisfy this. 111 */ 112 phys_addr_t arm_dma_limit; 113 unsigned long arm_dma_pfn_limit; 114 115 static void __init arm_adjust_dma_zone(unsigned long *size, unsigned long *hole, 116 unsigned long dma_size) 117 { 118 if (size[0] <= dma_size) 119 return; 120 121 size[ZONE_NORMAL] = size[0] - dma_size; 122 size[ZONE_DMA] = dma_size; 123 hole[ZONE_NORMAL] = hole[0]; 124 hole[ZONE_DMA] = 0; 125 } 126 #endif 127 128 void __init setup_dma_zone(const struct machine_desc *mdesc) 129 { 130 #ifdef CONFIG_ZONE_DMA 131 if (mdesc->dma_zone_size) { 132 arm_dma_zone_size = mdesc->dma_zone_size; 133 arm_dma_limit = PHYS_OFFSET + arm_dma_zone_size - 1; 134 } else 135 arm_dma_limit = 0xffffffff; 136 arm_dma_pfn_limit = arm_dma_limit >> PAGE_SHIFT; 137 #endif 138 } 139 140 static void __init zone_sizes_init(unsigned long min, unsigned long max_low, 141 unsigned long max_high) 142 { 143 unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES]; 144 struct memblock_region *reg; 145 146 /* 147 * initialise the zones. 148 */ 149 memset(zone_size, 0, sizeof(zone_size)); 150 151 /* 152 * The memory size has already been determined. If we need 153 * to do anything fancy with the allocation of this memory 154 * to the zones, now is the time to do it. 155 */ 156 zone_size[0] = max_low - min; 157 #ifdef CONFIG_HIGHMEM 158 zone_size[ZONE_HIGHMEM] = max_high - max_low; 159 #endif 160 161 /* 162 * Calculate the size of the holes. 163 * holes = node_size - sum(bank_sizes) 164 */ 165 memcpy(zhole_size, zone_size, sizeof(zhole_size)); 166 for_each_memblock(memory, reg) { 167 unsigned long start = memblock_region_memory_base_pfn(reg); 168 unsigned long end = memblock_region_memory_end_pfn(reg); 169 170 if (start < max_low) { 171 unsigned long low_end = min(end, max_low); 172 zhole_size[0] -= low_end - start; 173 } 174 #ifdef CONFIG_HIGHMEM 175 if (end > max_low) { 176 unsigned long high_start = max(start, max_low); 177 zhole_size[ZONE_HIGHMEM] -= end - high_start; 178 } 179 #endif 180 } 181 182 #ifdef CONFIG_ZONE_DMA 183 /* 184 * Adjust the sizes according to any special requirements for 185 * this machine type. 186 */ 187 if (arm_dma_zone_size) 188 arm_adjust_dma_zone(zone_size, zhole_size, 189 arm_dma_zone_size >> PAGE_SHIFT); 190 #endif 191 192 free_area_init_node(0, zone_size, min, zhole_size); 193 } 194 195 #ifdef CONFIG_HAVE_ARCH_PFN_VALID 196 int pfn_valid(unsigned long pfn) 197 { 198 return memblock_is_map_memory(__pfn_to_phys(pfn)); 199 } 200 EXPORT_SYMBOL(pfn_valid); 201 #endif 202 203 #ifndef CONFIG_SPARSEMEM 204 static void __init arm_memory_present(void) 205 { 206 } 207 #else 208 static void __init arm_memory_present(void) 209 { 210 struct memblock_region *reg; 211 212 for_each_memblock(memory, reg) 213 memory_present(0, memblock_region_memory_base_pfn(reg), 214 memblock_region_memory_end_pfn(reg)); 215 } 216 #endif 217 218 static bool arm_memblock_steal_permitted = true; 219 220 phys_addr_t __init arm_memblock_steal(phys_addr_t size, phys_addr_t align) 221 { 222 phys_addr_t phys; 223 224 BUG_ON(!arm_memblock_steal_permitted); 225 226 phys = memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ANYWHERE); 227 memblock_free(phys, size); 228 memblock_remove(phys, size); 229 230 return phys; 231 } 232 233 static void __init arm_initrd_init(void) 234 { 235 #ifdef CONFIG_BLK_DEV_INITRD 236 phys_addr_t start; 237 unsigned long size; 238 239 /* FDT scan will populate initrd_start */ 240 if (initrd_start && !phys_initrd_size) { 241 phys_initrd_start = __virt_to_phys(initrd_start); 242 phys_initrd_size = initrd_end - initrd_start; 243 } 244 245 initrd_start = initrd_end = 0; 246 247 if (!phys_initrd_size) 248 return; 249 250 /* 251 * Round the memory region to page boundaries as per free_initrd_mem() 252 * This allows us to detect whether the pages overlapping the initrd 253 * are in use, but more importantly, reserves the entire set of pages 254 * as we don't want these pages allocated for other purposes. 255 */ 256 start = round_down(phys_initrd_start, PAGE_SIZE); 257 size = phys_initrd_size + (phys_initrd_start - start); 258 size = round_up(size, PAGE_SIZE); 259 260 if (!memblock_is_region_memory(start, size)) { 261 pr_err("INITRD: 0x%08llx+0x%08lx is not a memory region - disabling initrd\n", 262 (u64)start, size); 263 return; 264 } 265 266 if (memblock_is_region_reserved(start, size)) { 267 pr_err("INITRD: 0x%08llx+0x%08lx overlaps in-use memory region - disabling initrd\n", 268 (u64)start, size); 269 return; 270 } 271 272 memblock_reserve(start, size); 273 274 /* Now convert initrd to virtual addresses */ 275 initrd_start = __phys_to_virt(phys_initrd_start); 276 initrd_end = initrd_start + phys_initrd_size; 277 #endif 278 } 279 280 void __init arm_memblock_init(const struct machine_desc *mdesc) 281 { 282 /* Register the kernel text, kernel data and initrd with memblock. */ 283 memblock_reserve(__pa(KERNEL_START), KERNEL_END - KERNEL_START); 284 285 arm_initrd_init(); 286 287 arm_mm_memblock_reserve(); 288 289 /* reserve any platform specific memblock areas */ 290 if (mdesc->reserve) 291 mdesc->reserve(); 292 293 early_init_fdt_reserve_self(); 294 early_init_fdt_scan_reserved_mem(); 295 296 /* reserve memory for DMA contiguous allocations */ 297 dma_contiguous_reserve(arm_dma_limit); 298 299 arm_memblock_steal_permitted = false; 300 memblock_dump_all(); 301 } 302 303 void __init bootmem_init(void) 304 { 305 unsigned long min, max_low, max_high; 306 307 memblock_allow_resize(); 308 max_low = max_high = 0; 309 310 find_limits(&min, &max_low, &max_high); 311 312 early_memtest((phys_addr_t)min << PAGE_SHIFT, 313 (phys_addr_t)max_low << PAGE_SHIFT); 314 315 /* 316 * Sparsemem tries to allocate bootmem in memory_present(), 317 * so must be done after the fixed reservations 318 */ 319 arm_memory_present(); 320 321 /* 322 * sparse_init() needs the bootmem allocator up and running. 323 */ 324 sparse_init(); 325 326 /* 327 * Now free the memory - free_area_init_node needs 328 * the sparse mem_map arrays initialized by sparse_init() 329 * for memmap_init_zone(), otherwise all PFNs are invalid. 330 */ 331 zone_sizes_init(min, max_low, max_high); 332 333 /* 334 * This doesn't seem to be used by the Linux memory manager any 335 * more, but is used by ll_rw_block. If we can get rid of it, we 336 * also get rid of some of the stuff above as well. 337 */ 338 min_low_pfn = min; 339 max_low_pfn = max_low; 340 max_pfn = max_high; 341 } 342 343 /* 344 * Poison init memory with an undefined instruction (ARM) or a branch to an 345 * undefined instruction (Thumb). 346 */ 347 static inline void poison_init_mem(void *s, size_t count) 348 { 349 u32 *p = (u32 *)s; 350 for (; count != 0; count -= 4) 351 *p++ = 0xe7fddef0; 352 } 353 354 static inline void 355 free_memmap(unsigned long start_pfn, unsigned long end_pfn) 356 { 357 struct page *start_pg, *end_pg; 358 phys_addr_t pg, pgend; 359 360 /* 361 * Convert start_pfn/end_pfn to a struct page pointer. 362 */ 363 start_pg = pfn_to_page(start_pfn - 1) + 1; 364 end_pg = pfn_to_page(end_pfn - 1) + 1; 365 366 /* 367 * Convert to physical addresses, and 368 * round start upwards and end downwards. 369 */ 370 pg = PAGE_ALIGN(__pa(start_pg)); 371 pgend = __pa(end_pg) & PAGE_MASK; 372 373 /* 374 * If there are free pages between these, 375 * free the section of the memmap array. 376 */ 377 if (pg < pgend) 378 memblock_free_early(pg, pgend - pg); 379 } 380 381 /* 382 * The mem_map array can get very big. Free the unused area of the memory map. 383 */ 384 static void __init free_unused_memmap(void) 385 { 386 unsigned long start, prev_end = 0; 387 struct memblock_region *reg; 388 389 /* 390 * This relies on each bank being in address order. 391 * The banks are sorted previously in bootmem_init(). 392 */ 393 for_each_memblock(memory, reg) { 394 start = memblock_region_memory_base_pfn(reg); 395 396 #ifdef CONFIG_SPARSEMEM 397 /* 398 * Take care not to free memmap entries that don't exist 399 * due to SPARSEMEM sections which aren't present. 400 */ 401 start = min(start, 402 ALIGN(prev_end, PAGES_PER_SECTION)); 403 #else 404 /* 405 * Align down here since the VM subsystem insists that the 406 * memmap entries are valid from the bank start aligned to 407 * MAX_ORDER_NR_PAGES. 408 */ 409 start = round_down(start, MAX_ORDER_NR_PAGES); 410 #endif 411 /* 412 * If we had a previous bank, and there is a space 413 * between the current bank and the previous, free it. 414 */ 415 if (prev_end && prev_end < start) 416 free_memmap(prev_end, start); 417 418 /* 419 * Align up here since the VM subsystem insists that the 420 * memmap entries are valid from the bank end aligned to 421 * MAX_ORDER_NR_PAGES. 422 */ 423 prev_end = ALIGN(memblock_region_memory_end_pfn(reg), 424 MAX_ORDER_NR_PAGES); 425 } 426 427 #ifdef CONFIG_SPARSEMEM 428 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) 429 free_memmap(prev_end, 430 ALIGN(prev_end, PAGES_PER_SECTION)); 431 #endif 432 } 433 434 #ifdef CONFIG_HIGHMEM 435 static inline void free_area_high(unsigned long pfn, unsigned long end) 436 { 437 for (; pfn < end; pfn++) 438 free_highmem_page(pfn_to_page(pfn)); 439 } 440 #endif 441 442 static void __init free_highpages(void) 443 { 444 #ifdef CONFIG_HIGHMEM 445 unsigned long max_low = max_low_pfn; 446 struct memblock_region *mem, *res; 447 448 /* set highmem page free */ 449 for_each_memblock(memory, mem) { 450 unsigned long start = memblock_region_memory_base_pfn(mem); 451 unsigned long end = memblock_region_memory_end_pfn(mem); 452 453 /* Ignore complete lowmem entries */ 454 if (end <= max_low) 455 continue; 456 457 if (memblock_is_nomap(mem)) 458 continue; 459 460 /* Truncate partial highmem entries */ 461 if (start < max_low) 462 start = max_low; 463 464 /* Find and exclude any reserved regions */ 465 for_each_memblock(reserved, res) { 466 unsigned long res_start, res_end; 467 468 res_start = memblock_region_reserved_base_pfn(res); 469 res_end = memblock_region_reserved_end_pfn(res); 470 471 if (res_end < start) 472 continue; 473 if (res_start < start) 474 res_start = start; 475 if (res_start > end) 476 res_start = end; 477 if (res_end > end) 478 res_end = end; 479 if (res_start != start) 480 free_area_high(start, res_start); 481 start = res_end; 482 if (start == end) 483 break; 484 } 485 486 /* And now free anything which remains */ 487 if (start < end) 488 free_area_high(start, end); 489 } 490 #endif 491 } 492 493 /* 494 * mem_init() marks the free areas in the mem_map and tells us how much 495 * memory is free. This is done after various parts of the system have 496 * claimed their memory after the kernel image. 497 */ 498 void __init mem_init(void) 499 { 500 #ifdef CONFIG_HAVE_TCM 501 /* These pointers are filled in on TCM detection */ 502 extern u32 dtcm_end; 503 extern u32 itcm_end; 504 #endif 505 506 set_max_mapnr(pfn_to_page(max_pfn) - mem_map); 507 508 /* this will put all unused low memory onto the freelists */ 509 free_unused_memmap(); 510 memblock_free_all(); 511 512 #ifdef CONFIG_SA1111 513 /* now that our DMA memory is actually so designated, we can free it */ 514 free_reserved_area(__va(PHYS_OFFSET), swapper_pg_dir, -1, NULL); 515 #endif 516 517 free_highpages(); 518 519 mem_init_print_info(NULL); 520 521 #define MLK(b, t) b, t, ((t) - (b)) >> 10 522 #define MLM(b, t) b, t, ((t) - (b)) >> 20 523 #define MLK_ROUNDUP(b, t) b, t, DIV_ROUND_UP(((t) - (b)), SZ_1K) 524 525 pr_notice("Virtual kernel memory layout:\n" 526 " vector : 0x%08lx - 0x%08lx (%4ld kB)\n" 527 #ifdef CONFIG_HAVE_TCM 528 " DTCM : 0x%08lx - 0x%08lx (%4ld kB)\n" 529 " ITCM : 0x%08lx - 0x%08lx (%4ld kB)\n" 530 #endif 531 " fixmap : 0x%08lx - 0x%08lx (%4ld kB)\n" 532 " vmalloc : 0x%08lx - 0x%08lx (%4ld MB)\n" 533 " lowmem : 0x%08lx - 0x%08lx (%4ld MB)\n" 534 #ifdef CONFIG_HIGHMEM 535 " pkmap : 0x%08lx - 0x%08lx (%4ld MB)\n" 536 #endif 537 #ifdef CONFIG_MODULES 538 " modules : 0x%08lx - 0x%08lx (%4ld MB)\n" 539 #endif 540 " .text : 0x%p" " - 0x%p" " (%4td kB)\n" 541 " .init : 0x%p" " - 0x%p" " (%4td kB)\n" 542 " .data : 0x%p" " - 0x%p" " (%4td kB)\n" 543 " .bss : 0x%p" " - 0x%p" " (%4td kB)\n", 544 545 MLK(VECTORS_BASE, VECTORS_BASE + PAGE_SIZE), 546 #ifdef CONFIG_HAVE_TCM 547 MLK(DTCM_OFFSET, (unsigned long) dtcm_end), 548 MLK(ITCM_OFFSET, (unsigned long) itcm_end), 549 #endif 550 MLK(FIXADDR_START, FIXADDR_END), 551 MLM(VMALLOC_START, VMALLOC_END), 552 MLM(PAGE_OFFSET, (unsigned long)high_memory), 553 #ifdef CONFIG_HIGHMEM 554 MLM(PKMAP_BASE, (PKMAP_BASE) + (LAST_PKMAP) * 555 (PAGE_SIZE)), 556 #endif 557 #ifdef CONFIG_MODULES 558 MLM(MODULES_VADDR, MODULES_END), 559 #endif 560 561 MLK_ROUNDUP(_text, _etext), 562 MLK_ROUNDUP(__init_begin, __init_end), 563 MLK_ROUNDUP(_sdata, _edata), 564 MLK_ROUNDUP(__bss_start, __bss_stop)); 565 566 #undef MLK 567 #undef MLM 568 #undef MLK_ROUNDUP 569 570 /* 571 * Check boundaries twice: Some fundamental inconsistencies can 572 * be detected at build time already. 573 */ 574 #ifdef CONFIG_MMU 575 BUILD_BUG_ON(TASK_SIZE > MODULES_VADDR); 576 BUG_ON(TASK_SIZE > MODULES_VADDR); 577 #endif 578 579 #ifdef CONFIG_HIGHMEM 580 BUILD_BUG_ON(PKMAP_BASE + LAST_PKMAP * PAGE_SIZE > PAGE_OFFSET); 581 BUG_ON(PKMAP_BASE + LAST_PKMAP * PAGE_SIZE > PAGE_OFFSET); 582 #endif 583 } 584 585 #ifdef CONFIG_STRICT_KERNEL_RWX 586 struct section_perm { 587 const char *name; 588 unsigned long start; 589 unsigned long end; 590 pmdval_t mask; 591 pmdval_t prot; 592 pmdval_t clear; 593 }; 594 595 /* First section-aligned location at or after __start_rodata. */ 596 extern char __start_rodata_section_aligned[]; 597 598 static struct section_perm nx_perms[] = { 599 /* Make pages tables, etc before _stext RW (set NX). */ 600 { 601 .name = "pre-text NX", 602 .start = PAGE_OFFSET, 603 .end = (unsigned long)_stext, 604 .mask = ~PMD_SECT_XN, 605 .prot = PMD_SECT_XN, 606 }, 607 /* Make init RW (set NX). */ 608 { 609 .name = "init NX", 610 .start = (unsigned long)__init_begin, 611 .end = (unsigned long)_sdata, 612 .mask = ~PMD_SECT_XN, 613 .prot = PMD_SECT_XN, 614 }, 615 /* Make rodata NX (set RO in ro_perms below). */ 616 { 617 .name = "rodata NX", 618 .start = (unsigned long)__start_rodata_section_aligned, 619 .end = (unsigned long)__init_begin, 620 .mask = ~PMD_SECT_XN, 621 .prot = PMD_SECT_XN, 622 }, 623 }; 624 625 static struct section_perm ro_perms[] = { 626 /* Make kernel code and rodata RX (set RO). */ 627 { 628 .name = "text/rodata RO", 629 .start = (unsigned long)_stext, 630 .end = (unsigned long)__init_begin, 631 #ifdef CONFIG_ARM_LPAE 632 .mask = ~(L_PMD_SECT_RDONLY | PMD_SECT_AP2), 633 .prot = L_PMD_SECT_RDONLY | PMD_SECT_AP2, 634 #else 635 .mask = ~(PMD_SECT_APX | PMD_SECT_AP_WRITE), 636 .prot = PMD_SECT_APX | PMD_SECT_AP_WRITE, 637 .clear = PMD_SECT_AP_WRITE, 638 #endif 639 }, 640 }; 641 642 /* 643 * Updates section permissions only for the current mm (sections are 644 * copied into each mm). During startup, this is the init_mm. Is only 645 * safe to be called with preemption disabled, as under stop_machine(). 646 */ 647 static inline void section_update(unsigned long addr, pmdval_t mask, 648 pmdval_t prot, struct mm_struct *mm) 649 { 650 pmd_t *pmd; 651 652 pmd = pmd_offset(pud_offset(pgd_offset(mm, addr), addr), addr); 653 654 #ifdef CONFIG_ARM_LPAE 655 pmd[0] = __pmd((pmd_val(pmd[0]) & mask) | prot); 656 #else 657 if (addr & SECTION_SIZE) 658 pmd[1] = __pmd((pmd_val(pmd[1]) & mask) | prot); 659 else 660 pmd[0] = __pmd((pmd_val(pmd[0]) & mask) | prot); 661 #endif 662 flush_pmd_entry(pmd); 663 local_flush_tlb_kernel_range(addr, addr + SECTION_SIZE); 664 } 665 666 /* Make sure extended page tables are in use. */ 667 static inline bool arch_has_strict_perms(void) 668 { 669 if (cpu_architecture() < CPU_ARCH_ARMv6) 670 return false; 671 672 return !!(get_cr() & CR_XP); 673 } 674 675 void set_section_perms(struct section_perm *perms, int n, bool set, 676 struct mm_struct *mm) 677 { 678 size_t i; 679 unsigned long addr; 680 681 if (!arch_has_strict_perms()) 682 return; 683 684 for (i = 0; i < n; i++) { 685 if (!IS_ALIGNED(perms[i].start, SECTION_SIZE) || 686 !IS_ALIGNED(perms[i].end, SECTION_SIZE)) { 687 pr_err("BUG: %s section %lx-%lx not aligned to %lx\n", 688 perms[i].name, perms[i].start, perms[i].end, 689 SECTION_SIZE); 690 continue; 691 } 692 693 for (addr = perms[i].start; 694 addr < perms[i].end; 695 addr += SECTION_SIZE) 696 section_update(addr, perms[i].mask, 697 set ? perms[i].prot : perms[i].clear, mm); 698 } 699 700 } 701 702 /** 703 * update_sections_early intended to be called only through stop_machine 704 * framework and executed by only one CPU while all other CPUs will spin and 705 * wait, so no locking is required in this function. 706 */ 707 static void update_sections_early(struct section_perm perms[], int n) 708 { 709 struct task_struct *t, *s; 710 711 for_each_process(t) { 712 if (t->flags & PF_KTHREAD) 713 continue; 714 for_each_thread(t, s) 715 set_section_perms(perms, n, true, s->mm); 716 } 717 set_section_perms(perms, n, true, current->active_mm); 718 set_section_perms(perms, n, true, &init_mm); 719 } 720 721 static int __fix_kernmem_perms(void *unused) 722 { 723 update_sections_early(nx_perms, ARRAY_SIZE(nx_perms)); 724 return 0; 725 } 726 727 static void fix_kernmem_perms(void) 728 { 729 stop_machine(__fix_kernmem_perms, NULL, NULL); 730 } 731 732 static int __mark_rodata_ro(void *unused) 733 { 734 update_sections_early(ro_perms, ARRAY_SIZE(ro_perms)); 735 return 0; 736 } 737 738 static int kernel_set_to_readonly __read_mostly; 739 740 void mark_rodata_ro(void) 741 { 742 kernel_set_to_readonly = 1; 743 stop_machine(__mark_rodata_ro, NULL, NULL); 744 debug_checkwx(); 745 } 746 747 void set_kernel_text_rw(void) 748 { 749 if (!kernel_set_to_readonly) 750 return; 751 752 set_section_perms(ro_perms, ARRAY_SIZE(ro_perms), false, 753 current->active_mm); 754 } 755 756 void set_kernel_text_ro(void) 757 { 758 if (!kernel_set_to_readonly) 759 return; 760 761 set_section_perms(ro_perms, ARRAY_SIZE(ro_perms), true, 762 current->active_mm); 763 } 764 765 #else 766 static inline void fix_kernmem_perms(void) { } 767 #endif /* CONFIG_STRICT_KERNEL_RWX */ 768 769 void free_initmem(void) 770 { 771 fix_kernmem_perms(); 772 773 poison_init_mem(__init_begin, __init_end - __init_begin); 774 if (!machine_is_integrator() && !machine_is_cintegrator()) 775 free_initmem_default(-1); 776 } 777 778 #ifdef CONFIG_BLK_DEV_INITRD 779 780 static int keep_initrd; 781 782 void free_initrd_mem(unsigned long start, unsigned long end) 783 { 784 if (!keep_initrd) { 785 if (start == initrd_start) 786 start = round_down(start, PAGE_SIZE); 787 if (end == initrd_end) 788 end = round_up(end, PAGE_SIZE); 789 790 poison_init_mem((void *)start, PAGE_ALIGN(end) - start); 791 free_reserved_area((void *)start, (void *)end, -1, "initrd"); 792 } 793 } 794 795 static int __init keepinitrd_setup(char *__unused) 796 { 797 keep_initrd = 1; 798 return 1; 799 } 800 801 __setup("keepinitrd", keepinitrd_setup); 802 #endif 803