1 /* 2 * linux/arch/arm/mm/init.c 3 * 4 * Copyright (C) 1995-2005 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/kernel.h> 11 #include <linux/errno.h> 12 #include <linux/swap.h> 13 #include <linux/init.h> 14 #include <linux/bootmem.h> 15 #include <linux/mman.h> 16 #include <linux/nodemask.h> 17 #include <linux/initrd.h> 18 19 #include <asm/mach-types.h> 20 #include <asm/setup.h> 21 #include <asm/sizes.h> 22 #include <asm/tlb.h> 23 24 #include <asm/mach/arch.h> 25 #include <asm/mach/map.h> 26 27 #include "mm.h" 28 29 static unsigned long phys_initrd_start __initdata = 0; 30 static unsigned long phys_initrd_size __initdata = 0; 31 32 static void __init early_initrd(char **p) 33 { 34 unsigned long start, size; 35 36 start = memparse(*p, p); 37 if (**p == ',') { 38 size = memparse((*p) + 1, p); 39 40 phys_initrd_start = start; 41 phys_initrd_size = size; 42 } 43 } 44 __early_param("initrd=", early_initrd); 45 46 static int __init parse_tag_initrd(const struct tag *tag) 47 { 48 printk(KERN_WARNING "ATAG_INITRD is deprecated; " 49 "please update your bootloader.\n"); 50 phys_initrd_start = __virt_to_phys(tag->u.initrd.start); 51 phys_initrd_size = tag->u.initrd.size; 52 return 0; 53 } 54 55 __tagtable(ATAG_INITRD, parse_tag_initrd); 56 57 static int __init parse_tag_initrd2(const struct tag *tag) 58 { 59 phys_initrd_start = tag->u.initrd.start; 60 phys_initrd_size = tag->u.initrd.size; 61 return 0; 62 } 63 64 __tagtable(ATAG_INITRD2, parse_tag_initrd2); 65 66 /* 67 * This is used to pass memory configuration data from paging_init 68 * to mem_init, and by show_mem() to skip holes in the memory map. 69 */ 70 static struct meminfo meminfo = { 0, }; 71 72 void show_mem(void) 73 { 74 int free = 0, total = 0, reserved = 0; 75 int shared = 0, cached = 0, slab = 0, node, i; 76 struct meminfo * mi = &meminfo; 77 78 printk("Mem-info:\n"); 79 show_free_areas(); 80 for_each_online_node(node) { 81 pg_data_t *n = NODE_DATA(node); 82 struct page *map = pgdat_page_nr(n, 0) - n->node_start_pfn; 83 84 for_each_nodebank (i,mi,node) { 85 struct membank *bank = &mi->bank[i]; 86 unsigned int pfn1, pfn2; 87 struct page *page, *end; 88 89 pfn1 = bank_pfn_start(bank); 90 pfn2 = bank_pfn_end(bank); 91 92 page = map + pfn1; 93 end = map + pfn2; 94 95 do { 96 total++; 97 if (PageReserved(page)) 98 reserved++; 99 else if (PageSwapCache(page)) 100 cached++; 101 else if (PageSlab(page)) 102 slab++; 103 else if (!page_count(page)) 104 free++; 105 else 106 shared += page_count(page) - 1; 107 page++; 108 } while (page < end); 109 } 110 } 111 112 printk("%d pages of RAM\n", total); 113 printk("%d free pages\n", free); 114 printk("%d reserved pages\n", reserved); 115 printk("%d slab pages\n", slab); 116 printk("%d pages shared\n", shared); 117 printk("%d pages swap cached\n", cached); 118 } 119 120 /* 121 * FIXME: We really want to avoid allocating the bootmap bitmap 122 * over the top of the initrd. Hopefully, this is located towards 123 * the start of a bank, so if we allocate the bootmap bitmap at 124 * the end, we won't clash. 125 */ 126 static unsigned int __init 127 find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages) 128 { 129 unsigned int start_pfn, i, bootmap_pfn; 130 131 start_pfn = PAGE_ALIGN(__pa(&_end)) >> PAGE_SHIFT; 132 bootmap_pfn = 0; 133 134 for_each_nodebank(i, mi, node) { 135 struct membank *bank = &mi->bank[i]; 136 unsigned int start, end; 137 138 start = bank_pfn_start(bank); 139 end = bank_pfn_end(bank); 140 141 if (end < start_pfn) 142 continue; 143 144 if (start < start_pfn) 145 start = start_pfn; 146 147 if (end <= start) 148 continue; 149 150 if (end - start >= bootmap_pages) { 151 bootmap_pfn = start; 152 break; 153 } 154 } 155 156 if (bootmap_pfn == 0) 157 BUG(); 158 159 return bootmap_pfn; 160 } 161 162 static int __init check_initrd(struct meminfo *mi) 163 { 164 int initrd_node = -2; 165 #ifdef CONFIG_BLK_DEV_INITRD 166 unsigned long end = phys_initrd_start + phys_initrd_size; 167 168 /* 169 * Make sure that the initrd is within a valid area of 170 * memory. 171 */ 172 if (phys_initrd_size) { 173 unsigned int i; 174 175 initrd_node = -1; 176 177 for (i = 0; i < mi->nr_banks; i++) { 178 struct membank *bank = &mi->bank[i]; 179 if (bank_phys_start(bank) <= phys_initrd_start && 180 end <= bank_phys_end(bank)) 181 initrd_node = bank->node; 182 } 183 } 184 185 if (initrd_node == -1) { 186 printk(KERN_ERR "INITRD: 0x%08lx+0x%08lx extends beyond " 187 "physical memory - disabling initrd\n", 188 phys_initrd_start, phys_initrd_size); 189 phys_initrd_start = phys_initrd_size = 0; 190 } 191 #endif 192 193 return initrd_node; 194 } 195 196 static inline void map_memory_bank(struct membank *bank) 197 { 198 #ifdef CONFIG_MMU 199 struct map_desc map; 200 201 map.pfn = bank_pfn_start(bank); 202 map.virtual = __phys_to_virt(bank_phys_start(bank)); 203 map.length = bank_phys_size(bank); 204 map.type = MT_MEMORY; 205 206 create_mapping(&map); 207 #endif 208 } 209 210 static unsigned long __init bootmem_init_node(int node, struct meminfo *mi) 211 { 212 unsigned long start_pfn, end_pfn, boot_pfn; 213 unsigned int boot_pages; 214 pg_data_t *pgdat; 215 int i; 216 217 start_pfn = -1UL; 218 end_pfn = 0; 219 220 /* 221 * Calculate the pfn range, and map the memory banks for this node. 222 */ 223 for_each_nodebank(i, mi, node) { 224 struct membank *bank = &mi->bank[i]; 225 unsigned long start, end; 226 227 start = bank_pfn_start(bank); 228 end = bank_pfn_end(bank); 229 230 if (start_pfn > start) 231 start_pfn = start; 232 if (end_pfn < end) 233 end_pfn = end; 234 235 map_memory_bank(bank); 236 } 237 238 /* 239 * If there is no memory in this node, ignore it. 240 */ 241 if (end_pfn == 0) 242 return end_pfn; 243 244 /* 245 * Allocate the bootmem bitmap page. 246 */ 247 boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn); 248 boot_pfn = find_bootmap_pfn(node, mi, boot_pages); 249 250 /* 251 * Initialise the bootmem allocator for this node, handing the 252 * memory banks over to bootmem. 253 */ 254 node_set_online(node); 255 pgdat = NODE_DATA(node); 256 init_bootmem_node(pgdat, boot_pfn, start_pfn, end_pfn); 257 258 for_each_nodebank(i, mi, node) { 259 struct membank *bank = &mi->bank[i]; 260 free_bootmem_node(pgdat, bank_phys_start(bank), bank_phys_size(bank)); 261 memory_present(node, bank_pfn_start(bank), bank_pfn_end(bank)); 262 } 263 264 /* 265 * Reserve the bootmem bitmap for this node. 266 */ 267 reserve_bootmem_node(pgdat, boot_pfn << PAGE_SHIFT, 268 boot_pages << PAGE_SHIFT, BOOTMEM_DEFAULT); 269 270 return end_pfn; 271 } 272 273 static void __init bootmem_reserve_initrd(int node) 274 { 275 #ifdef CONFIG_BLK_DEV_INITRD 276 pg_data_t *pgdat = NODE_DATA(node); 277 int res; 278 279 res = reserve_bootmem_node(pgdat, phys_initrd_start, 280 phys_initrd_size, BOOTMEM_EXCLUSIVE); 281 282 if (res == 0) { 283 initrd_start = __phys_to_virt(phys_initrd_start); 284 initrd_end = initrd_start + phys_initrd_size; 285 } else { 286 printk(KERN_ERR 287 "INITRD: 0x%08lx+0x%08lx overlaps in-use " 288 "memory region - disabling initrd\n", 289 phys_initrd_start, phys_initrd_size); 290 } 291 #endif 292 } 293 294 static void __init bootmem_free_node(int node, struct meminfo *mi) 295 { 296 unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES]; 297 unsigned long start_pfn, end_pfn; 298 pg_data_t *pgdat = NODE_DATA(node); 299 int i; 300 301 start_pfn = pgdat->bdata->node_min_pfn; 302 end_pfn = pgdat->bdata->node_low_pfn; 303 304 /* 305 * initialise the zones within this node. 306 */ 307 memset(zone_size, 0, sizeof(zone_size)); 308 memset(zhole_size, 0, sizeof(zhole_size)); 309 310 /* 311 * The size of this node has already been determined. If we need 312 * to do anything fancy with the allocation of this memory to the 313 * zones, now is the time to do it. 314 */ 315 zone_size[0] = end_pfn - start_pfn; 316 317 /* 318 * For each bank in this node, calculate the size of the holes. 319 * holes = node_size - sum(bank_sizes_in_node) 320 */ 321 zhole_size[0] = zone_size[0]; 322 for_each_nodebank(i, mi, node) 323 zhole_size[0] -= bank_pfn_size(&mi->bank[i]); 324 325 /* 326 * Adjust the sizes according to any special requirements for 327 * this machine type. 328 */ 329 arch_adjust_zones(node, zone_size, zhole_size); 330 331 free_area_init_node(node, zone_size, start_pfn, zhole_size); 332 } 333 334 void __init bootmem_init(struct meminfo *mi) 335 { 336 unsigned long memend_pfn = 0; 337 int node, initrd_node; 338 339 memcpy(&meminfo, mi, sizeof(meminfo)); 340 341 /* 342 * Locate which node contains the ramdisk image, if any. 343 */ 344 initrd_node = check_initrd(mi); 345 346 /* 347 * Run through each node initialising the bootmem allocator. 348 */ 349 for_each_node(node) { 350 unsigned long end_pfn = bootmem_init_node(node, mi); 351 352 /* 353 * Reserve any special node zero regions. 354 */ 355 if (node == 0) 356 reserve_node_zero(NODE_DATA(node)); 357 358 /* 359 * If the initrd is in this node, reserve its memory. 360 */ 361 if (node == initrd_node) 362 bootmem_reserve_initrd(node); 363 364 /* 365 * Remember the highest memory PFN. 366 */ 367 if (end_pfn > memend_pfn) 368 memend_pfn = end_pfn; 369 } 370 371 /* 372 * sparse_init() needs the bootmem allocator up and running. 373 */ 374 sparse_init(); 375 376 /* 377 * Now free memory in each node - free_area_init_node needs 378 * the sparse mem_map arrays initialized by sparse_init() 379 * for memmap_init_zone(), otherwise all PFNs are invalid. 380 */ 381 for_each_node(node) 382 bootmem_free_node(node, mi); 383 384 high_memory = __va(memend_pfn << PAGE_SHIFT); 385 386 /* 387 * This doesn't seem to be used by the Linux memory manager any 388 * more, but is used by ll_rw_block. If we can get rid of it, we 389 * also get rid of some of the stuff above as well. 390 * 391 * Note: max_low_pfn and max_pfn reflect the number of _pages_ in 392 * the system, not the maximum PFN. 393 */ 394 max_pfn = max_low_pfn = memend_pfn - PHYS_PFN_OFFSET; 395 } 396 397 static inline void free_area(unsigned long addr, unsigned long end, char *s) 398 { 399 unsigned int size = (end - addr) >> 10; 400 401 for (; addr < end; addr += PAGE_SIZE) { 402 struct page *page = virt_to_page(addr); 403 ClearPageReserved(page); 404 init_page_count(page); 405 free_page(addr); 406 totalram_pages++; 407 } 408 409 if (size && s) 410 printk(KERN_INFO "Freeing %s memory: %dK\n", s, size); 411 } 412 413 static inline void 414 free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn) 415 { 416 struct page *start_pg, *end_pg; 417 unsigned long pg, pgend; 418 419 /* 420 * Convert start_pfn/end_pfn to a struct page pointer. 421 */ 422 start_pg = pfn_to_page(start_pfn); 423 end_pg = pfn_to_page(end_pfn); 424 425 /* 426 * Convert to physical addresses, and 427 * round start upwards and end downwards. 428 */ 429 pg = PAGE_ALIGN(__pa(start_pg)); 430 pgend = __pa(end_pg) & PAGE_MASK; 431 432 /* 433 * If there are free pages between these, 434 * free the section of the memmap array. 435 */ 436 if (pg < pgend) 437 free_bootmem_node(NODE_DATA(node), pg, pgend - pg); 438 } 439 440 /* 441 * The mem_map array can get very big. Free the unused area of the memory map. 442 */ 443 static void __init free_unused_memmap_node(int node, struct meminfo *mi) 444 { 445 unsigned long bank_start, prev_bank_end = 0; 446 unsigned int i; 447 448 /* 449 * [FIXME] This relies on each bank being in address order. This 450 * may not be the case, especially if the user has provided the 451 * information on the command line. 452 */ 453 for_each_nodebank(i, mi, node) { 454 struct membank *bank = &mi->bank[i]; 455 456 bank_start = bank_pfn_start(bank); 457 if (bank_start < prev_bank_end) { 458 printk(KERN_ERR "MEM: unordered memory banks. " 459 "Not freeing memmap.\n"); 460 break; 461 } 462 463 /* 464 * If we had a previous bank, and there is a space 465 * between the current bank and the previous, free it. 466 */ 467 if (prev_bank_end && prev_bank_end != bank_start) 468 free_memmap(node, prev_bank_end, bank_start); 469 470 prev_bank_end = bank_pfn_end(bank); 471 } 472 } 473 474 /* 475 * mem_init() marks the free areas in the mem_map and tells us how much 476 * memory is free. This is done after various parts of the system have 477 * claimed their memory after the kernel image. 478 */ 479 void __init mem_init(void) 480 { 481 unsigned int codepages, datapages, initpages; 482 int i, node; 483 484 codepages = &_etext - &_text; 485 datapages = &_end - &__data_start; 486 initpages = &__init_end - &__init_begin; 487 488 #ifndef CONFIG_DISCONTIGMEM 489 max_mapnr = virt_to_page(high_memory) - mem_map; 490 #endif 491 492 /* this will put all unused low memory onto the freelists */ 493 for_each_online_node(node) { 494 pg_data_t *pgdat = NODE_DATA(node); 495 496 free_unused_memmap_node(node, &meminfo); 497 498 if (pgdat->node_spanned_pages != 0) 499 totalram_pages += free_all_bootmem_node(pgdat); 500 } 501 502 #ifdef CONFIG_SA1111 503 /* now that our DMA memory is actually so designated, we can free it */ 504 free_area(PAGE_OFFSET, (unsigned long)swapper_pg_dir, NULL); 505 #endif 506 507 /* 508 * Since our memory may not be contiguous, calculate the 509 * real number of pages we have in this system 510 */ 511 printk(KERN_INFO "Memory:"); 512 513 num_physpages = 0; 514 for (i = 0; i < meminfo.nr_banks; i++) { 515 num_physpages += bank_pfn_size(&meminfo.bank[i]); 516 printk(" %ldMB", bank_phys_size(&meminfo.bank[i]) >> 20); 517 } 518 519 printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT)); 520 printk(KERN_NOTICE "Memory: %luKB available (%dK code, " 521 "%dK data, %dK init)\n", 522 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10), 523 codepages >> 10, datapages >> 10, initpages >> 10); 524 525 if (PAGE_SIZE >= 16384 && num_physpages <= 128) { 526 extern int sysctl_overcommit_memory; 527 /* 528 * On a machine this small we won't get 529 * anywhere without overcommit, so turn 530 * it on by default. 531 */ 532 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS; 533 } 534 } 535 536 void free_initmem(void) 537 { 538 if (!machine_is_integrator() && !machine_is_cintegrator()) { 539 free_area((unsigned long)(&__init_begin), 540 (unsigned long)(&__init_end), 541 "init"); 542 } 543 } 544 545 #ifdef CONFIG_BLK_DEV_INITRD 546 547 static int keep_initrd; 548 549 void free_initrd_mem(unsigned long start, unsigned long end) 550 { 551 if (!keep_initrd) 552 free_area(start, end, "initrd"); 553 } 554 555 static int __init keepinitrd_setup(char *__unused) 556 { 557 keep_initrd = 1; 558 return 1; 559 } 560 561 __setup("keepinitrd", keepinitrd_setup); 562 #endif 563