xref: /openbmc/linux/arch/arm/mm/init.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  *  linux/arch/arm/mm/init.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 
19 #include <asm/mach-types.h>
20 #include <asm/setup.h>
21 #include <asm/sizes.h>
22 #include <asm/tlb.h>
23 
24 #include <asm/mach/arch.h>
25 #include <asm/mach/map.h>
26 
27 #include "mm.h"
28 
29 static unsigned long phys_initrd_start __initdata = 0;
30 static unsigned long phys_initrd_size __initdata = 0;
31 
32 static void __init early_initrd(char **p)
33 {
34 	unsigned long start, size;
35 
36 	start = memparse(*p, p);
37 	if (**p == ',') {
38 		size = memparse((*p) + 1, p);
39 
40 		phys_initrd_start = start;
41 		phys_initrd_size = size;
42 	}
43 }
44 __early_param("initrd=", early_initrd);
45 
46 static int __init parse_tag_initrd(const struct tag *tag)
47 {
48 	printk(KERN_WARNING "ATAG_INITRD is deprecated; "
49 		"please update your bootloader.\n");
50 	phys_initrd_start = __virt_to_phys(tag->u.initrd.start);
51 	phys_initrd_size = tag->u.initrd.size;
52 	return 0;
53 }
54 
55 __tagtable(ATAG_INITRD, parse_tag_initrd);
56 
57 static int __init parse_tag_initrd2(const struct tag *tag)
58 {
59 	phys_initrd_start = tag->u.initrd.start;
60 	phys_initrd_size = tag->u.initrd.size;
61 	return 0;
62 }
63 
64 __tagtable(ATAG_INITRD2, parse_tag_initrd2);
65 
66 /*
67  * This is used to pass memory configuration data from paging_init
68  * to mem_init, and by show_mem() to skip holes in the memory map.
69  */
70 static struct meminfo meminfo = { 0, };
71 
72 void show_mem(void)
73 {
74 	int free = 0, total = 0, reserved = 0;
75 	int shared = 0, cached = 0, slab = 0, node, i;
76 	struct meminfo * mi = &meminfo;
77 
78 	printk("Mem-info:\n");
79 	show_free_areas();
80 	for_each_online_node(node) {
81 		pg_data_t *n = NODE_DATA(node);
82 		struct page *map = pgdat_page_nr(n, 0) - n->node_start_pfn;
83 
84 		for_each_nodebank (i,mi,node) {
85 			struct membank *bank = &mi->bank[i];
86 			unsigned int pfn1, pfn2;
87 			struct page *page, *end;
88 
89 			pfn1 = bank_pfn_start(bank);
90 			pfn2 = bank_pfn_end(bank);
91 
92 			page = map + pfn1;
93 			end  = map + pfn2;
94 
95 			do {
96 				total++;
97 				if (PageReserved(page))
98 					reserved++;
99 				else if (PageSwapCache(page))
100 					cached++;
101 				else if (PageSlab(page))
102 					slab++;
103 				else if (!page_count(page))
104 					free++;
105 				else
106 					shared += page_count(page) - 1;
107 				page++;
108 			} while (page < end);
109 		}
110 	}
111 
112 	printk("%d pages of RAM\n", total);
113 	printk("%d free pages\n", free);
114 	printk("%d reserved pages\n", reserved);
115 	printk("%d slab pages\n", slab);
116 	printk("%d pages shared\n", shared);
117 	printk("%d pages swap cached\n", cached);
118 }
119 
120 /*
121  * FIXME: We really want to avoid allocating the bootmap bitmap
122  * over the top of the initrd.  Hopefully, this is located towards
123  * the start of a bank, so if we allocate the bootmap bitmap at
124  * the end, we won't clash.
125  */
126 static unsigned int __init
127 find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages)
128 {
129 	unsigned int start_pfn, i, bootmap_pfn;
130 
131 	start_pfn   = PAGE_ALIGN(__pa(&_end)) >> PAGE_SHIFT;
132 	bootmap_pfn = 0;
133 
134 	for_each_nodebank(i, mi, node) {
135 		struct membank *bank = &mi->bank[i];
136 		unsigned int start, end;
137 
138 		start = bank_pfn_start(bank);
139 		end   = bank_pfn_end(bank);
140 
141 		if (end < start_pfn)
142 			continue;
143 
144 		if (start < start_pfn)
145 			start = start_pfn;
146 
147 		if (end <= start)
148 			continue;
149 
150 		if (end - start >= bootmap_pages) {
151 			bootmap_pfn = start;
152 			break;
153 		}
154 	}
155 
156 	if (bootmap_pfn == 0)
157 		BUG();
158 
159 	return bootmap_pfn;
160 }
161 
162 static int __init check_initrd(struct meminfo *mi)
163 {
164 	int initrd_node = -2;
165 #ifdef CONFIG_BLK_DEV_INITRD
166 	unsigned long end = phys_initrd_start + phys_initrd_size;
167 
168 	/*
169 	 * Make sure that the initrd is within a valid area of
170 	 * memory.
171 	 */
172 	if (phys_initrd_size) {
173 		unsigned int i;
174 
175 		initrd_node = -1;
176 
177 		for (i = 0; i < mi->nr_banks; i++) {
178 			struct membank *bank = &mi->bank[i];
179 			if (bank_phys_start(bank) <= phys_initrd_start &&
180 			    end <= bank_phys_end(bank))
181 				initrd_node = bank->node;
182 		}
183 	}
184 
185 	if (initrd_node == -1) {
186 		printk(KERN_ERR "INITRD: 0x%08lx+0x%08lx extends beyond "
187 		       "physical memory - disabling initrd\n",
188 		       phys_initrd_start, phys_initrd_size);
189 		phys_initrd_start = phys_initrd_size = 0;
190 	}
191 #endif
192 
193 	return initrd_node;
194 }
195 
196 static inline void map_memory_bank(struct membank *bank)
197 {
198 #ifdef CONFIG_MMU
199 	struct map_desc map;
200 
201 	map.pfn = bank_pfn_start(bank);
202 	map.virtual = __phys_to_virt(bank_phys_start(bank));
203 	map.length = bank_phys_size(bank);
204 	map.type = MT_MEMORY;
205 
206 	create_mapping(&map);
207 #endif
208 }
209 
210 static unsigned long __init bootmem_init_node(int node, struct meminfo *mi)
211 {
212 	unsigned long start_pfn, end_pfn, boot_pfn;
213 	unsigned int boot_pages;
214 	pg_data_t *pgdat;
215 	int i;
216 
217 	start_pfn = -1UL;
218 	end_pfn = 0;
219 
220 	/*
221 	 * Calculate the pfn range, and map the memory banks for this node.
222 	 */
223 	for_each_nodebank(i, mi, node) {
224 		struct membank *bank = &mi->bank[i];
225 		unsigned long start, end;
226 
227 		start = bank_pfn_start(bank);
228 		end = bank_pfn_end(bank);
229 
230 		if (start_pfn > start)
231 			start_pfn = start;
232 		if (end_pfn < end)
233 			end_pfn = end;
234 
235 		map_memory_bank(bank);
236 	}
237 
238 	/*
239 	 * If there is no memory in this node, ignore it.
240 	 */
241 	if (end_pfn == 0)
242 		return end_pfn;
243 
244 	/*
245 	 * Allocate the bootmem bitmap page.
246 	 */
247 	boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
248 	boot_pfn = find_bootmap_pfn(node, mi, boot_pages);
249 
250 	/*
251 	 * Initialise the bootmem allocator for this node, handing the
252 	 * memory banks over to bootmem.
253 	 */
254 	node_set_online(node);
255 	pgdat = NODE_DATA(node);
256 	init_bootmem_node(pgdat, boot_pfn, start_pfn, end_pfn);
257 
258 	for_each_nodebank(i, mi, node) {
259 		struct membank *bank = &mi->bank[i];
260 		free_bootmem_node(pgdat, bank_phys_start(bank), bank_phys_size(bank));
261 		memory_present(node, bank_pfn_start(bank), bank_pfn_end(bank));
262 	}
263 
264 	/*
265 	 * Reserve the bootmem bitmap for this node.
266 	 */
267 	reserve_bootmem_node(pgdat, boot_pfn << PAGE_SHIFT,
268 			     boot_pages << PAGE_SHIFT, BOOTMEM_DEFAULT);
269 
270 	return end_pfn;
271 }
272 
273 static void __init bootmem_reserve_initrd(int node)
274 {
275 #ifdef CONFIG_BLK_DEV_INITRD
276 	pg_data_t *pgdat = NODE_DATA(node);
277 	int res;
278 
279 	res = reserve_bootmem_node(pgdat, phys_initrd_start,
280 			     phys_initrd_size, BOOTMEM_EXCLUSIVE);
281 
282 	if (res == 0) {
283 		initrd_start = __phys_to_virt(phys_initrd_start);
284 		initrd_end = initrd_start + phys_initrd_size;
285 	} else {
286 		printk(KERN_ERR
287 			"INITRD: 0x%08lx+0x%08lx overlaps in-use "
288 			"memory region - disabling initrd\n",
289 			phys_initrd_start, phys_initrd_size);
290 	}
291 #endif
292 }
293 
294 static void __init bootmem_free_node(int node, struct meminfo *mi)
295 {
296 	unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
297 	unsigned long start_pfn, end_pfn;
298 	pg_data_t *pgdat = NODE_DATA(node);
299 	int i;
300 
301 	start_pfn = pgdat->bdata->node_min_pfn;
302 	end_pfn = pgdat->bdata->node_low_pfn;
303 
304 	/*
305 	 * initialise the zones within this node.
306 	 */
307 	memset(zone_size, 0, sizeof(zone_size));
308 	memset(zhole_size, 0, sizeof(zhole_size));
309 
310 	/*
311 	 * The size of this node has already been determined.  If we need
312 	 * to do anything fancy with the allocation of this memory to the
313 	 * zones, now is the time to do it.
314 	 */
315 	zone_size[0] = end_pfn - start_pfn;
316 
317 	/*
318 	 * For each bank in this node, calculate the size of the holes.
319 	 *  holes = node_size - sum(bank_sizes_in_node)
320 	 */
321 	zhole_size[0] = zone_size[0];
322 	for_each_nodebank(i, mi, node)
323 		zhole_size[0] -= bank_pfn_size(&mi->bank[i]);
324 
325 	/*
326 	 * Adjust the sizes according to any special requirements for
327 	 * this machine type.
328 	 */
329 	arch_adjust_zones(node, zone_size, zhole_size);
330 
331 	free_area_init_node(node, zone_size, start_pfn, zhole_size);
332 }
333 
334 void __init bootmem_init(struct meminfo *mi)
335 {
336 	unsigned long memend_pfn = 0;
337 	int node, initrd_node;
338 
339 	memcpy(&meminfo, mi, sizeof(meminfo));
340 
341 	/*
342 	 * Locate which node contains the ramdisk image, if any.
343 	 */
344 	initrd_node = check_initrd(mi);
345 
346 	/*
347 	 * Run through each node initialising the bootmem allocator.
348 	 */
349 	for_each_node(node) {
350 		unsigned long end_pfn = bootmem_init_node(node, mi);
351 
352 		/*
353 		 * Reserve any special node zero regions.
354 		 */
355 		if (node == 0)
356 			reserve_node_zero(NODE_DATA(node));
357 
358 		/*
359 		 * If the initrd is in this node, reserve its memory.
360 		 */
361 		if (node == initrd_node)
362 			bootmem_reserve_initrd(node);
363 
364 		/*
365 		 * Remember the highest memory PFN.
366 		 */
367 		if (end_pfn > memend_pfn)
368 			memend_pfn = end_pfn;
369 	}
370 
371 	/*
372 	 * sparse_init() needs the bootmem allocator up and running.
373 	 */
374 	sparse_init();
375 
376 	/*
377 	 * Now free memory in each node - free_area_init_node needs
378 	 * the sparse mem_map arrays initialized by sparse_init()
379 	 * for memmap_init_zone(), otherwise all PFNs are invalid.
380 	 */
381 	for_each_node(node)
382 		bootmem_free_node(node, mi);
383 
384 	high_memory = __va(memend_pfn << PAGE_SHIFT);
385 
386 	/*
387 	 * This doesn't seem to be used by the Linux memory manager any
388 	 * more, but is used by ll_rw_block.  If we can get rid of it, we
389 	 * also get rid of some of the stuff above as well.
390 	 *
391 	 * Note: max_low_pfn and max_pfn reflect the number of _pages_ in
392 	 * the system, not the maximum PFN.
393 	 */
394 	max_pfn = max_low_pfn = memend_pfn - PHYS_PFN_OFFSET;
395 }
396 
397 static inline void free_area(unsigned long addr, unsigned long end, char *s)
398 {
399 	unsigned int size = (end - addr) >> 10;
400 
401 	for (; addr < end; addr += PAGE_SIZE) {
402 		struct page *page = virt_to_page(addr);
403 		ClearPageReserved(page);
404 		init_page_count(page);
405 		free_page(addr);
406 		totalram_pages++;
407 	}
408 
409 	if (size && s)
410 		printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
411 }
412 
413 static inline void
414 free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn)
415 {
416 	struct page *start_pg, *end_pg;
417 	unsigned long pg, pgend;
418 
419 	/*
420 	 * Convert start_pfn/end_pfn to a struct page pointer.
421 	 */
422 	start_pg = pfn_to_page(start_pfn);
423 	end_pg = pfn_to_page(end_pfn);
424 
425 	/*
426 	 * Convert to physical addresses, and
427 	 * round start upwards and end downwards.
428 	 */
429 	pg = PAGE_ALIGN(__pa(start_pg));
430 	pgend = __pa(end_pg) & PAGE_MASK;
431 
432 	/*
433 	 * If there are free pages between these,
434 	 * free the section of the memmap array.
435 	 */
436 	if (pg < pgend)
437 		free_bootmem_node(NODE_DATA(node), pg, pgend - pg);
438 }
439 
440 /*
441  * The mem_map array can get very big.  Free the unused area of the memory map.
442  */
443 static void __init free_unused_memmap_node(int node, struct meminfo *mi)
444 {
445 	unsigned long bank_start, prev_bank_end = 0;
446 	unsigned int i;
447 
448 	/*
449 	 * [FIXME] This relies on each bank being in address order.  This
450 	 * may not be the case, especially if the user has provided the
451 	 * information on the command line.
452 	 */
453 	for_each_nodebank(i, mi, node) {
454 		struct membank *bank = &mi->bank[i];
455 
456 		bank_start = bank_pfn_start(bank);
457 		if (bank_start < prev_bank_end) {
458 			printk(KERN_ERR "MEM: unordered memory banks.  "
459 				"Not freeing memmap.\n");
460 			break;
461 		}
462 
463 		/*
464 		 * If we had a previous bank, and there is a space
465 		 * between the current bank and the previous, free it.
466 		 */
467 		if (prev_bank_end && prev_bank_end != bank_start)
468 			free_memmap(node, prev_bank_end, bank_start);
469 
470 		prev_bank_end = bank_pfn_end(bank);
471 	}
472 }
473 
474 /*
475  * mem_init() marks the free areas in the mem_map and tells us how much
476  * memory is free.  This is done after various parts of the system have
477  * claimed their memory after the kernel image.
478  */
479 void __init mem_init(void)
480 {
481 	unsigned int codepages, datapages, initpages;
482 	int i, node;
483 
484 	codepages = &_etext - &_text;
485 	datapages = &_end - &__data_start;
486 	initpages = &__init_end - &__init_begin;
487 
488 #ifndef CONFIG_DISCONTIGMEM
489 	max_mapnr   = virt_to_page(high_memory) - mem_map;
490 #endif
491 
492 	/* this will put all unused low memory onto the freelists */
493 	for_each_online_node(node) {
494 		pg_data_t *pgdat = NODE_DATA(node);
495 
496 		free_unused_memmap_node(node, &meminfo);
497 
498 		if (pgdat->node_spanned_pages != 0)
499 			totalram_pages += free_all_bootmem_node(pgdat);
500 	}
501 
502 #ifdef CONFIG_SA1111
503 	/* now that our DMA memory is actually so designated, we can free it */
504 	free_area(PAGE_OFFSET, (unsigned long)swapper_pg_dir, NULL);
505 #endif
506 
507 	/*
508 	 * Since our memory may not be contiguous, calculate the
509 	 * real number of pages we have in this system
510 	 */
511 	printk(KERN_INFO "Memory:");
512 
513 	num_physpages = 0;
514 	for (i = 0; i < meminfo.nr_banks; i++) {
515 		num_physpages += bank_pfn_size(&meminfo.bank[i]);
516 		printk(" %ldMB", bank_phys_size(&meminfo.bank[i]) >> 20);
517 	}
518 
519 	printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
520 	printk(KERN_NOTICE "Memory: %luKB available (%dK code, "
521 		"%dK data, %dK init)\n",
522 		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
523 		codepages >> 10, datapages >> 10, initpages >> 10);
524 
525 	if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
526 		extern int sysctl_overcommit_memory;
527 		/*
528 		 * On a machine this small we won't get
529 		 * anywhere without overcommit, so turn
530 		 * it on by default.
531 		 */
532 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
533 	}
534 }
535 
536 void free_initmem(void)
537 {
538 	if (!machine_is_integrator() && !machine_is_cintegrator()) {
539 		free_area((unsigned long)(&__init_begin),
540 			  (unsigned long)(&__init_end),
541 			  "init");
542 	}
543 }
544 
545 #ifdef CONFIG_BLK_DEV_INITRD
546 
547 static int keep_initrd;
548 
549 void free_initrd_mem(unsigned long start, unsigned long end)
550 {
551 	if (!keep_initrd)
552 		free_area(start, end, "initrd");
553 }
554 
555 static int __init keepinitrd_setup(char *__unused)
556 {
557 	keep_initrd = 1;
558 	return 1;
559 }
560 
561 __setup("keepinitrd", keepinitrd_setup);
562 #endif
563