xref: /openbmc/linux/arch/arm/mm/init.c (revision 74d02fb9)
1 /*
2  *  linux/arch/arm/mm/init.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/config.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/ptrace.h>
14 #include <linux/swap.h>
15 #include <linux/init.h>
16 #include <linux/bootmem.h>
17 #include <linux/mman.h>
18 #include <linux/nodemask.h>
19 #include <linux/initrd.h>
20 
21 #include <asm/mach-types.h>
22 #include <asm/setup.h>
23 #include <asm/sizes.h>
24 #include <asm/tlb.h>
25 
26 #include <asm/mach/arch.h>
27 #include <asm/mach/map.h>
28 
29 #define TABLE_SIZE	(2 * PTRS_PER_PTE * sizeof(pte_t))
30 
31 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
32 
33 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
34 extern void _stext, _text, _etext, __data_start, _end, __init_begin, __init_end;
35 extern unsigned long phys_initrd_start;
36 extern unsigned long phys_initrd_size;
37 
38 /*
39  * The sole use of this is to pass memory configuration
40  * data from paging_init to mem_init.
41  */
42 static struct meminfo meminfo __initdata = { 0, };
43 
44 /*
45  * empty_zero_page is a special page that is used for
46  * zero-initialized data and COW.
47  */
48 struct page *empty_zero_page;
49 
50 void show_mem(void)
51 {
52 	int free = 0, total = 0, reserved = 0;
53 	int shared = 0, cached = 0, slab = 0, node;
54 
55 	printk("Mem-info:\n");
56 	show_free_areas();
57 	printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
58 
59 	for_each_online_node(node) {
60 		struct page *page, *end;
61 
62 		page = NODE_MEM_MAP(node);
63 		end  = page + NODE_DATA(node)->node_spanned_pages;
64 
65 		do {
66 			total++;
67 			if (PageReserved(page))
68 				reserved++;
69 			else if (PageSwapCache(page))
70 				cached++;
71 			else if (PageSlab(page))
72 				slab++;
73 			else if (!page_count(page))
74 				free++;
75 			else
76 				shared += page_count(page) - 1;
77 			page++;
78 		} while (page < end);
79 	}
80 
81 	printk("%d pages of RAM\n", total);
82 	printk("%d free pages\n", free);
83 	printk("%d reserved pages\n", reserved);
84 	printk("%d slab pages\n", slab);
85 	printk("%d pages shared\n", shared);
86 	printk("%d pages swap cached\n", cached);
87 }
88 
89 static inline pmd_t *pmd_off(pgd_t *pgd, unsigned long virt)
90 {
91 	return pmd_offset(pgd, virt);
92 }
93 
94 static inline pmd_t *pmd_off_k(unsigned long virt)
95 {
96 	return pmd_off(pgd_offset_k(virt), virt);
97 }
98 
99 #define for_each_nodebank(iter,mi,no)			\
100 	for (iter = 0; iter < mi->nr_banks; iter++)	\
101 		if (mi->bank[iter].node == no)
102 
103 /*
104  * FIXME: We really want to avoid allocating the bootmap bitmap
105  * over the top of the initrd.  Hopefully, this is located towards
106  * the start of a bank, so if we allocate the bootmap bitmap at
107  * the end, we won't clash.
108  */
109 static unsigned int __init
110 find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages)
111 {
112 	unsigned int start_pfn, bank, bootmap_pfn;
113 
114 	start_pfn   = PAGE_ALIGN(__pa(&_end)) >> PAGE_SHIFT;
115 	bootmap_pfn = 0;
116 
117 	for_each_nodebank(bank, mi, node) {
118 		unsigned int start, end;
119 
120 		start = mi->bank[bank].start >> PAGE_SHIFT;
121 		end   = (mi->bank[bank].size +
122 			 mi->bank[bank].start) >> PAGE_SHIFT;
123 
124 		if (end < start_pfn)
125 			continue;
126 
127 		if (start < start_pfn)
128 			start = start_pfn;
129 
130 		if (end <= start)
131 			continue;
132 
133 		if (end - start >= bootmap_pages) {
134 			bootmap_pfn = start;
135 			break;
136 		}
137 	}
138 
139 	if (bootmap_pfn == 0)
140 		BUG();
141 
142 	return bootmap_pfn;
143 }
144 
145 static int __init check_initrd(struct meminfo *mi)
146 {
147 	int initrd_node = -2;
148 #ifdef CONFIG_BLK_DEV_INITRD
149 	unsigned long end = phys_initrd_start + phys_initrd_size;
150 
151 	/*
152 	 * Make sure that the initrd is within a valid area of
153 	 * memory.
154 	 */
155 	if (phys_initrd_size) {
156 		unsigned int i;
157 
158 		initrd_node = -1;
159 
160 		for (i = 0; i < mi->nr_banks; i++) {
161 			unsigned long bank_end;
162 
163 			bank_end = mi->bank[i].start + mi->bank[i].size;
164 
165 			if (mi->bank[i].start <= phys_initrd_start &&
166 			    end <= bank_end)
167 				initrd_node = mi->bank[i].node;
168 		}
169 	}
170 
171 	if (initrd_node == -1) {
172 		printk(KERN_ERR "initrd (0x%08lx - 0x%08lx) extends beyond "
173 		       "physical memory - disabling initrd\n",
174 		       phys_initrd_start, end);
175 		phys_initrd_start = phys_initrd_size = 0;
176 	}
177 #endif
178 
179 	return initrd_node;
180 }
181 
182 /*
183  * Reserve the various regions of node 0
184  */
185 static __init void reserve_node_zero(pg_data_t *pgdat)
186 {
187 	unsigned long res_size = 0;
188 
189 	/*
190 	 * Register the kernel text and data with bootmem.
191 	 * Note that this can only be in node 0.
192 	 */
193 #ifdef CONFIG_XIP_KERNEL
194 	reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start);
195 #else
196 	reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext);
197 #endif
198 
199 	/*
200 	 * Reserve the page tables.  These are already in use,
201 	 * and can only be in node 0.
202 	 */
203 	reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
204 			     PTRS_PER_PGD * sizeof(pgd_t));
205 
206 	/*
207 	 * Hmm... This should go elsewhere, but we really really need to
208 	 * stop things allocating the low memory; ideally we need a better
209 	 * implementation of GFP_DMA which does not assume that DMA-able
210 	 * memory starts at zero.
211 	 */
212 	if (machine_is_integrator() || machine_is_cintegrator())
213 		res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
214 
215 	/*
216 	 * These should likewise go elsewhere.  They pre-reserve the
217 	 * screen memory region at the start of main system memory.
218 	 */
219 	if (machine_is_edb7211())
220 		res_size = 0x00020000;
221 	if (machine_is_p720t())
222 		res_size = 0x00014000;
223 
224 #ifdef CONFIG_SA1111
225 	/*
226 	 * Because of the SA1111 DMA bug, we want to preserve our
227 	 * precious DMA-able memory...
228 	 */
229 	res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
230 #endif
231 	if (res_size)
232 		reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size);
233 }
234 
235 void __init build_mem_type_table(void);
236 void __init create_mapping(struct map_desc *md);
237 
238 static unsigned long __init
239 bootmem_init_node(int node, int initrd_node, struct meminfo *mi)
240 {
241 	unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
242 	unsigned long start_pfn, end_pfn, boot_pfn;
243 	unsigned int boot_pages;
244 	pg_data_t *pgdat;
245 	int i;
246 
247 	start_pfn = -1UL;
248 	end_pfn = 0;
249 
250 	/*
251 	 * Calculate the pfn range, and map the memory banks for this node.
252 	 */
253 	for_each_nodebank(i, mi, node) {
254 		unsigned long start, end;
255 		struct map_desc map;
256 
257 		start = mi->bank[i].start >> PAGE_SHIFT;
258 		end = (mi->bank[i].start + mi->bank[i].size) >> PAGE_SHIFT;
259 
260 		if (start_pfn > start)
261 			start_pfn = start;
262 		if (end_pfn < end)
263 			end_pfn = end;
264 
265 		map.pfn = __phys_to_pfn(mi->bank[i].start);
266 		map.virtual = __phys_to_virt(mi->bank[i].start);
267 		map.length = mi->bank[i].size;
268 		map.type = MT_MEMORY;
269 
270 		create_mapping(&map);
271 	}
272 
273 	/*
274 	 * If there is no memory in this node, ignore it.
275 	 */
276 	if (end_pfn == 0)
277 		return end_pfn;
278 
279 	/*
280 	 * Allocate the bootmem bitmap page.
281 	 */
282 	boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
283 	boot_pfn = find_bootmap_pfn(node, mi, boot_pages);
284 
285 	/*
286 	 * Initialise the bootmem allocator for this node, handing the
287 	 * memory banks over to bootmem.
288 	 */
289 	node_set_online(node);
290 	pgdat = NODE_DATA(node);
291 	init_bootmem_node(pgdat, boot_pfn, start_pfn, end_pfn);
292 
293 	for_each_nodebank(i, mi, node)
294 		free_bootmem_node(pgdat, mi->bank[i].start, mi->bank[i].size);
295 
296 	/*
297 	 * Reserve the bootmem bitmap for this node.
298 	 */
299 	reserve_bootmem_node(pgdat, boot_pfn << PAGE_SHIFT,
300 			     boot_pages << PAGE_SHIFT);
301 
302 #ifdef CONFIG_BLK_DEV_INITRD
303 	/*
304 	 * If the initrd is in this node, reserve its memory.
305 	 */
306 	if (node == initrd_node) {
307 		reserve_bootmem_node(pgdat, phys_initrd_start,
308 				     phys_initrd_size);
309 		initrd_start = __phys_to_virt(phys_initrd_start);
310 		initrd_end = initrd_start + phys_initrd_size;
311 	}
312 #endif
313 
314 	/*
315 	 * Finally, reserve any node zero regions.
316 	 */
317 	if (node == 0)
318 		reserve_node_zero(pgdat);
319 
320 	/*
321 	 * initialise the zones within this node.
322 	 */
323 	memset(zone_size, 0, sizeof(zone_size));
324 	memset(zhole_size, 0, sizeof(zhole_size));
325 
326 	/*
327 	 * The size of this node has already been determined.  If we need
328 	 * to do anything fancy with the allocation of this memory to the
329 	 * zones, now is the time to do it.
330 	 */
331 	zone_size[0] = end_pfn - start_pfn;
332 
333 	/*
334 	 * For each bank in this node, calculate the size of the holes.
335 	 *  holes = node_size - sum(bank_sizes_in_node)
336 	 */
337 	zhole_size[0] = zone_size[0];
338 	for_each_nodebank(i, mi, node)
339 		zhole_size[0] -= mi->bank[i].size >> PAGE_SHIFT;
340 
341 	/*
342 	 * Adjust the sizes according to any special requirements for
343 	 * this machine type.
344 	 */
345 	arch_adjust_zones(node, zone_size, zhole_size);
346 
347 	free_area_init_node(node, pgdat, zone_size, start_pfn, zhole_size);
348 
349 	return end_pfn;
350 }
351 
352 static void __init bootmem_init(struct meminfo *mi)
353 {
354 	unsigned long addr, memend_pfn = 0;
355 	int node, initrd_node, i;
356 
357 	/*
358 	 * Invalidate the node number for empty or invalid memory banks
359 	 */
360 	for (i = 0; i < mi->nr_banks; i++)
361 		if (mi->bank[i].size == 0 || mi->bank[i].node >= MAX_NUMNODES)
362 			mi->bank[i].node = -1;
363 
364 	memcpy(&meminfo, mi, sizeof(meminfo));
365 
366 	/*
367 	 * Clear out all the mappings below the kernel image.
368 	 */
369 	for (addr = 0; addr < MODULE_START; addr += PGDIR_SIZE)
370 		pmd_clear(pmd_off_k(addr));
371 #ifdef CONFIG_XIP_KERNEL
372 	/* The XIP kernel is mapped in the module area -- skip over it */
373 	addr = ((unsigned long)&_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
374 #endif
375 	for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
376 		pmd_clear(pmd_off_k(addr));
377 
378 	/*
379 	 * Clear out all the kernel space mappings, except for the first
380 	 * memory bank, up to the end of the vmalloc region.
381 	 */
382 	for (addr = __phys_to_virt(mi->bank[0].start + mi->bank[0].size);
383 	     addr < VMALLOC_END; addr += PGDIR_SIZE)
384 		pmd_clear(pmd_off_k(addr));
385 
386 	/*
387 	 * Locate which node contains the ramdisk image, if any.
388 	 */
389 	initrd_node = check_initrd(mi);
390 
391 	/*
392 	 * Run through each node initialising the bootmem allocator.
393 	 */
394 	for_each_node(node) {
395 		unsigned long end_pfn;
396 
397 		end_pfn = bootmem_init_node(node, initrd_node, mi);
398 
399 		/*
400 		 * Remember the highest memory PFN.
401 		 */
402 		if (end_pfn > memend_pfn)
403 			memend_pfn = end_pfn;
404 	}
405 
406 	high_memory = __va(memend_pfn << PAGE_SHIFT);
407 
408 	/*
409 	 * This doesn't seem to be used by the Linux memory manager any
410 	 * more, but is used by ll_rw_block.  If we can get rid of it, we
411 	 * also get rid of some of the stuff above as well.
412 	 *
413 	 * Note: max_low_pfn and max_pfn reflect the number of _pages_ in
414 	 * the system, not the maximum PFN.
415 	 */
416 	max_pfn = max_low_pfn = memend_pfn - PHYS_PFN_OFFSET;
417 }
418 
419 /*
420  * Set up device the mappings.  Since we clear out the page tables for all
421  * mappings above VMALLOC_END, we will remove any debug device mappings.
422  * This means you have to be careful how you debug this function, or any
423  * called function.  This means you can't use any function or debugging
424  * method which may touch any device, otherwise the kernel _will_ crash.
425  */
426 static void __init devicemaps_init(struct machine_desc *mdesc)
427 {
428 	struct map_desc map;
429 	unsigned long addr;
430 	void *vectors;
431 
432 	/*
433 	 * Allocate the vector page early.
434 	 */
435 	vectors = alloc_bootmem_low_pages(PAGE_SIZE);
436 	BUG_ON(!vectors);
437 
438 	for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
439 		pmd_clear(pmd_off_k(addr));
440 
441 	/*
442 	 * Map the kernel if it is XIP.
443 	 * It is always first in the modulearea.
444 	 */
445 #ifdef CONFIG_XIP_KERNEL
446 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & PGDIR_MASK);
447 	map.virtual = MODULE_START;
448 	map.length = ((unsigned long)&_etext - map.virtual + ~PGDIR_MASK) & PGDIR_MASK;
449 	map.type = MT_ROM;
450 	create_mapping(&map);
451 #endif
452 
453 	/*
454 	 * Map the cache flushing regions.
455 	 */
456 #ifdef FLUSH_BASE
457 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
458 	map.virtual = FLUSH_BASE;
459 	map.length = SZ_1M;
460 	map.type = MT_CACHECLEAN;
461 	create_mapping(&map);
462 #endif
463 #ifdef FLUSH_BASE_MINICACHE
464 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
465 	map.virtual = FLUSH_BASE_MINICACHE;
466 	map.length = SZ_1M;
467 	map.type = MT_MINICLEAN;
468 	create_mapping(&map);
469 #endif
470 
471 	/*
472 	 * Create a mapping for the machine vectors at the high-vectors
473 	 * location (0xffff0000).  If we aren't using high-vectors, also
474 	 * create a mapping at the low-vectors virtual address.
475 	 */
476 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
477 	map.virtual = 0xffff0000;
478 	map.length = PAGE_SIZE;
479 	map.type = MT_HIGH_VECTORS;
480 	create_mapping(&map);
481 
482 	if (!vectors_high()) {
483 		map.virtual = 0;
484 		map.type = MT_LOW_VECTORS;
485 		create_mapping(&map);
486 	}
487 
488 	/*
489 	 * Ask the machine support to map in the statically mapped devices.
490 	 */
491 	if (mdesc->map_io)
492 		mdesc->map_io();
493 
494 	/*
495 	 * Finally flush the caches and tlb to ensure that we're in a
496 	 * consistent state wrt the writebuffer.  This also ensures that
497 	 * any write-allocated cache lines in the vector page are written
498 	 * back.  After this point, we can start to touch devices again.
499 	 */
500 	local_flush_tlb_all();
501 	flush_cache_all();
502 }
503 
504 /*
505  * paging_init() sets up the page tables, initialises the zone memory
506  * maps, and sets up the zero page, bad page and bad page tables.
507  */
508 void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc)
509 {
510 	void *zero_page;
511 
512 	build_mem_type_table();
513 	bootmem_init(mi);
514 	devicemaps_init(mdesc);
515 
516 	top_pmd = pmd_off_k(0xffff0000);
517 
518 	/*
519 	 * allocate the zero page.  Note that we count on this going ok.
520 	 */
521 	zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
522 	memzero(zero_page, PAGE_SIZE);
523 	empty_zero_page = virt_to_page(zero_page);
524 	flush_dcache_page(empty_zero_page);
525 }
526 
527 static inline void free_area(unsigned long addr, unsigned long end, char *s)
528 {
529 	unsigned int size = (end - addr) >> 10;
530 
531 	for (; addr < end; addr += PAGE_SIZE) {
532 		struct page *page = virt_to_page(addr);
533 		ClearPageReserved(page);
534 		init_page_count(page);
535 		free_page(addr);
536 		totalram_pages++;
537 	}
538 
539 	if (size && s)
540 		printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
541 }
542 
543 static inline void
544 free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn)
545 {
546 	struct page *start_pg, *end_pg;
547 	unsigned long pg, pgend;
548 
549 	/*
550 	 * Convert start_pfn/end_pfn to a struct page pointer.
551 	 */
552 	start_pg = pfn_to_page(start_pfn);
553 	end_pg = pfn_to_page(end_pfn);
554 
555 	/*
556 	 * Convert to physical addresses, and
557 	 * round start upwards and end downwards.
558 	 */
559 	pg = PAGE_ALIGN(__pa(start_pg));
560 	pgend = __pa(end_pg) & PAGE_MASK;
561 
562 	/*
563 	 * If there are free pages between these,
564 	 * free the section of the memmap array.
565 	 */
566 	if (pg < pgend)
567 		free_bootmem_node(NODE_DATA(node), pg, pgend - pg);
568 }
569 
570 /*
571  * The mem_map array can get very big.  Free the unused area of the memory map.
572  */
573 static void __init free_unused_memmap_node(int node, struct meminfo *mi)
574 {
575 	unsigned long bank_start, prev_bank_end = 0;
576 	unsigned int i;
577 
578 	/*
579 	 * [FIXME] This relies on each bank being in address order.  This
580 	 * may not be the case, especially if the user has provided the
581 	 * information on the command line.
582 	 */
583 	for_each_nodebank(i, mi, node) {
584 		bank_start = mi->bank[i].start >> PAGE_SHIFT;
585 		if (bank_start < prev_bank_end) {
586 			printk(KERN_ERR "MEM: unordered memory banks.  "
587 				"Not freeing memmap.\n");
588 			break;
589 		}
590 
591 		/*
592 		 * If we had a previous bank, and there is a space
593 		 * between the current bank and the previous, free it.
594 		 */
595 		if (prev_bank_end && prev_bank_end != bank_start)
596 			free_memmap(node, prev_bank_end, bank_start);
597 
598 		prev_bank_end = (mi->bank[i].start +
599 				 mi->bank[i].size) >> PAGE_SHIFT;
600 	}
601 }
602 
603 /*
604  * mem_init() marks the free areas in the mem_map and tells us how much
605  * memory is free.  This is done after various parts of the system have
606  * claimed their memory after the kernel image.
607  */
608 void __init mem_init(void)
609 {
610 	unsigned int codepages, datapages, initpages;
611 	int i, node;
612 
613 	codepages = &_etext - &_text;
614 	datapages = &_end - &__data_start;
615 	initpages = &__init_end - &__init_begin;
616 
617 #ifndef CONFIG_DISCONTIGMEM
618 	max_mapnr   = virt_to_page(high_memory) - mem_map;
619 #endif
620 
621 	/* this will put all unused low memory onto the freelists */
622 	for_each_online_node(node) {
623 		pg_data_t *pgdat = NODE_DATA(node);
624 
625 		free_unused_memmap_node(node, &meminfo);
626 
627 		if (pgdat->node_spanned_pages != 0)
628 			totalram_pages += free_all_bootmem_node(pgdat);
629 	}
630 
631 #ifdef CONFIG_SA1111
632 	/* now that our DMA memory is actually so designated, we can free it */
633 	free_area(PAGE_OFFSET, (unsigned long)swapper_pg_dir, NULL);
634 #endif
635 
636 	/*
637 	 * Since our memory may not be contiguous, calculate the
638 	 * real number of pages we have in this system
639 	 */
640 	printk(KERN_INFO "Memory:");
641 
642 	num_physpages = 0;
643 	for (i = 0; i < meminfo.nr_banks; i++) {
644 		num_physpages += meminfo.bank[i].size >> PAGE_SHIFT;
645 		printk(" %ldMB", meminfo.bank[i].size >> 20);
646 	}
647 
648 	printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
649 	printk(KERN_NOTICE "Memory: %luKB available (%dK code, "
650 		"%dK data, %dK init)\n",
651 		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
652 		codepages >> 10, datapages >> 10, initpages >> 10);
653 
654 	if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
655 		extern int sysctl_overcommit_memory;
656 		/*
657 		 * On a machine this small we won't get
658 		 * anywhere without overcommit, so turn
659 		 * it on by default.
660 		 */
661 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
662 	}
663 }
664 
665 void free_initmem(void)
666 {
667 	if (!machine_is_integrator() && !machine_is_cintegrator()) {
668 		free_area((unsigned long)(&__init_begin),
669 			  (unsigned long)(&__init_end),
670 			  "init");
671 	}
672 }
673 
674 #ifdef CONFIG_BLK_DEV_INITRD
675 
676 static int keep_initrd;
677 
678 void free_initrd_mem(unsigned long start, unsigned long end)
679 {
680 	if (!keep_initrd)
681 		free_area(start, end, "initrd");
682 }
683 
684 static int __init keepinitrd_setup(char *__unused)
685 {
686 	keep_initrd = 1;
687 	return 1;
688 }
689 
690 __setup("keepinitrd", keepinitrd_setup);
691 #endif
692