1 /* 2 * linux/arch/arm/mm/init.c 3 * 4 * Copyright (C) 1995-2005 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/kernel.h> 11 #include <linux/errno.h> 12 #include <linux/swap.h> 13 #include <linux/init.h> 14 #include <linux/bootmem.h> 15 #include <linux/mman.h> 16 #include <linux/nodemask.h> 17 #include <linux/initrd.h> 18 19 #include <asm/mach-types.h> 20 #include <asm/setup.h> 21 #include <asm/sizes.h> 22 #include <asm/tlb.h> 23 24 #include <asm/mach/arch.h> 25 #include <asm/mach/map.h> 26 27 #include "mm.h" 28 29 extern void _text, _etext, __data_start, _end, __init_begin, __init_end; 30 extern unsigned long phys_initrd_start; 31 extern unsigned long phys_initrd_size; 32 33 /* 34 * This is used to pass memory configuration data from paging_init 35 * to mem_init, and by show_mem() to skip holes in the memory map. 36 */ 37 static struct meminfo meminfo = { 0, }; 38 39 #define for_each_nodebank(iter,mi,no) \ 40 for (iter = 0; iter < mi->nr_banks; iter++) \ 41 if (mi->bank[iter].node == no) 42 43 void show_mem(void) 44 { 45 int free = 0, total = 0, reserved = 0; 46 int shared = 0, cached = 0, slab = 0, node, i; 47 struct meminfo * mi = &meminfo; 48 49 printk("Mem-info:\n"); 50 show_free_areas(); 51 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); 52 53 for_each_online_node(node) { 54 pg_data_t *n = NODE_DATA(node); 55 struct page *map = n->node_mem_map - n->node_start_pfn; 56 57 for_each_nodebank (i,mi,node) { 58 unsigned int pfn1, pfn2; 59 struct page *page, *end; 60 61 pfn1 = __phys_to_pfn(mi->bank[i].start); 62 pfn2 = __phys_to_pfn(mi->bank[i].size + mi->bank[i].start); 63 64 page = map + pfn1; 65 end = map + pfn2; 66 67 do { 68 total++; 69 if (PageReserved(page)) 70 reserved++; 71 else if (PageSwapCache(page)) 72 cached++; 73 else if (PageSlab(page)) 74 slab++; 75 else if (!page_count(page)) 76 free++; 77 else 78 shared += page_count(page) - 1; 79 page++; 80 } while (page < end); 81 } 82 } 83 84 printk("%d pages of RAM\n", total); 85 printk("%d free pages\n", free); 86 printk("%d reserved pages\n", reserved); 87 printk("%d slab pages\n", slab); 88 printk("%d pages shared\n", shared); 89 printk("%d pages swap cached\n", cached); 90 } 91 92 /* 93 * FIXME: We really want to avoid allocating the bootmap bitmap 94 * over the top of the initrd. Hopefully, this is located towards 95 * the start of a bank, so if we allocate the bootmap bitmap at 96 * the end, we won't clash. 97 */ 98 static unsigned int __init 99 find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages) 100 { 101 unsigned int start_pfn, bank, bootmap_pfn; 102 103 start_pfn = PAGE_ALIGN(__pa(&_end)) >> PAGE_SHIFT; 104 bootmap_pfn = 0; 105 106 for_each_nodebank(bank, mi, node) { 107 unsigned int start, end; 108 109 start = mi->bank[bank].start >> PAGE_SHIFT; 110 end = (mi->bank[bank].size + 111 mi->bank[bank].start) >> PAGE_SHIFT; 112 113 if (end < start_pfn) 114 continue; 115 116 if (start < start_pfn) 117 start = start_pfn; 118 119 if (end <= start) 120 continue; 121 122 if (end - start >= bootmap_pages) { 123 bootmap_pfn = start; 124 break; 125 } 126 } 127 128 if (bootmap_pfn == 0) 129 BUG(); 130 131 return bootmap_pfn; 132 } 133 134 static int __init check_initrd(struct meminfo *mi) 135 { 136 int initrd_node = -2; 137 #ifdef CONFIG_BLK_DEV_INITRD 138 unsigned long end = phys_initrd_start + phys_initrd_size; 139 140 /* 141 * Make sure that the initrd is within a valid area of 142 * memory. 143 */ 144 if (phys_initrd_size) { 145 unsigned int i; 146 147 initrd_node = -1; 148 149 for (i = 0; i < mi->nr_banks; i++) { 150 unsigned long bank_end; 151 152 bank_end = mi->bank[i].start + mi->bank[i].size; 153 154 if (mi->bank[i].start <= phys_initrd_start && 155 end <= bank_end) 156 initrd_node = mi->bank[i].node; 157 } 158 } 159 160 if (initrd_node == -1) { 161 printk(KERN_ERR "initrd (0x%08lx - 0x%08lx) extends beyond " 162 "physical memory - disabling initrd\n", 163 phys_initrd_start, end); 164 phys_initrd_start = phys_initrd_size = 0; 165 } 166 #endif 167 168 return initrd_node; 169 } 170 171 static inline void map_memory_bank(struct membank *bank) 172 { 173 #ifdef CONFIG_MMU 174 struct map_desc map; 175 176 map.pfn = __phys_to_pfn(bank->start); 177 map.virtual = __phys_to_virt(bank->start); 178 map.length = bank->size; 179 map.type = MT_MEMORY; 180 181 create_mapping(&map); 182 #endif 183 } 184 185 static unsigned long __init 186 bootmem_init_node(int node, int initrd_node, struct meminfo *mi) 187 { 188 unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES]; 189 unsigned long start_pfn, end_pfn, boot_pfn; 190 unsigned int boot_pages; 191 pg_data_t *pgdat; 192 int i; 193 194 start_pfn = -1UL; 195 end_pfn = 0; 196 197 /* 198 * Calculate the pfn range, and map the memory banks for this node. 199 */ 200 for_each_nodebank(i, mi, node) { 201 struct membank *bank = &mi->bank[i]; 202 unsigned long start, end; 203 204 start = bank->start >> PAGE_SHIFT; 205 end = (bank->start + bank->size) >> PAGE_SHIFT; 206 207 if (start_pfn > start) 208 start_pfn = start; 209 if (end_pfn < end) 210 end_pfn = end; 211 212 map_memory_bank(bank); 213 } 214 215 /* 216 * If there is no memory in this node, ignore it. 217 */ 218 if (end_pfn == 0) 219 return end_pfn; 220 221 /* 222 * Allocate the bootmem bitmap page. 223 */ 224 boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn); 225 boot_pfn = find_bootmap_pfn(node, mi, boot_pages); 226 227 /* 228 * Initialise the bootmem allocator for this node, handing the 229 * memory banks over to bootmem. 230 */ 231 node_set_online(node); 232 pgdat = NODE_DATA(node); 233 init_bootmem_node(pgdat, boot_pfn, start_pfn, end_pfn); 234 235 for_each_nodebank(i, mi, node) 236 free_bootmem_node(pgdat, mi->bank[i].start, mi->bank[i].size); 237 238 /* 239 * Reserve the bootmem bitmap for this node. 240 */ 241 reserve_bootmem_node(pgdat, boot_pfn << PAGE_SHIFT, 242 boot_pages << PAGE_SHIFT); 243 244 #ifdef CONFIG_BLK_DEV_INITRD 245 /* 246 * If the initrd is in this node, reserve its memory. 247 */ 248 if (node == initrd_node) { 249 reserve_bootmem_node(pgdat, phys_initrd_start, 250 phys_initrd_size); 251 initrd_start = __phys_to_virt(phys_initrd_start); 252 initrd_end = initrd_start + phys_initrd_size; 253 } 254 #endif 255 256 /* 257 * Finally, reserve any node zero regions. 258 */ 259 if (node == 0) 260 reserve_node_zero(pgdat); 261 262 /* 263 * initialise the zones within this node. 264 */ 265 memset(zone_size, 0, sizeof(zone_size)); 266 memset(zhole_size, 0, sizeof(zhole_size)); 267 268 /* 269 * The size of this node has already been determined. If we need 270 * to do anything fancy with the allocation of this memory to the 271 * zones, now is the time to do it. 272 */ 273 zone_size[0] = end_pfn - start_pfn; 274 275 /* 276 * For each bank in this node, calculate the size of the holes. 277 * holes = node_size - sum(bank_sizes_in_node) 278 */ 279 zhole_size[0] = zone_size[0]; 280 for_each_nodebank(i, mi, node) 281 zhole_size[0] -= mi->bank[i].size >> PAGE_SHIFT; 282 283 /* 284 * Adjust the sizes according to any special requirements for 285 * this machine type. 286 */ 287 arch_adjust_zones(node, zone_size, zhole_size); 288 289 free_area_init_node(node, pgdat, zone_size, start_pfn, zhole_size); 290 291 return end_pfn; 292 } 293 294 void __init bootmem_init(struct meminfo *mi) 295 { 296 unsigned long memend_pfn = 0; 297 int node, initrd_node, i; 298 299 /* 300 * Invalidate the node number for empty or invalid memory banks 301 */ 302 for (i = 0; i < mi->nr_banks; i++) 303 if (mi->bank[i].size == 0 || mi->bank[i].node >= MAX_NUMNODES) 304 mi->bank[i].node = -1; 305 306 memcpy(&meminfo, mi, sizeof(meminfo)); 307 308 /* 309 * Locate which node contains the ramdisk image, if any. 310 */ 311 initrd_node = check_initrd(mi); 312 313 /* 314 * Run through each node initialising the bootmem allocator. 315 */ 316 for_each_node(node) { 317 unsigned long end_pfn; 318 319 end_pfn = bootmem_init_node(node, initrd_node, mi); 320 321 /* 322 * Remember the highest memory PFN. 323 */ 324 if (end_pfn > memend_pfn) 325 memend_pfn = end_pfn; 326 } 327 328 high_memory = __va(memend_pfn << PAGE_SHIFT); 329 330 /* 331 * This doesn't seem to be used by the Linux memory manager any 332 * more, but is used by ll_rw_block. If we can get rid of it, we 333 * also get rid of some of the stuff above as well. 334 * 335 * Note: max_low_pfn and max_pfn reflect the number of _pages_ in 336 * the system, not the maximum PFN. 337 */ 338 max_pfn = max_low_pfn = memend_pfn - PHYS_PFN_OFFSET; 339 } 340 341 static inline void free_area(unsigned long addr, unsigned long end, char *s) 342 { 343 unsigned int size = (end - addr) >> 10; 344 345 for (; addr < end; addr += PAGE_SIZE) { 346 struct page *page = virt_to_page(addr); 347 ClearPageReserved(page); 348 init_page_count(page); 349 free_page(addr); 350 totalram_pages++; 351 } 352 353 if (size && s) 354 printk(KERN_INFO "Freeing %s memory: %dK\n", s, size); 355 } 356 357 static inline void 358 free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn) 359 { 360 struct page *start_pg, *end_pg; 361 unsigned long pg, pgend; 362 363 /* 364 * Convert start_pfn/end_pfn to a struct page pointer. 365 */ 366 start_pg = pfn_to_page(start_pfn); 367 end_pg = pfn_to_page(end_pfn); 368 369 /* 370 * Convert to physical addresses, and 371 * round start upwards and end downwards. 372 */ 373 pg = PAGE_ALIGN(__pa(start_pg)); 374 pgend = __pa(end_pg) & PAGE_MASK; 375 376 /* 377 * If there are free pages between these, 378 * free the section of the memmap array. 379 */ 380 if (pg < pgend) 381 free_bootmem_node(NODE_DATA(node), pg, pgend - pg); 382 } 383 384 /* 385 * The mem_map array can get very big. Free the unused area of the memory map. 386 */ 387 static void __init free_unused_memmap_node(int node, struct meminfo *mi) 388 { 389 unsigned long bank_start, prev_bank_end = 0; 390 unsigned int i; 391 392 /* 393 * [FIXME] This relies on each bank being in address order. This 394 * may not be the case, especially if the user has provided the 395 * information on the command line. 396 */ 397 for_each_nodebank(i, mi, node) { 398 bank_start = mi->bank[i].start >> PAGE_SHIFT; 399 if (bank_start < prev_bank_end) { 400 printk(KERN_ERR "MEM: unordered memory banks. " 401 "Not freeing memmap.\n"); 402 break; 403 } 404 405 /* 406 * If we had a previous bank, and there is a space 407 * between the current bank and the previous, free it. 408 */ 409 if (prev_bank_end && prev_bank_end != bank_start) 410 free_memmap(node, prev_bank_end, bank_start); 411 412 prev_bank_end = (mi->bank[i].start + 413 mi->bank[i].size) >> PAGE_SHIFT; 414 } 415 } 416 417 /* 418 * mem_init() marks the free areas in the mem_map and tells us how much 419 * memory is free. This is done after various parts of the system have 420 * claimed their memory after the kernel image. 421 */ 422 void __init mem_init(void) 423 { 424 unsigned int codepages, datapages, initpages; 425 int i, node; 426 427 codepages = &_etext - &_text; 428 datapages = &_end - &__data_start; 429 initpages = &__init_end - &__init_begin; 430 431 #ifndef CONFIG_DISCONTIGMEM 432 max_mapnr = virt_to_page(high_memory) - mem_map; 433 #endif 434 435 /* this will put all unused low memory onto the freelists */ 436 for_each_online_node(node) { 437 pg_data_t *pgdat = NODE_DATA(node); 438 439 free_unused_memmap_node(node, &meminfo); 440 441 if (pgdat->node_spanned_pages != 0) 442 totalram_pages += free_all_bootmem_node(pgdat); 443 } 444 445 #ifdef CONFIG_SA1111 446 /* now that our DMA memory is actually so designated, we can free it */ 447 free_area(PAGE_OFFSET, (unsigned long)swapper_pg_dir, NULL); 448 #endif 449 450 /* 451 * Since our memory may not be contiguous, calculate the 452 * real number of pages we have in this system 453 */ 454 printk(KERN_INFO "Memory:"); 455 456 num_physpages = 0; 457 for (i = 0; i < meminfo.nr_banks; i++) { 458 num_physpages += meminfo.bank[i].size >> PAGE_SHIFT; 459 printk(" %ldMB", meminfo.bank[i].size >> 20); 460 } 461 462 printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT)); 463 printk(KERN_NOTICE "Memory: %luKB available (%dK code, " 464 "%dK data, %dK init)\n", 465 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10), 466 codepages >> 10, datapages >> 10, initpages >> 10); 467 468 if (PAGE_SIZE >= 16384 && num_physpages <= 128) { 469 extern int sysctl_overcommit_memory; 470 /* 471 * On a machine this small we won't get 472 * anywhere without overcommit, so turn 473 * it on by default. 474 */ 475 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS; 476 } 477 } 478 479 void free_initmem(void) 480 { 481 if (!machine_is_integrator() && !machine_is_cintegrator()) { 482 free_area((unsigned long)(&__init_begin), 483 (unsigned long)(&__init_end), 484 "init"); 485 } 486 } 487 488 #ifdef CONFIG_BLK_DEV_INITRD 489 490 static int keep_initrd; 491 492 void free_initrd_mem(unsigned long start, unsigned long end) 493 { 494 if (!keep_initrd) 495 free_area(start, end, "initrd"); 496 } 497 498 static int __init keepinitrd_setup(char *__unused) 499 { 500 keep_initrd = 1; 501 return 1; 502 } 503 504 __setup("keepinitrd", keepinitrd_setup); 505 #endif 506