xref: /openbmc/linux/arch/arm/mm/init.c (revision 5e709827)
1 /*
2  *  linux/arch/arm/mm/init.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/ptrace.h>
13 #include <linux/swap.h>
14 #include <linux/init.h>
15 #include <linux/bootmem.h>
16 #include <linux/mman.h>
17 #include <linux/nodemask.h>
18 #include <linux/initrd.h>
19 
20 #include <asm/mach-types.h>
21 #include <asm/setup.h>
22 #include <asm/sizes.h>
23 #include <asm/tlb.h>
24 
25 #include <asm/mach/arch.h>
26 #include <asm/mach/map.h>
27 
28 #include "mm.h"
29 
30 extern void _text, _etext, __data_start, _end, __init_begin, __init_end;
31 extern unsigned long phys_initrd_start;
32 extern unsigned long phys_initrd_size;
33 
34 /*
35  * This is used to pass memory configuration data from paging_init
36  * to mem_init, and by show_mem() to skip holes in the memory map.
37  */
38 static struct meminfo meminfo = { 0, };
39 
40 #define for_each_nodebank(iter,mi,no)			\
41 	for (iter = 0; iter < mi->nr_banks; iter++)	\
42 		if (mi->bank[iter].node == no)
43 
44 void show_mem(void)
45 {
46 	int free = 0, total = 0, reserved = 0;
47 	int shared = 0, cached = 0, slab = 0, node, i;
48 	struct meminfo * mi = &meminfo;
49 
50 	printk("Mem-info:\n");
51 	show_free_areas();
52 	printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
53 
54 	for_each_online_node(node) {
55 		for_each_nodebank (i,mi,node) {
56 			unsigned int pfn1, pfn2;
57 			struct page *page, *end;
58 
59 			pfn1 = mi->bank[i].start >> PAGE_SHIFT;
60 			pfn2 = (mi->bank[i].size + mi->bank[i].start) >> PAGE_SHIFT;
61 
62 			page = NODE_MEM_MAP(node) + pfn1;
63 			end  = NODE_MEM_MAP(node) + pfn2;
64 
65 			do {
66 				total++;
67 				if (PageReserved(page))
68 					reserved++;
69 				else if (PageSwapCache(page))
70 					cached++;
71 				else if (PageSlab(page))
72 					slab++;
73 				else if (!page_count(page))
74 					free++;
75 				else
76 					shared += page_count(page) - 1;
77 				page++;
78 			} while (page < end);
79 		}
80 	}
81 
82 	printk("%d pages of RAM\n", total);
83 	printk("%d free pages\n", free);
84 	printk("%d reserved pages\n", reserved);
85 	printk("%d slab pages\n", slab);
86 	printk("%d pages shared\n", shared);
87 	printk("%d pages swap cached\n", cached);
88 }
89 
90 /*
91  * FIXME: We really want to avoid allocating the bootmap bitmap
92  * over the top of the initrd.  Hopefully, this is located towards
93  * the start of a bank, so if we allocate the bootmap bitmap at
94  * the end, we won't clash.
95  */
96 static unsigned int __init
97 find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages)
98 {
99 	unsigned int start_pfn, bank, bootmap_pfn;
100 
101 	start_pfn   = PAGE_ALIGN(__pa(&_end)) >> PAGE_SHIFT;
102 	bootmap_pfn = 0;
103 
104 	for_each_nodebank(bank, mi, node) {
105 		unsigned int start, end;
106 
107 		start = mi->bank[bank].start >> PAGE_SHIFT;
108 		end   = (mi->bank[bank].size +
109 			 mi->bank[bank].start) >> PAGE_SHIFT;
110 
111 		if (end < start_pfn)
112 			continue;
113 
114 		if (start < start_pfn)
115 			start = start_pfn;
116 
117 		if (end <= start)
118 			continue;
119 
120 		if (end - start >= bootmap_pages) {
121 			bootmap_pfn = start;
122 			break;
123 		}
124 	}
125 
126 	if (bootmap_pfn == 0)
127 		BUG();
128 
129 	return bootmap_pfn;
130 }
131 
132 static int __init check_initrd(struct meminfo *mi)
133 {
134 	int initrd_node = -2;
135 #ifdef CONFIG_BLK_DEV_INITRD
136 	unsigned long end = phys_initrd_start + phys_initrd_size;
137 
138 	/*
139 	 * Make sure that the initrd is within a valid area of
140 	 * memory.
141 	 */
142 	if (phys_initrd_size) {
143 		unsigned int i;
144 
145 		initrd_node = -1;
146 
147 		for (i = 0; i < mi->nr_banks; i++) {
148 			unsigned long bank_end;
149 
150 			bank_end = mi->bank[i].start + mi->bank[i].size;
151 
152 			if (mi->bank[i].start <= phys_initrd_start &&
153 			    end <= bank_end)
154 				initrd_node = mi->bank[i].node;
155 		}
156 	}
157 
158 	if (initrd_node == -1) {
159 		printk(KERN_ERR "initrd (0x%08lx - 0x%08lx) extends beyond "
160 		       "physical memory - disabling initrd\n",
161 		       phys_initrd_start, end);
162 		phys_initrd_start = phys_initrd_size = 0;
163 	}
164 #endif
165 
166 	return initrd_node;
167 }
168 
169 static inline void map_memory_bank(struct membank *bank)
170 {
171 #ifdef CONFIG_MMU
172 	struct map_desc map;
173 
174 	map.pfn = __phys_to_pfn(bank->start);
175 	map.virtual = __phys_to_virt(bank->start);
176 	map.length = bank->size;
177 	map.type = MT_MEMORY;
178 
179 	create_mapping(&map);
180 #endif
181 }
182 
183 static unsigned long __init
184 bootmem_init_node(int node, int initrd_node, struct meminfo *mi)
185 {
186 	unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
187 	unsigned long start_pfn, end_pfn, boot_pfn;
188 	unsigned int boot_pages;
189 	pg_data_t *pgdat;
190 	int i;
191 
192 	start_pfn = -1UL;
193 	end_pfn = 0;
194 
195 	/*
196 	 * Calculate the pfn range, and map the memory banks for this node.
197 	 */
198 	for_each_nodebank(i, mi, node) {
199 		struct membank *bank = &mi->bank[i];
200 		unsigned long start, end;
201 
202 		start = bank->start >> PAGE_SHIFT;
203 		end = (bank->start + bank->size) >> PAGE_SHIFT;
204 
205 		if (start_pfn > start)
206 			start_pfn = start;
207 		if (end_pfn < end)
208 			end_pfn = end;
209 
210 		map_memory_bank(bank);
211 	}
212 
213 	/*
214 	 * If there is no memory in this node, ignore it.
215 	 */
216 	if (end_pfn == 0)
217 		return end_pfn;
218 
219 	/*
220 	 * Allocate the bootmem bitmap page.
221 	 */
222 	boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
223 	boot_pfn = find_bootmap_pfn(node, mi, boot_pages);
224 
225 	/*
226 	 * Initialise the bootmem allocator for this node, handing the
227 	 * memory banks over to bootmem.
228 	 */
229 	node_set_online(node);
230 	pgdat = NODE_DATA(node);
231 	init_bootmem_node(pgdat, boot_pfn, start_pfn, end_pfn);
232 
233 	for_each_nodebank(i, mi, node)
234 		free_bootmem_node(pgdat, mi->bank[i].start, mi->bank[i].size);
235 
236 	/*
237 	 * Reserve the bootmem bitmap for this node.
238 	 */
239 	reserve_bootmem_node(pgdat, boot_pfn << PAGE_SHIFT,
240 			     boot_pages << PAGE_SHIFT);
241 
242 #ifdef CONFIG_BLK_DEV_INITRD
243 	/*
244 	 * If the initrd is in this node, reserve its memory.
245 	 */
246 	if (node == initrd_node) {
247 		reserve_bootmem_node(pgdat, phys_initrd_start,
248 				     phys_initrd_size);
249 		initrd_start = __phys_to_virt(phys_initrd_start);
250 		initrd_end = initrd_start + phys_initrd_size;
251 	}
252 #endif
253 
254 	/*
255 	 * Finally, reserve any node zero regions.
256 	 */
257 	if (node == 0)
258 		reserve_node_zero(pgdat);
259 
260 	/*
261 	 * initialise the zones within this node.
262 	 */
263 	memset(zone_size, 0, sizeof(zone_size));
264 	memset(zhole_size, 0, sizeof(zhole_size));
265 
266 	/*
267 	 * The size of this node has already been determined.  If we need
268 	 * to do anything fancy with the allocation of this memory to the
269 	 * zones, now is the time to do it.
270 	 */
271 	zone_size[0] = end_pfn - start_pfn;
272 
273 	/*
274 	 * For each bank in this node, calculate the size of the holes.
275 	 *  holes = node_size - sum(bank_sizes_in_node)
276 	 */
277 	zhole_size[0] = zone_size[0];
278 	for_each_nodebank(i, mi, node)
279 		zhole_size[0] -= mi->bank[i].size >> PAGE_SHIFT;
280 
281 	/*
282 	 * Adjust the sizes according to any special requirements for
283 	 * this machine type.
284 	 */
285 	arch_adjust_zones(node, zone_size, zhole_size);
286 
287 	free_area_init_node(node, pgdat, zone_size, start_pfn, zhole_size);
288 
289 	return end_pfn;
290 }
291 
292 void __init bootmem_init(struct meminfo *mi)
293 {
294 	unsigned long memend_pfn = 0;
295 	int node, initrd_node, i;
296 
297 	/*
298 	 * Invalidate the node number for empty or invalid memory banks
299 	 */
300 	for (i = 0; i < mi->nr_banks; i++)
301 		if (mi->bank[i].size == 0 || mi->bank[i].node >= MAX_NUMNODES)
302 			mi->bank[i].node = -1;
303 
304 	memcpy(&meminfo, mi, sizeof(meminfo));
305 
306 	/*
307 	 * Locate which node contains the ramdisk image, if any.
308 	 */
309 	initrd_node = check_initrd(mi);
310 
311 	/*
312 	 * Run through each node initialising the bootmem allocator.
313 	 */
314 	for_each_node(node) {
315 		unsigned long end_pfn;
316 
317 		end_pfn = bootmem_init_node(node, initrd_node, mi);
318 
319 		/*
320 		 * Remember the highest memory PFN.
321 		 */
322 		if (end_pfn > memend_pfn)
323 			memend_pfn = end_pfn;
324 	}
325 
326 	high_memory = __va(memend_pfn << PAGE_SHIFT);
327 
328 	/*
329 	 * This doesn't seem to be used by the Linux memory manager any
330 	 * more, but is used by ll_rw_block.  If we can get rid of it, we
331 	 * also get rid of some of the stuff above as well.
332 	 *
333 	 * Note: max_low_pfn and max_pfn reflect the number of _pages_ in
334 	 * the system, not the maximum PFN.
335 	 */
336 	max_pfn = max_low_pfn = memend_pfn - PHYS_PFN_OFFSET;
337 }
338 
339 static inline void free_area(unsigned long addr, unsigned long end, char *s)
340 {
341 	unsigned int size = (end - addr) >> 10;
342 
343 	for (; addr < end; addr += PAGE_SIZE) {
344 		struct page *page = virt_to_page(addr);
345 		ClearPageReserved(page);
346 		init_page_count(page);
347 		free_page(addr);
348 		totalram_pages++;
349 	}
350 
351 	if (size && s)
352 		printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
353 }
354 
355 static inline void
356 free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn)
357 {
358 	struct page *start_pg, *end_pg;
359 	unsigned long pg, pgend;
360 
361 	/*
362 	 * Convert start_pfn/end_pfn to a struct page pointer.
363 	 */
364 	start_pg = pfn_to_page(start_pfn);
365 	end_pg = pfn_to_page(end_pfn);
366 
367 	/*
368 	 * Convert to physical addresses, and
369 	 * round start upwards and end downwards.
370 	 */
371 	pg = PAGE_ALIGN(__pa(start_pg));
372 	pgend = __pa(end_pg) & PAGE_MASK;
373 
374 	/*
375 	 * If there are free pages between these,
376 	 * free the section of the memmap array.
377 	 */
378 	if (pg < pgend)
379 		free_bootmem_node(NODE_DATA(node), pg, pgend - pg);
380 }
381 
382 /*
383  * The mem_map array can get very big.  Free the unused area of the memory map.
384  */
385 static void __init free_unused_memmap_node(int node, struct meminfo *mi)
386 {
387 	unsigned long bank_start, prev_bank_end = 0;
388 	unsigned int i;
389 
390 	/*
391 	 * [FIXME] This relies on each bank being in address order.  This
392 	 * may not be the case, especially if the user has provided the
393 	 * information on the command line.
394 	 */
395 	for_each_nodebank(i, mi, node) {
396 		bank_start = mi->bank[i].start >> PAGE_SHIFT;
397 		if (bank_start < prev_bank_end) {
398 			printk(KERN_ERR "MEM: unordered memory banks.  "
399 				"Not freeing memmap.\n");
400 			break;
401 		}
402 
403 		/*
404 		 * If we had a previous bank, and there is a space
405 		 * between the current bank and the previous, free it.
406 		 */
407 		if (prev_bank_end && prev_bank_end != bank_start)
408 			free_memmap(node, prev_bank_end, bank_start);
409 
410 		prev_bank_end = (mi->bank[i].start +
411 				 mi->bank[i].size) >> PAGE_SHIFT;
412 	}
413 }
414 
415 /*
416  * mem_init() marks the free areas in the mem_map and tells us how much
417  * memory is free.  This is done after various parts of the system have
418  * claimed their memory after the kernel image.
419  */
420 void __init mem_init(void)
421 {
422 	unsigned int codepages, datapages, initpages;
423 	int i, node;
424 
425 	codepages = &_etext - &_text;
426 	datapages = &_end - &__data_start;
427 	initpages = &__init_end - &__init_begin;
428 
429 #ifndef CONFIG_DISCONTIGMEM
430 	max_mapnr   = virt_to_page(high_memory) - mem_map;
431 #endif
432 
433 	/* this will put all unused low memory onto the freelists */
434 	for_each_online_node(node) {
435 		pg_data_t *pgdat = NODE_DATA(node);
436 
437 		free_unused_memmap_node(node, &meminfo);
438 
439 		if (pgdat->node_spanned_pages != 0)
440 			totalram_pages += free_all_bootmem_node(pgdat);
441 	}
442 
443 #ifdef CONFIG_SA1111
444 	/* now that our DMA memory is actually so designated, we can free it */
445 	free_area(PAGE_OFFSET, (unsigned long)swapper_pg_dir, NULL);
446 #endif
447 
448 	/*
449 	 * Since our memory may not be contiguous, calculate the
450 	 * real number of pages we have in this system
451 	 */
452 	printk(KERN_INFO "Memory:");
453 
454 	num_physpages = 0;
455 	for (i = 0; i < meminfo.nr_banks; i++) {
456 		num_physpages += meminfo.bank[i].size >> PAGE_SHIFT;
457 		printk(" %ldMB", meminfo.bank[i].size >> 20);
458 	}
459 
460 	printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
461 	printk(KERN_NOTICE "Memory: %luKB available (%dK code, "
462 		"%dK data, %dK init)\n",
463 		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
464 		codepages >> 10, datapages >> 10, initpages >> 10);
465 
466 	if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
467 		extern int sysctl_overcommit_memory;
468 		/*
469 		 * On a machine this small we won't get
470 		 * anywhere without overcommit, so turn
471 		 * it on by default.
472 		 */
473 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
474 	}
475 }
476 
477 void free_initmem(void)
478 {
479 	if (!machine_is_integrator() && !machine_is_cintegrator()) {
480 		free_area((unsigned long)(&__init_begin),
481 			  (unsigned long)(&__init_end),
482 			  "init");
483 	}
484 }
485 
486 #ifdef CONFIG_BLK_DEV_INITRD
487 
488 static int keep_initrd;
489 
490 void free_initrd_mem(unsigned long start, unsigned long end)
491 {
492 	if (!keep_initrd)
493 		free_area(start, end, "initrd");
494 }
495 
496 static int __init keepinitrd_setup(char *__unused)
497 {
498 	keep_initrd = 1;
499 	return 1;
500 }
501 
502 __setup("keepinitrd", keepinitrd_setup);
503 #endif
504