xref: /openbmc/linux/arch/arm/mm/init.c (revision 456335e2)
1 /*
2  *  linux/arch/arm/mm/init.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/ptrace.h>
13 #include <linux/swap.h>
14 #include <linux/init.h>
15 #include <linux/bootmem.h>
16 #include <linux/mman.h>
17 #include <linux/nodemask.h>
18 #include <linux/initrd.h>
19 
20 #include <asm/mach-types.h>
21 #include <asm/setup.h>
22 #include <asm/sizes.h>
23 #include <asm/tlb.h>
24 
25 #include <asm/mach/arch.h>
26 #include <asm/mach/map.h>
27 
28 #include "mm.h"
29 
30 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
31 
32 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
33 extern void _stext, _text, _etext, __data_start, _end, __init_begin, __init_end;
34 extern unsigned long phys_initrd_start;
35 extern unsigned long phys_initrd_size;
36 
37 /*
38  * The sole use of this is to pass memory configuration
39  * data from paging_init to mem_init.
40  */
41 static struct meminfo meminfo __initdata = { 0, };
42 
43 /*
44  * empty_zero_page is a special page that is used for
45  * zero-initialized data and COW.
46  */
47 struct page *empty_zero_page;
48 
49 /*
50  * The pmd table for the upper-most set of pages.
51  */
52 pmd_t *top_pmd;
53 
54 void show_mem(void)
55 {
56 	int free = 0, total = 0, reserved = 0;
57 	int shared = 0, cached = 0, slab = 0, node;
58 
59 	printk("Mem-info:\n");
60 	show_free_areas();
61 	printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
62 
63 	for_each_online_node(node) {
64 		struct page *page, *end;
65 
66 		page = NODE_MEM_MAP(node);
67 		end  = page + NODE_DATA(node)->node_spanned_pages;
68 
69 		do {
70 			total++;
71 			if (PageReserved(page))
72 				reserved++;
73 			else if (PageSwapCache(page))
74 				cached++;
75 			else if (PageSlab(page))
76 				slab++;
77 			else if (!page_count(page))
78 				free++;
79 			else
80 				shared += page_count(page) - 1;
81 			page++;
82 		} while (page < end);
83 	}
84 
85 	printk("%d pages of RAM\n", total);
86 	printk("%d free pages\n", free);
87 	printk("%d reserved pages\n", reserved);
88 	printk("%d slab pages\n", slab);
89 	printk("%d pages shared\n", shared);
90 	printk("%d pages swap cached\n", cached);
91 }
92 
93 #define for_each_nodebank(iter,mi,no)			\
94 	for (iter = 0; iter < mi->nr_banks; iter++)	\
95 		if (mi->bank[iter].node == no)
96 
97 /*
98  * FIXME: We really want to avoid allocating the bootmap bitmap
99  * over the top of the initrd.  Hopefully, this is located towards
100  * the start of a bank, so if we allocate the bootmap bitmap at
101  * the end, we won't clash.
102  */
103 static unsigned int __init
104 find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages)
105 {
106 	unsigned int start_pfn, bank, bootmap_pfn;
107 
108 	start_pfn   = PAGE_ALIGN(__pa(&_end)) >> PAGE_SHIFT;
109 	bootmap_pfn = 0;
110 
111 	for_each_nodebank(bank, mi, node) {
112 		unsigned int start, end;
113 
114 		start = mi->bank[bank].start >> PAGE_SHIFT;
115 		end   = (mi->bank[bank].size +
116 			 mi->bank[bank].start) >> PAGE_SHIFT;
117 
118 		if (end < start_pfn)
119 			continue;
120 
121 		if (start < start_pfn)
122 			start = start_pfn;
123 
124 		if (end <= start)
125 			continue;
126 
127 		if (end - start >= bootmap_pages) {
128 			bootmap_pfn = start;
129 			break;
130 		}
131 	}
132 
133 	if (bootmap_pfn == 0)
134 		BUG();
135 
136 	return bootmap_pfn;
137 }
138 
139 static int __init check_initrd(struct meminfo *mi)
140 {
141 	int initrd_node = -2;
142 #ifdef CONFIG_BLK_DEV_INITRD
143 	unsigned long end = phys_initrd_start + phys_initrd_size;
144 
145 	/*
146 	 * Make sure that the initrd is within a valid area of
147 	 * memory.
148 	 */
149 	if (phys_initrd_size) {
150 		unsigned int i;
151 
152 		initrd_node = -1;
153 
154 		for (i = 0; i < mi->nr_banks; i++) {
155 			unsigned long bank_end;
156 
157 			bank_end = mi->bank[i].start + mi->bank[i].size;
158 
159 			if (mi->bank[i].start <= phys_initrd_start &&
160 			    end <= bank_end)
161 				initrd_node = mi->bank[i].node;
162 		}
163 	}
164 
165 	if (initrd_node == -1) {
166 		printk(KERN_ERR "initrd (0x%08lx - 0x%08lx) extends beyond "
167 		       "physical memory - disabling initrd\n",
168 		       phys_initrd_start, end);
169 		phys_initrd_start = phys_initrd_size = 0;
170 	}
171 #endif
172 
173 	return initrd_node;
174 }
175 
176 /*
177  * Reserve the various regions of node 0
178  */
179 static __init void reserve_node_zero(pg_data_t *pgdat)
180 {
181 	unsigned long res_size = 0;
182 
183 	/*
184 	 * Register the kernel text and data with bootmem.
185 	 * Note that this can only be in node 0.
186 	 */
187 #ifdef CONFIG_XIP_KERNEL
188 	reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start);
189 #else
190 	reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext);
191 #endif
192 
193 	/*
194 	 * Reserve the page tables.  These are already in use,
195 	 * and can only be in node 0.
196 	 */
197 	reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
198 			     PTRS_PER_PGD * sizeof(pgd_t));
199 
200 	/*
201 	 * Hmm... This should go elsewhere, but we really really need to
202 	 * stop things allocating the low memory; ideally we need a better
203 	 * implementation of GFP_DMA which does not assume that DMA-able
204 	 * memory starts at zero.
205 	 */
206 	if (machine_is_integrator() || machine_is_cintegrator())
207 		res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
208 
209 	/*
210 	 * These should likewise go elsewhere.  They pre-reserve the
211 	 * screen memory region at the start of main system memory.
212 	 */
213 	if (machine_is_edb7211())
214 		res_size = 0x00020000;
215 	if (machine_is_p720t())
216 		res_size = 0x00014000;
217 
218 #ifdef CONFIG_SA1111
219 	/*
220 	 * Because of the SA1111 DMA bug, we want to preserve our
221 	 * precious DMA-able memory...
222 	 */
223 	res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
224 #endif
225 	if (res_size)
226 		reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size);
227 }
228 
229 static inline void prepare_page_table(struct meminfo *mi)
230 {
231 	unsigned long addr;
232 
233 	/*
234 	 * Clear out all the mappings below the kernel image.
235 	 */
236 	for (addr = 0; addr < MODULE_START; addr += PGDIR_SIZE)
237 		pmd_clear(pmd_off_k(addr));
238 
239 #ifdef CONFIG_XIP_KERNEL
240 	/* The XIP kernel is mapped in the module area -- skip over it */
241 	addr = ((unsigned long)&_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
242 #endif
243 	for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
244 		pmd_clear(pmd_off_k(addr));
245 
246 	/*
247 	 * Clear out all the kernel space mappings, except for the first
248 	 * memory bank, up to the end of the vmalloc region.
249 	 */
250 	for (addr = __phys_to_virt(mi->bank[0].start + mi->bank[0].size);
251 	     addr < VMALLOC_END; addr += PGDIR_SIZE)
252 		pmd_clear(pmd_off_k(addr));
253 }
254 
255 static inline void map_memory_bank(struct membank *bank)
256 {
257 	struct map_desc map;
258 
259 	map.pfn = __phys_to_pfn(bank->start);
260 	map.virtual = __phys_to_virt(bank->start);
261 	map.length = bank->size;
262 	map.type = MT_MEMORY;
263 
264 	create_mapping(&map);
265 }
266 
267 static unsigned long __init
268 bootmem_init_node(int node, int initrd_node, struct meminfo *mi)
269 {
270 	unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
271 	unsigned long start_pfn, end_pfn, boot_pfn;
272 	unsigned int boot_pages;
273 	pg_data_t *pgdat;
274 	int i;
275 
276 	start_pfn = -1UL;
277 	end_pfn = 0;
278 
279 	/*
280 	 * Calculate the pfn range, and map the memory banks for this node.
281 	 */
282 	for_each_nodebank(i, mi, node) {
283 		struct membank *bank = &mi->bank[i];
284 		unsigned long start, end;
285 
286 		start = bank->start >> PAGE_SHIFT;
287 		end = (bank->start + bank->size) >> PAGE_SHIFT;
288 
289 		if (start_pfn > start)
290 			start_pfn = start;
291 		if (end_pfn < end)
292 			end_pfn = end;
293 
294 		map_memory_bank(bank);
295 	}
296 
297 	/*
298 	 * If there is no memory in this node, ignore it.
299 	 */
300 	if (end_pfn == 0)
301 		return end_pfn;
302 
303 	/*
304 	 * Allocate the bootmem bitmap page.
305 	 */
306 	boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
307 	boot_pfn = find_bootmap_pfn(node, mi, boot_pages);
308 
309 	/*
310 	 * Initialise the bootmem allocator for this node, handing the
311 	 * memory banks over to bootmem.
312 	 */
313 	node_set_online(node);
314 	pgdat = NODE_DATA(node);
315 	init_bootmem_node(pgdat, boot_pfn, start_pfn, end_pfn);
316 
317 	for_each_nodebank(i, mi, node)
318 		free_bootmem_node(pgdat, mi->bank[i].start, mi->bank[i].size);
319 
320 	/*
321 	 * Reserve the bootmem bitmap for this node.
322 	 */
323 	reserve_bootmem_node(pgdat, boot_pfn << PAGE_SHIFT,
324 			     boot_pages << PAGE_SHIFT);
325 
326 #ifdef CONFIG_BLK_DEV_INITRD
327 	/*
328 	 * If the initrd is in this node, reserve its memory.
329 	 */
330 	if (node == initrd_node) {
331 		reserve_bootmem_node(pgdat, phys_initrd_start,
332 				     phys_initrd_size);
333 		initrd_start = __phys_to_virt(phys_initrd_start);
334 		initrd_end = initrd_start + phys_initrd_size;
335 	}
336 #endif
337 
338 	/*
339 	 * Finally, reserve any node zero regions.
340 	 */
341 	if (node == 0)
342 		reserve_node_zero(pgdat);
343 
344 	/*
345 	 * initialise the zones within this node.
346 	 */
347 	memset(zone_size, 0, sizeof(zone_size));
348 	memset(zhole_size, 0, sizeof(zhole_size));
349 
350 	/*
351 	 * The size of this node has already been determined.  If we need
352 	 * to do anything fancy with the allocation of this memory to the
353 	 * zones, now is the time to do it.
354 	 */
355 	zone_size[0] = end_pfn - start_pfn;
356 
357 	/*
358 	 * For each bank in this node, calculate the size of the holes.
359 	 *  holes = node_size - sum(bank_sizes_in_node)
360 	 */
361 	zhole_size[0] = zone_size[0];
362 	for_each_nodebank(i, mi, node)
363 		zhole_size[0] -= mi->bank[i].size >> PAGE_SHIFT;
364 
365 	/*
366 	 * Adjust the sizes according to any special requirements for
367 	 * this machine type.
368 	 */
369 	arch_adjust_zones(node, zone_size, zhole_size);
370 
371 	free_area_init_node(node, pgdat, zone_size, start_pfn, zhole_size);
372 
373 	return end_pfn;
374 }
375 
376 static void __init bootmem_init(struct meminfo *mi)
377 {
378 	unsigned long memend_pfn = 0;
379 	int node, initrd_node, i;
380 
381 	/*
382 	 * Invalidate the node number for empty or invalid memory banks
383 	 */
384 	for (i = 0; i < mi->nr_banks; i++)
385 		if (mi->bank[i].size == 0 || mi->bank[i].node >= MAX_NUMNODES)
386 			mi->bank[i].node = -1;
387 
388 	memcpy(&meminfo, mi, sizeof(meminfo));
389 
390 	prepare_page_table(mi);
391 
392 	/*
393 	 * Locate which node contains the ramdisk image, if any.
394 	 */
395 	initrd_node = check_initrd(mi);
396 
397 	/*
398 	 * Run through each node initialising the bootmem allocator.
399 	 */
400 	for_each_node(node) {
401 		unsigned long end_pfn;
402 
403 		end_pfn = bootmem_init_node(node, initrd_node, mi);
404 
405 		/*
406 		 * Remember the highest memory PFN.
407 		 */
408 		if (end_pfn > memend_pfn)
409 			memend_pfn = end_pfn;
410 	}
411 
412 	high_memory = __va(memend_pfn << PAGE_SHIFT);
413 
414 	/*
415 	 * This doesn't seem to be used by the Linux memory manager any
416 	 * more, but is used by ll_rw_block.  If we can get rid of it, we
417 	 * also get rid of some of the stuff above as well.
418 	 *
419 	 * Note: max_low_pfn and max_pfn reflect the number of _pages_ in
420 	 * the system, not the maximum PFN.
421 	 */
422 	max_pfn = max_low_pfn = memend_pfn - PHYS_PFN_OFFSET;
423 }
424 
425 /*
426  * Set up device the mappings.  Since we clear out the page tables for all
427  * mappings above VMALLOC_END, we will remove any debug device mappings.
428  * This means you have to be careful how you debug this function, or any
429  * called function.  This means you can't use any function or debugging
430  * method which may touch any device, otherwise the kernel _will_ crash.
431  */
432 static void __init devicemaps_init(struct machine_desc *mdesc)
433 {
434 	struct map_desc map;
435 	unsigned long addr;
436 	void *vectors;
437 
438 	/*
439 	 * Allocate the vector page early.
440 	 */
441 	vectors = alloc_bootmem_low_pages(PAGE_SIZE);
442 	BUG_ON(!vectors);
443 
444 	for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
445 		pmd_clear(pmd_off_k(addr));
446 
447 	/*
448 	 * Map the kernel if it is XIP.
449 	 * It is always first in the modulearea.
450 	 */
451 #ifdef CONFIG_XIP_KERNEL
452 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
453 	map.virtual = MODULE_START;
454 	map.length = ((unsigned long)&_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
455 	map.type = MT_ROM;
456 	create_mapping(&map);
457 #endif
458 
459 	/*
460 	 * Map the cache flushing regions.
461 	 */
462 #ifdef FLUSH_BASE
463 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
464 	map.virtual = FLUSH_BASE;
465 	map.length = SZ_1M;
466 	map.type = MT_CACHECLEAN;
467 	create_mapping(&map);
468 #endif
469 #ifdef FLUSH_BASE_MINICACHE
470 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
471 	map.virtual = FLUSH_BASE_MINICACHE;
472 	map.length = SZ_1M;
473 	map.type = MT_MINICLEAN;
474 	create_mapping(&map);
475 #endif
476 
477 	/*
478 	 * Create a mapping for the machine vectors at the high-vectors
479 	 * location (0xffff0000).  If we aren't using high-vectors, also
480 	 * create a mapping at the low-vectors virtual address.
481 	 */
482 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
483 	map.virtual = 0xffff0000;
484 	map.length = PAGE_SIZE;
485 	map.type = MT_HIGH_VECTORS;
486 	create_mapping(&map);
487 
488 	if (!vectors_high()) {
489 		map.virtual = 0;
490 		map.type = MT_LOW_VECTORS;
491 		create_mapping(&map);
492 	}
493 
494 	/*
495 	 * Ask the machine support to map in the statically mapped devices.
496 	 */
497 	if (mdesc->map_io)
498 		mdesc->map_io();
499 
500 	/*
501 	 * Finally flush the caches and tlb to ensure that we're in a
502 	 * consistent state wrt the writebuffer.  This also ensures that
503 	 * any write-allocated cache lines in the vector page are written
504 	 * back.  After this point, we can start to touch devices again.
505 	 */
506 	local_flush_tlb_all();
507 	flush_cache_all();
508 }
509 
510 /*
511  * paging_init() sets up the page tables, initialises the zone memory
512  * maps, and sets up the zero page, bad page and bad page tables.
513  */
514 void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc)
515 {
516 	void *zero_page;
517 
518 	build_mem_type_table();
519 	bootmem_init(mi);
520 	devicemaps_init(mdesc);
521 
522 	top_pmd = pmd_off_k(0xffff0000);
523 
524 	/*
525 	 * allocate the zero page.  Note that we count on this going ok.
526 	 */
527 	zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
528 	memzero(zero_page, PAGE_SIZE);
529 	empty_zero_page = virt_to_page(zero_page);
530 	flush_dcache_page(empty_zero_page);
531 }
532 
533 static inline void free_area(unsigned long addr, unsigned long end, char *s)
534 {
535 	unsigned int size = (end - addr) >> 10;
536 
537 	for (; addr < end; addr += PAGE_SIZE) {
538 		struct page *page = virt_to_page(addr);
539 		ClearPageReserved(page);
540 		init_page_count(page);
541 		free_page(addr);
542 		totalram_pages++;
543 	}
544 
545 	if (size && s)
546 		printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
547 }
548 
549 static inline void
550 free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn)
551 {
552 	struct page *start_pg, *end_pg;
553 	unsigned long pg, pgend;
554 
555 	/*
556 	 * Convert start_pfn/end_pfn to a struct page pointer.
557 	 */
558 	start_pg = pfn_to_page(start_pfn);
559 	end_pg = pfn_to_page(end_pfn);
560 
561 	/*
562 	 * Convert to physical addresses, and
563 	 * round start upwards and end downwards.
564 	 */
565 	pg = PAGE_ALIGN(__pa(start_pg));
566 	pgend = __pa(end_pg) & PAGE_MASK;
567 
568 	/*
569 	 * If there are free pages between these,
570 	 * free the section of the memmap array.
571 	 */
572 	if (pg < pgend)
573 		free_bootmem_node(NODE_DATA(node), pg, pgend - pg);
574 }
575 
576 /*
577  * The mem_map array can get very big.  Free the unused area of the memory map.
578  */
579 static void __init free_unused_memmap_node(int node, struct meminfo *mi)
580 {
581 	unsigned long bank_start, prev_bank_end = 0;
582 	unsigned int i;
583 
584 	/*
585 	 * [FIXME] This relies on each bank being in address order.  This
586 	 * may not be the case, especially if the user has provided the
587 	 * information on the command line.
588 	 */
589 	for_each_nodebank(i, mi, node) {
590 		bank_start = mi->bank[i].start >> PAGE_SHIFT;
591 		if (bank_start < prev_bank_end) {
592 			printk(KERN_ERR "MEM: unordered memory banks.  "
593 				"Not freeing memmap.\n");
594 			break;
595 		}
596 
597 		/*
598 		 * If we had a previous bank, and there is a space
599 		 * between the current bank and the previous, free it.
600 		 */
601 		if (prev_bank_end && prev_bank_end != bank_start)
602 			free_memmap(node, prev_bank_end, bank_start);
603 
604 		prev_bank_end = (mi->bank[i].start +
605 				 mi->bank[i].size) >> PAGE_SHIFT;
606 	}
607 }
608 
609 /*
610  * mem_init() marks the free areas in the mem_map and tells us how much
611  * memory is free.  This is done after various parts of the system have
612  * claimed their memory after the kernel image.
613  */
614 void __init mem_init(void)
615 {
616 	unsigned int codepages, datapages, initpages;
617 	int i, node;
618 
619 	codepages = &_etext - &_text;
620 	datapages = &_end - &__data_start;
621 	initpages = &__init_end - &__init_begin;
622 
623 #ifndef CONFIG_DISCONTIGMEM
624 	max_mapnr   = virt_to_page(high_memory) - mem_map;
625 #endif
626 
627 	/* this will put all unused low memory onto the freelists */
628 	for_each_online_node(node) {
629 		pg_data_t *pgdat = NODE_DATA(node);
630 
631 		free_unused_memmap_node(node, &meminfo);
632 
633 		if (pgdat->node_spanned_pages != 0)
634 			totalram_pages += free_all_bootmem_node(pgdat);
635 	}
636 
637 #ifdef CONFIG_SA1111
638 	/* now that our DMA memory is actually so designated, we can free it */
639 	free_area(PAGE_OFFSET, (unsigned long)swapper_pg_dir, NULL);
640 #endif
641 
642 	/*
643 	 * Since our memory may not be contiguous, calculate the
644 	 * real number of pages we have in this system
645 	 */
646 	printk(KERN_INFO "Memory:");
647 
648 	num_physpages = 0;
649 	for (i = 0; i < meminfo.nr_banks; i++) {
650 		num_physpages += meminfo.bank[i].size >> PAGE_SHIFT;
651 		printk(" %ldMB", meminfo.bank[i].size >> 20);
652 	}
653 
654 	printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
655 	printk(KERN_NOTICE "Memory: %luKB available (%dK code, "
656 		"%dK data, %dK init)\n",
657 		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
658 		codepages >> 10, datapages >> 10, initpages >> 10);
659 
660 	if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
661 		extern int sysctl_overcommit_memory;
662 		/*
663 		 * On a machine this small we won't get
664 		 * anywhere without overcommit, so turn
665 		 * it on by default.
666 		 */
667 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
668 	}
669 }
670 
671 void free_initmem(void)
672 {
673 	if (!machine_is_integrator() && !machine_is_cintegrator()) {
674 		free_area((unsigned long)(&__init_begin),
675 			  (unsigned long)(&__init_end),
676 			  "init");
677 	}
678 }
679 
680 #ifdef CONFIG_BLK_DEV_INITRD
681 
682 static int keep_initrd;
683 
684 void free_initrd_mem(unsigned long start, unsigned long end)
685 {
686 	if (!keep_initrd)
687 		free_area(start, end, "initrd");
688 }
689 
690 static int __init keepinitrd_setup(char *__unused)
691 {
692 	keep_initrd = 1;
693 	return 1;
694 }
695 
696 __setup("keepinitrd", keepinitrd_setup);
697 #endif
698