xref: /openbmc/linux/arch/arm/mm/init.c (revision 3835f6cb)
1 /*
2  *  linux/arch/arm/mm/init.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/highmem.h>
19 
20 #include <asm/mach-types.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/sizes.h>
24 #include <asm/tlb.h>
25 
26 #include <asm/mach/arch.h>
27 #include <asm/mach/map.h>
28 
29 #include "mm.h"
30 
31 static unsigned long phys_initrd_start __initdata = 0;
32 static unsigned long phys_initrd_size __initdata = 0;
33 
34 static void __init early_initrd(char **p)
35 {
36 	unsigned long start, size;
37 
38 	start = memparse(*p, p);
39 	if (**p == ',') {
40 		size = memparse((*p) + 1, p);
41 
42 		phys_initrd_start = start;
43 		phys_initrd_size = size;
44 	}
45 }
46 __early_param("initrd=", early_initrd);
47 
48 static int __init parse_tag_initrd(const struct tag *tag)
49 {
50 	printk(KERN_WARNING "ATAG_INITRD is deprecated; "
51 		"please update your bootloader.\n");
52 	phys_initrd_start = __virt_to_phys(tag->u.initrd.start);
53 	phys_initrd_size = tag->u.initrd.size;
54 	return 0;
55 }
56 
57 __tagtable(ATAG_INITRD, parse_tag_initrd);
58 
59 static int __init parse_tag_initrd2(const struct tag *tag)
60 {
61 	phys_initrd_start = tag->u.initrd.start;
62 	phys_initrd_size = tag->u.initrd.size;
63 	return 0;
64 }
65 
66 __tagtable(ATAG_INITRD2, parse_tag_initrd2);
67 
68 /*
69  * This keeps memory configuration data used by a couple memory
70  * initialization functions, as well as show_mem() for the skipping
71  * of holes in the memory map.  It is populated by arm_add_memory().
72  */
73 struct meminfo meminfo;
74 
75 void show_mem(void)
76 {
77 	int free = 0, total = 0, reserved = 0;
78 	int shared = 0, cached = 0, slab = 0, node, i;
79 	struct meminfo * mi = &meminfo;
80 
81 	printk("Mem-info:\n");
82 	show_free_areas();
83 	for_each_online_node(node) {
84 		pg_data_t *n = NODE_DATA(node);
85 		struct page *map = pgdat_page_nr(n, 0) - n->node_start_pfn;
86 
87 		for_each_nodebank (i,mi,node) {
88 			struct membank *bank = &mi->bank[i];
89 			unsigned int pfn1, pfn2;
90 			struct page *page, *end;
91 
92 			pfn1 = bank_pfn_start(bank);
93 			pfn2 = bank_pfn_end(bank);
94 
95 			page = map + pfn1;
96 			end  = map + pfn2;
97 
98 			do {
99 				total++;
100 				if (PageReserved(page))
101 					reserved++;
102 				else if (PageSwapCache(page))
103 					cached++;
104 				else if (PageSlab(page))
105 					slab++;
106 				else if (!page_count(page))
107 					free++;
108 				else
109 					shared += page_count(page) - 1;
110 				page++;
111 			} while (page < end);
112 		}
113 	}
114 
115 	printk("%d pages of RAM\n", total);
116 	printk("%d free pages\n", free);
117 	printk("%d reserved pages\n", reserved);
118 	printk("%d slab pages\n", slab);
119 	printk("%d pages shared\n", shared);
120 	printk("%d pages swap cached\n", cached);
121 }
122 
123 /*
124  * FIXME: We really want to avoid allocating the bootmap bitmap
125  * over the top of the initrd.  Hopefully, this is located towards
126  * the start of a bank, so if we allocate the bootmap bitmap at
127  * the end, we won't clash.
128  */
129 static unsigned int __init
130 find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages)
131 {
132 	unsigned int start_pfn, i, bootmap_pfn;
133 
134 	start_pfn   = PAGE_ALIGN(__pa(_end)) >> PAGE_SHIFT;
135 	bootmap_pfn = 0;
136 
137 	for_each_nodebank(i, mi, node) {
138 		struct membank *bank = &mi->bank[i];
139 		unsigned int start, end;
140 
141 		start = bank_pfn_start(bank);
142 		end   = bank_pfn_end(bank);
143 
144 		if (end < start_pfn)
145 			continue;
146 
147 		if (start < start_pfn)
148 			start = start_pfn;
149 
150 		if (end <= start)
151 			continue;
152 
153 		if (end - start >= bootmap_pages) {
154 			bootmap_pfn = start;
155 			break;
156 		}
157 	}
158 
159 	if (bootmap_pfn == 0)
160 		BUG();
161 
162 	return bootmap_pfn;
163 }
164 
165 static int __init check_initrd(struct meminfo *mi)
166 {
167 	int initrd_node = -2;
168 #ifdef CONFIG_BLK_DEV_INITRD
169 	unsigned long end = phys_initrd_start + phys_initrd_size;
170 
171 	/*
172 	 * Make sure that the initrd is within a valid area of
173 	 * memory.
174 	 */
175 	if (phys_initrd_size) {
176 		unsigned int i;
177 
178 		initrd_node = -1;
179 
180 		for (i = 0; i < mi->nr_banks; i++) {
181 			struct membank *bank = &mi->bank[i];
182 			if (bank_phys_start(bank) <= phys_initrd_start &&
183 			    end <= bank_phys_end(bank))
184 				initrd_node = bank->node;
185 		}
186 	}
187 
188 	if (initrd_node == -1) {
189 		printk(KERN_ERR "INITRD: 0x%08lx+0x%08lx extends beyond "
190 		       "physical memory - disabling initrd\n",
191 		       phys_initrd_start, phys_initrd_size);
192 		phys_initrd_start = phys_initrd_size = 0;
193 	}
194 #endif
195 
196 	return initrd_node;
197 }
198 
199 static inline void map_memory_bank(struct membank *bank)
200 {
201 #ifdef CONFIG_MMU
202 	struct map_desc map;
203 
204 	map.pfn = bank_pfn_start(bank);
205 	map.virtual = __phys_to_virt(bank_phys_start(bank));
206 	map.length = bank_phys_size(bank);
207 	map.type = MT_MEMORY;
208 
209 	create_mapping(&map);
210 #endif
211 }
212 
213 static unsigned long __init bootmem_init_node(int node, struct meminfo *mi)
214 {
215 	unsigned long start_pfn, end_pfn, boot_pfn;
216 	unsigned int boot_pages;
217 	pg_data_t *pgdat;
218 	int i;
219 
220 	start_pfn = -1UL;
221 	end_pfn = 0;
222 
223 	/*
224 	 * Calculate the pfn range, and map the memory banks for this node.
225 	 */
226 	for_each_nodebank(i, mi, node) {
227 		struct membank *bank = &mi->bank[i];
228 		unsigned long start, end;
229 
230 		start = bank_pfn_start(bank);
231 		end = bank_pfn_end(bank);
232 
233 		if (start_pfn > start)
234 			start_pfn = start;
235 		if (end_pfn < end)
236 			end_pfn = end;
237 
238 		map_memory_bank(bank);
239 	}
240 
241 	/*
242 	 * If there is no memory in this node, ignore it.
243 	 */
244 	if (end_pfn == 0)
245 		return end_pfn;
246 
247 	/*
248 	 * Allocate the bootmem bitmap page.
249 	 */
250 	boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
251 	boot_pfn = find_bootmap_pfn(node, mi, boot_pages);
252 
253 	/*
254 	 * Initialise the bootmem allocator for this node, handing the
255 	 * memory banks over to bootmem.
256 	 */
257 	node_set_online(node);
258 	pgdat = NODE_DATA(node);
259 	init_bootmem_node(pgdat, boot_pfn, start_pfn, end_pfn);
260 
261 	for_each_nodebank(i, mi, node) {
262 		struct membank *bank = &mi->bank[i];
263 		free_bootmem_node(pgdat, bank_phys_start(bank), bank_phys_size(bank));
264 		memory_present(node, bank_pfn_start(bank), bank_pfn_end(bank));
265 	}
266 
267 	/*
268 	 * Reserve the bootmem bitmap for this node.
269 	 */
270 	reserve_bootmem_node(pgdat, boot_pfn << PAGE_SHIFT,
271 			     boot_pages << PAGE_SHIFT, BOOTMEM_DEFAULT);
272 
273 	return end_pfn;
274 }
275 
276 static void __init bootmem_reserve_initrd(int node)
277 {
278 #ifdef CONFIG_BLK_DEV_INITRD
279 	pg_data_t *pgdat = NODE_DATA(node);
280 	int res;
281 
282 	res = reserve_bootmem_node(pgdat, phys_initrd_start,
283 			     phys_initrd_size, BOOTMEM_EXCLUSIVE);
284 
285 	if (res == 0) {
286 		initrd_start = __phys_to_virt(phys_initrd_start);
287 		initrd_end = initrd_start + phys_initrd_size;
288 	} else {
289 		printk(KERN_ERR
290 			"INITRD: 0x%08lx+0x%08lx overlaps in-use "
291 			"memory region - disabling initrd\n",
292 			phys_initrd_start, phys_initrd_size);
293 	}
294 #endif
295 }
296 
297 static void __init bootmem_free_node(int node, struct meminfo *mi)
298 {
299 	unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
300 	unsigned long start_pfn, end_pfn;
301 	pg_data_t *pgdat = NODE_DATA(node);
302 	int i;
303 
304 	start_pfn = pgdat->bdata->node_min_pfn;
305 	end_pfn = pgdat->bdata->node_low_pfn;
306 
307 	/*
308 	 * initialise the zones within this node.
309 	 */
310 	memset(zone_size, 0, sizeof(zone_size));
311 	memset(zhole_size, 0, sizeof(zhole_size));
312 
313 	/*
314 	 * The size of this node has already been determined.  If we need
315 	 * to do anything fancy with the allocation of this memory to the
316 	 * zones, now is the time to do it.
317 	 */
318 	zone_size[0] = end_pfn - start_pfn;
319 
320 	/*
321 	 * For each bank in this node, calculate the size of the holes.
322 	 *  holes = node_size - sum(bank_sizes_in_node)
323 	 */
324 	zhole_size[0] = zone_size[0];
325 	for_each_nodebank(i, mi, node)
326 		zhole_size[0] -= bank_pfn_size(&mi->bank[i]);
327 
328 	/*
329 	 * Adjust the sizes according to any special requirements for
330 	 * this machine type.
331 	 */
332 	arch_adjust_zones(node, zone_size, zhole_size);
333 
334 	free_area_init_node(node, zone_size, start_pfn, zhole_size);
335 }
336 
337 void __init bootmem_init(void)
338 {
339 	struct meminfo *mi = &meminfo;
340 	unsigned long memend_pfn = 0;
341 	int node, initrd_node;
342 
343 	/*
344 	 * Locate which node contains the ramdisk image, if any.
345 	 */
346 	initrd_node = check_initrd(mi);
347 
348 	/*
349 	 * Run through each node initialising the bootmem allocator.
350 	 */
351 	for_each_node(node) {
352 		unsigned long end_pfn = bootmem_init_node(node, mi);
353 
354 		/*
355 		 * Reserve any special node zero regions.
356 		 */
357 		if (node == 0)
358 			reserve_node_zero(NODE_DATA(node));
359 
360 		/*
361 		 * If the initrd is in this node, reserve its memory.
362 		 */
363 		if (node == initrd_node)
364 			bootmem_reserve_initrd(node);
365 
366 		/*
367 		 * Remember the highest memory PFN.
368 		 */
369 		if (end_pfn > memend_pfn)
370 			memend_pfn = end_pfn;
371 	}
372 
373 	/*
374 	 * sparse_init() needs the bootmem allocator up and running.
375 	 */
376 	sparse_init();
377 
378 	/*
379 	 * Now free memory in each node - free_area_init_node needs
380 	 * the sparse mem_map arrays initialized by sparse_init()
381 	 * for memmap_init_zone(), otherwise all PFNs are invalid.
382 	 */
383 	for_each_node(node)
384 		bootmem_free_node(node, mi);
385 
386 	high_memory = __va((memend_pfn << PAGE_SHIFT) - 1) + 1;
387 
388 	/*
389 	 * This doesn't seem to be used by the Linux memory manager any
390 	 * more, but is used by ll_rw_block.  If we can get rid of it, we
391 	 * also get rid of some of the stuff above as well.
392 	 *
393 	 * Note: max_low_pfn and max_pfn reflect the number of _pages_ in
394 	 * the system, not the maximum PFN.
395 	 */
396 	max_pfn = max_low_pfn = memend_pfn - PHYS_PFN_OFFSET;
397 }
398 
399 static inline int free_area(unsigned long pfn, unsigned long end, char *s)
400 {
401 	unsigned int pages = 0, size = (end - pfn) << (PAGE_SHIFT - 10);
402 
403 	for (; pfn < end; pfn++) {
404 		struct page *page = pfn_to_page(pfn);
405 		ClearPageReserved(page);
406 		init_page_count(page);
407 		__free_page(page);
408 		pages++;
409 	}
410 
411 	if (size && s)
412 		printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
413 
414 	return pages;
415 }
416 
417 static inline void
418 free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn)
419 {
420 	struct page *start_pg, *end_pg;
421 	unsigned long pg, pgend;
422 
423 	/*
424 	 * Convert start_pfn/end_pfn to a struct page pointer.
425 	 */
426 	start_pg = pfn_to_page(start_pfn);
427 	end_pg = pfn_to_page(end_pfn);
428 
429 	/*
430 	 * Convert to physical addresses, and
431 	 * round start upwards and end downwards.
432 	 */
433 	pg = PAGE_ALIGN(__pa(start_pg));
434 	pgend = __pa(end_pg) & PAGE_MASK;
435 
436 	/*
437 	 * If there are free pages between these,
438 	 * free the section of the memmap array.
439 	 */
440 	if (pg < pgend)
441 		free_bootmem_node(NODE_DATA(node), pg, pgend - pg);
442 }
443 
444 /*
445  * The mem_map array can get very big.  Free the unused area of the memory map.
446  */
447 static void __init free_unused_memmap_node(int node, struct meminfo *mi)
448 {
449 	unsigned long bank_start, prev_bank_end = 0;
450 	unsigned int i;
451 
452 	/*
453 	 * [FIXME] This relies on each bank being in address order.  This
454 	 * may not be the case, especially if the user has provided the
455 	 * information on the command line.
456 	 */
457 	for_each_nodebank(i, mi, node) {
458 		struct membank *bank = &mi->bank[i];
459 
460 		bank_start = bank_pfn_start(bank);
461 		if (bank_start < prev_bank_end) {
462 			printk(KERN_ERR "MEM: unordered memory banks.  "
463 				"Not freeing memmap.\n");
464 			break;
465 		}
466 
467 		/*
468 		 * If we had a previous bank, and there is a space
469 		 * between the current bank and the previous, free it.
470 		 */
471 		if (prev_bank_end && prev_bank_end != bank_start)
472 			free_memmap(node, prev_bank_end, bank_start);
473 
474 		prev_bank_end = bank_pfn_end(bank);
475 	}
476 }
477 
478 /*
479  * mem_init() marks the free areas in the mem_map and tells us how much
480  * memory is free.  This is done after various parts of the system have
481  * claimed their memory after the kernel image.
482  */
483 void __init mem_init(void)
484 {
485 	unsigned int codesize, datasize, initsize;
486 	int i, node;
487 
488 #ifndef CONFIG_DISCONTIGMEM
489 	max_mapnr   = pfn_to_page(max_pfn + PHYS_PFN_OFFSET) - mem_map;
490 #endif
491 
492 	/* this will put all unused low memory onto the freelists */
493 	for_each_online_node(node) {
494 		pg_data_t *pgdat = NODE_DATA(node);
495 
496 		free_unused_memmap_node(node, &meminfo);
497 
498 		if (pgdat->node_spanned_pages != 0)
499 			totalram_pages += free_all_bootmem_node(pgdat);
500 	}
501 
502 #ifdef CONFIG_SA1111
503 	/* now that our DMA memory is actually so designated, we can free it */
504 	totalram_pages += free_area(PHYS_PFN_OFFSET,
505 				    __phys_to_pfn(__pa(swapper_pg_dir)), NULL);
506 #endif
507 
508 #ifdef CONFIG_HIGHMEM
509 	/* set highmem page free */
510 	for_each_online_node(node) {
511 		for_each_nodebank (i, &meminfo, node) {
512 			unsigned long start = bank_pfn_start(&meminfo.bank[i]);
513 			unsigned long end = bank_pfn_end(&meminfo.bank[i]);
514 			if (start >= max_low_pfn + PHYS_PFN_OFFSET)
515 				totalhigh_pages += free_area(start, end, NULL);
516 		}
517 	}
518 	totalram_pages += totalhigh_pages;
519 #endif
520 
521 	/*
522 	 * Since our memory may not be contiguous, calculate the
523 	 * real number of pages we have in this system
524 	 */
525 	printk(KERN_INFO "Memory:");
526 	num_physpages = 0;
527 	for (i = 0; i < meminfo.nr_banks; i++) {
528 		num_physpages += bank_pfn_size(&meminfo.bank[i]);
529 		printk(" %ldMB", bank_phys_size(&meminfo.bank[i]) >> 20);
530 	}
531 	printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
532 
533 	codesize = _etext - _text;
534 	datasize = _end - _data;
535 	initsize = __init_end - __init_begin;
536 
537 	printk(KERN_NOTICE "Memory: %luKB available (%dK code, "
538 		"%dK data, %dK init, %luK highmem)\n",
539 		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
540 		codesize >> 10, datasize >> 10, initsize >> 10,
541 		(unsigned long) (totalhigh_pages << (PAGE_SHIFT-10)));
542 
543 	if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
544 		extern int sysctl_overcommit_memory;
545 		/*
546 		 * On a machine this small we won't get
547 		 * anywhere without overcommit, so turn
548 		 * it on by default.
549 		 */
550 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
551 	}
552 }
553 
554 void free_initmem(void)
555 {
556 	if (!machine_is_integrator() && !machine_is_cintegrator())
557 		totalram_pages += free_area(__phys_to_pfn(__pa(__init_begin)),
558 					    __phys_to_pfn(__pa(__init_end)),
559 					    "init");
560 }
561 
562 #ifdef CONFIG_BLK_DEV_INITRD
563 
564 static int keep_initrd;
565 
566 void free_initrd_mem(unsigned long start, unsigned long end)
567 {
568 	if (!keep_initrd)
569 		totalram_pages += free_area(__phys_to_pfn(__pa(start)),
570 					    __phys_to_pfn(__pa(end)),
571 					    "initrd");
572 }
573 
574 static int __init keepinitrd_setup(char *__unused)
575 {
576 	keep_initrd = 1;
577 	return 1;
578 }
579 
580 __setup("keepinitrd", keepinitrd_setup);
581 #endif
582