xref: /openbmc/linux/arch/arm/mm/init.c (revision 204ecae4)
1 /*
2  *  linux/arch/arm/mm/init.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/ptrace.h>
13 #include <linux/swap.h>
14 #include <linux/init.h>
15 #include <linux/bootmem.h>
16 #include <linux/mman.h>
17 #include <linux/nodemask.h>
18 #include <linux/initrd.h>
19 
20 #include <asm/mach-types.h>
21 #include <asm/setup.h>
22 #include <asm/sizes.h>
23 #include <asm/tlb.h>
24 
25 #include <asm/mach/arch.h>
26 #include <asm/mach/map.h>
27 
28 #include "mm.h"
29 
30 extern void _text, _etext, __data_start, _end, __init_begin, __init_end;
31 extern unsigned long phys_initrd_start;
32 extern unsigned long phys_initrd_size;
33 
34 /*
35  * This is used to pass memory configuration data from paging_init
36  * to mem_init, and by show_mem() to skip holes in the memory map.
37  */
38 static struct meminfo meminfo = { 0, };
39 
40 #define for_each_nodebank(iter,mi,no)			\
41 	for (iter = 0; iter < mi->nr_banks; iter++)	\
42 		if (mi->bank[iter].node == no)
43 
44 void show_mem(void)
45 {
46 	int free = 0, total = 0, reserved = 0;
47 	int shared = 0, cached = 0, slab = 0, node, i;
48 	struct meminfo * mi = &meminfo;
49 
50 	printk("Mem-info:\n");
51 	show_free_areas();
52 	printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
53 
54 	for_each_online_node(node) {
55 		pg_data_t *n = NODE_DATA(node);
56 		struct page *map = n->node_mem_map - n->node_start_pfn;
57 
58 		for_each_nodebank (i,mi,node) {
59 			unsigned int pfn1, pfn2;
60 			struct page *page, *end;
61 
62 			pfn1 = __phys_to_pfn(mi->bank[i].start);
63 			pfn2 = __phys_to_pfn(mi->bank[i].size + mi->bank[i].start);
64 
65 			page = map + pfn1;
66 			end  = map + pfn2;
67 
68 			do {
69 				total++;
70 				if (PageReserved(page))
71 					reserved++;
72 				else if (PageSwapCache(page))
73 					cached++;
74 				else if (PageSlab(page))
75 					slab++;
76 				else if (!page_count(page))
77 					free++;
78 				else
79 					shared += page_count(page) - 1;
80 				page++;
81 			} while (page < end);
82 		}
83 	}
84 
85 	printk("%d pages of RAM\n", total);
86 	printk("%d free pages\n", free);
87 	printk("%d reserved pages\n", reserved);
88 	printk("%d slab pages\n", slab);
89 	printk("%d pages shared\n", shared);
90 	printk("%d pages swap cached\n", cached);
91 }
92 
93 /*
94  * FIXME: We really want to avoid allocating the bootmap bitmap
95  * over the top of the initrd.  Hopefully, this is located towards
96  * the start of a bank, so if we allocate the bootmap bitmap at
97  * the end, we won't clash.
98  */
99 static unsigned int __init
100 find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages)
101 {
102 	unsigned int start_pfn, bank, bootmap_pfn;
103 
104 	start_pfn   = PAGE_ALIGN(__pa(&_end)) >> PAGE_SHIFT;
105 	bootmap_pfn = 0;
106 
107 	for_each_nodebank(bank, mi, node) {
108 		unsigned int start, end;
109 
110 		start = mi->bank[bank].start >> PAGE_SHIFT;
111 		end   = (mi->bank[bank].size +
112 			 mi->bank[bank].start) >> PAGE_SHIFT;
113 
114 		if (end < start_pfn)
115 			continue;
116 
117 		if (start < start_pfn)
118 			start = start_pfn;
119 
120 		if (end <= start)
121 			continue;
122 
123 		if (end - start >= bootmap_pages) {
124 			bootmap_pfn = start;
125 			break;
126 		}
127 	}
128 
129 	if (bootmap_pfn == 0)
130 		BUG();
131 
132 	return bootmap_pfn;
133 }
134 
135 static int __init check_initrd(struct meminfo *mi)
136 {
137 	int initrd_node = -2;
138 #ifdef CONFIG_BLK_DEV_INITRD
139 	unsigned long end = phys_initrd_start + phys_initrd_size;
140 
141 	/*
142 	 * Make sure that the initrd is within a valid area of
143 	 * memory.
144 	 */
145 	if (phys_initrd_size) {
146 		unsigned int i;
147 
148 		initrd_node = -1;
149 
150 		for (i = 0; i < mi->nr_banks; i++) {
151 			unsigned long bank_end;
152 
153 			bank_end = mi->bank[i].start + mi->bank[i].size;
154 
155 			if (mi->bank[i].start <= phys_initrd_start &&
156 			    end <= bank_end)
157 				initrd_node = mi->bank[i].node;
158 		}
159 	}
160 
161 	if (initrd_node == -1) {
162 		printk(KERN_ERR "initrd (0x%08lx - 0x%08lx) extends beyond "
163 		       "physical memory - disabling initrd\n",
164 		       phys_initrd_start, end);
165 		phys_initrd_start = phys_initrd_size = 0;
166 	}
167 #endif
168 
169 	return initrd_node;
170 }
171 
172 static inline void map_memory_bank(struct membank *bank)
173 {
174 #ifdef CONFIG_MMU
175 	struct map_desc map;
176 
177 	map.pfn = __phys_to_pfn(bank->start);
178 	map.virtual = __phys_to_virt(bank->start);
179 	map.length = bank->size;
180 	map.type = MT_MEMORY;
181 
182 	create_mapping(&map);
183 #endif
184 }
185 
186 static unsigned long __init
187 bootmem_init_node(int node, int initrd_node, struct meminfo *mi)
188 {
189 	unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
190 	unsigned long start_pfn, end_pfn, boot_pfn;
191 	unsigned int boot_pages;
192 	pg_data_t *pgdat;
193 	int i;
194 
195 	start_pfn = -1UL;
196 	end_pfn = 0;
197 
198 	/*
199 	 * Calculate the pfn range, and map the memory banks for this node.
200 	 */
201 	for_each_nodebank(i, mi, node) {
202 		struct membank *bank = &mi->bank[i];
203 		unsigned long start, end;
204 
205 		start = bank->start >> PAGE_SHIFT;
206 		end = (bank->start + bank->size) >> PAGE_SHIFT;
207 
208 		if (start_pfn > start)
209 			start_pfn = start;
210 		if (end_pfn < end)
211 			end_pfn = end;
212 
213 		map_memory_bank(bank);
214 	}
215 
216 	/*
217 	 * If there is no memory in this node, ignore it.
218 	 */
219 	if (end_pfn == 0)
220 		return end_pfn;
221 
222 	/*
223 	 * Allocate the bootmem bitmap page.
224 	 */
225 	boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
226 	boot_pfn = find_bootmap_pfn(node, mi, boot_pages);
227 
228 	/*
229 	 * Initialise the bootmem allocator for this node, handing the
230 	 * memory banks over to bootmem.
231 	 */
232 	node_set_online(node);
233 	pgdat = NODE_DATA(node);
234 	init_bootmem_node(pgdat, boot_pfn, start_pfn, end_pfn);
235 
236 	for_each_nodebank(i, mi, node)
237 		free_bootmem_node(pgdat, mi->bank[i].start, mi->bank[i].size);
238 
239 	/*
240 	 * Reserve the bootmem bitmap for this node.
241 	 */
242 	reserve_bootmem_node(pgdat, boot_pfn << PAGE_SHIFT,
243 			     boot_pages << PAGE_SHIFT);
244 
245 #ifdef CONFIG_BLK_DEV_INITRD
246 	/*
247 	 * If the initrd is in this node, reserve its memory.
248 	 */
249 	if (node == initrd_node) {
250 		reserve_bootmem_node(pgdat, phys_initrd_start,
251 				     phys_initrd_size);
252 		initrd_start = __phys_to_virt(phys_initrd_start);
253 		initrd_end = initrd_start + phys_initrd_size;
254 	}
255 #endif
256 
257 	/*
258 	 * Finally, reserve any node zero regions.
259 	 */
260 	if (node == 0)
261 		reserve_node_zero(pgdat);
262 
263 	/*
264 	 * initialise the zones within this node.
265 	 */
266 	memset(zone_size, 0, sizeof(zone_size));
267 	memset(zhole_size, 0, sizeof(zhole_size));
268 
269 	/*
270 	 * The size of this node has already been determined.  If we need
271 	 * to do anything fancy with the allocation of this memory to the
272 	 * zones, now is the time to do it.
273 	 */
274 	zone_size[0] = end_pfn - start_pfn;
275 
276 	/*
277 	 * For each bank in this node, calculate the size of the holes.
278 	 *  holes = node_size - sum(bank_sizes_in_node)
279 	 */
280 	zhole_size[0] = zone_size[0];
281 	for_each_nodebank(i, mi, node)
282 		zhole_size[0] -= mi->bank[i].size >> PAGE_SHIFT;
283 
284 	/*
285 	 * Adjust the sizes according to any special requirements for
286 	 * this machine type.
287 	 */
288 	arch_adjust_zones(node, zone_size, zhole_size);
289 
290 	free_area_init_node(node, pgdat, zone_size, start_pfn, zhole_size);
291 
292 	return end_pfn;
293 }
294 
295 void __init bootmem_init(struct meminfo *mi)
296 {
297 	unsigned long memend_pfn = 0;
298 	int node, initrd_node, i;
299 
300 	/*
301 	 * Invalidate the node number for empty or invalid memory banks
302 	 */
303 	for (i = 0; i < mi->nr_banks; i++)
304 		if (mi->bank[i].size == 0 || mi->bank[i].node >= MAX_NUMNODES)
305 			mi->bank[i].node = -1;
306 
307 	memcpy(&meminfo, mi, sizeof(meminfo));
308 
309 	/*
310 	 * Locate which node contains the ramdisk image, if any.
311 	 */
312 	initrd_node = check_initrd(mi);
313 
314 	/*
315 	 * Run through each node initialising the bootmem allocator.
316 	 */
317 	for_each_node(node) {
318 		unsigned long end_pfn;
319 
320 		end_pfn = bootmem_init_node(node, initrd_node, mi);
321 
322 		/*
323 		 * Remember the highest memory PFN.
324 		 */
325 		if (end_pfn > memend_pfn)
326 			memend_pfn = end_pfn;
327 	}
328 
329 	high_memory = __va(memend_pfn << PAGE_SHIFT);
330 
331 	/*
332 	 * This doesn't seem to be used by the Linux memory manager any
333 	 * more, but is used by ll_rw_block.  If we can get rid of it, we
334 	 * also get rid of some of the stuff above as well.
335 	 *
336 	 * Note: max_low_pfn and max_pfn reflect the number of _pages_ in
337 	 * the system, not the maximum PFN.
338 	 */
339 	max_pfn = max_low_pfn = memend_pfn - PHYS_PFN_OFFSET;
340 }
341 
342 static inline void free_area(unsigned long addr, unsigned long end, char *s)
343 {
344 	unsigned int size = (end - addr) >> 10;
345 
346 	for (; addr < end; addr += PAGE_SIZE) {
347 		struct page *page = virt_to_page(addr);
348 		ClearPageReserved(page);
349 		init_page_count(page);
350 		free_page(addr);
351 		totalram_pages++;
352 	}
353 
354 	if (size && s)
355 		printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
356 }
357 
358 static inline void
359 free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn)
360 {
361 	struct page *start_pg, *end_pg;
362 	unsigned long pg, pgend;
363 
364 	/*
365 	 * Convert start_pfn/end_pfn to a struct page pointer.
366 	 */
367 	start_pg = pfn_to_page(start_pfn);
368 	end_pg = pfn_to_page(end_pfn);
369 
370 	/*
371 	 * Convert to physical addresses, and
372 	 * round start upwards and end downwards.
373 	 */
374 	pg = PAGE_ALIGN(__pa(start_pg));
375 	pgend = __pa(end_pg) & PAGE_MASK;
376 
377 	/*
378 	 * If there are free pages between these,
379 	 * free the section of the memmap array.
380 	 */
381 	if (pg < pgend)
382 		free_bootmem_node(NODE_DATA(node), pg, pgend - pg);
383 }
384 
385 /*
386  * The mem_map array can get very big.  Free the unused area of the memory map.
387  */
388 static void __init free_unused_memmap_node(int node, struct meminfo *mi)
389 {
390 	unsigned long bank_start, prev_bank_end = 0;
391 	unsigned int i;
392 
393 	/*
394 	 * [FIXME] This relies on each bank being in address order.  This
395 	 * may not be the case, especially if the user has provided the
396 	 * information on the command line.
397 	 */
398 	for_each_nodebank(i, mi, node) {
399 		bank_start = mi->bank[i].start >> PAGE_SHIFT;
400 		if (bank_start < prev_bank_end) {
401 			printk(KERN_ERR "MEM: unordered memory banks.  "
402 				"Not freeing memmap.\n");
403 			break;
404 		}
405 
406 		/*
407 		 * If we had a previous bank, and there is a space
408 		 * between the current bank and the previous, free it.
409 		 */
410 		if (prev_bank_end && prev_bank_end != bank_start)
411 			free_memmap(node, prev_bank_end, bank_start);
412 
413 		prev_bank_end = (mi->bank[i].start +
414 				 mi->bank[i].size) >> PAGE_SHIFT;
415 	}
416 }
417 
418 /*
419  * mem_init() marks the free areas in the mem_map and tells us how much
420  * memory is free.  This is done after various parts of the system have
421  * claimed their memory after the kernel image.
422  */
423 void __init mem_init(void)
424 {
425 	unsigned int codepages, datapages, initpages;
426 	int i, node;
427 
428 	codepages = &_etext - &_text;
429 	datapages = &_end - &__data_start;
430 	initpages = &__init_end - &__init_begin;
431 
432 #ifndef CONFIG_DISCONTIGMEM
433 	max_mapnr   = virt_to_page(high_memory) - mem_map;
434 #endif
435 
436 	/* this will put all unused low memory onto the freelists */
437 	for_each_online_node(node) {
438 		pg_data_t *pgdat = NODE_DATA(node);
439 
440 		free_unused_memmap_node(node, &meminfo);
441 
442 		if (pgdat->node_spanned_pages != 0)
443 			totalram_pages += free_all_bootmem_node(pgdat);
444 	}
445 
446 #ifdef CONFIG_SA1111
447 	/* now that our DMA memory is actually so designated, we can free it */
448 	free_area(PAGE_OFFSET, (unsigned long)swapper_pg_dir, NULL);
449 #endif
450 
451 	/*
452 	 * Since our memory may not be contiguous, calculate the
453 	 * real number of pages we have in this system
454 	 */
455 	printk(KERN_INFO "Memory:");
456 
457 	num_physpages = 0;
458 	for (i = 0; i < meminfo.nr_banks; i++) {
459 		num_physpages += meminfo.bank[i].size >> PAGE_SHIFT;
460 		printk(" %ldMB", meminfo.bank[i].size >> 20);
461 	}
462 
463 	printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
464 	printk(KERN_NOTICE "Memory: %luKB available (%dK code, "
465 		"%dK data, %dK init)\n",
466 		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
467 		codepages >> 10, datapages >> 10, initpages >> 10);
468 
469 	if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
470 		extern int sysctl_overcommit_memory;
471 		/*
472 		 * On a machine this small we won't get
473 		 * anywhere without overcommit, so turn
474 		 * it on by default.
475 		 */
476 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
477 	}
478 }
479 
480 void free_initmem(void)
481 {
482 	if (!machine_is_integrator() && !machine_is_cintegrator()) {
483 		free_area((unsigned long)(&__init_begin),
484 			  (unsigned long)(&__init_end),
485 			  "init");
486 	}
487 }
488 
489 #ifdef CONFIG_BLK_DEV_INITRD
490 
491 static int keep_initrd;
492 
493 void free_initrd_mem(unsigned long start, unsigned long end)
494 {
495 	if (!keep_initrd)
496 		free_area(start, end, "initrd");
497 }
498 
499 static int __init keepinitrd_setup(char *__unused)
500 {
501 	keep_initrd = 1;
502 	return 1;
503 }
504 
505 __setup("keepinitrd", keepinitrd_setup);
506 #endif
507