xref: /openbmc/linux/arch/arm/mm/init.c (revision 1a47ebc0)
1 /*
2  *  linux/arch/arm/mm/init.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/config.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/ptrace.h>
14 #include <linux/swap.h>
15 #include <linux/init.h>
16 #include <linux/bootmem.h>
17 #include <linux/mman.h>
18 #include <linux/nodemask.h>
19 #include <linux/initrd.h>
20 
21 #include <asm/mach-types.h>
22 #include <asm/hardware.h>
23 #include <asm/setup.h>
24 #include <asm/tlb.h>
25 
26 #include <asm/mach/arch.h>
27 #include <asm/mach/map.h>
28 
29 #define TABLE_SIZE	(2 * PTRS_PER_PTE * sizeof(pte_t))
30 
31 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
32 
33 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
34 extern void _stext, _text, _etext, __data_start, _end, __init_begin, __init_end;
35 extern unsigned long phys_initrd_start;
36 extern unsigned long phys_initrd_size;
37 
38 /*
39  * The sole use of this is to pass memory configuration
40  * data from paging_init to mem_init.
41  */
42 static struct meminfo meminfo __initdata = { 0, };
43 
44 /*
45  * empty_zero_page is a special page that is used for
46  * zero-initialized data and COW.
47  */
48 struct page *empty_zero_page;
49 
50 void show_mem(void)
51 {
52 	int free = 0, total = 0, reserved = 0;
53 	int shared = 0, cached = 0, slab = 0, node;
54 
55 	printk("Mem-info:\n");
56 	show_free_areas();
57 	printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
58 
59 	for_each_online_node(node) {
60 		struct page *page, *end;
61 
62 		page = NODE_MEM_MAP(node);
63 		end  = page + NODE_DATA(node)->node_spanned_pages;
64 
65 		do {
66 			total++;
67 			if (PageReserved(page))
68 				reserved++;
69 			else if (PageSwapCache(page))
70 				cached++;
71 			else if (PageSlab(page))
72 				slab++;
73 			else if (!page_count(page))
74 				free++;
75 			else
76 				shared += page_count(page) - 1;
77 			page++;
78 		} while (page < end);
79 	}
80 
81 	printk("%d pages of RAM\n", total);
82 	printk("%d free pages\n", free);
83 	printk("%d reserved pages\n", reserved);
84 	printk("%d slab pages\n", slab);
85 	printk("%d pages shared\n", shared);
86 	printk("%d pages swap cached\n", cached);
87 }
88 
89 static inline pmd_t *pmd_off(pgd_t *pgd, unsigned long virt)
90 {
91 	return pmd_offset(pgd, virt);
92 }
93 
94 static inline pmd_t *pmd_off_k(unsigned long virt)
95 {
96 	return pmd_off(pgd_offset_k(virt), virt);
97 }
98 
99 #define for_each_nodebank(iter,mi,no)			\
100 	for (iter = 0; iter < mi->nr_banks; iter++)	\
101 		if (mi->bank[iter].node == no)
102 
103 /*
104  * FIXME: We really want to avoid allocating the bootmap bitmap
105  * over the top of the initrd.  Hopefully, this is located towards
106  * the start of a bank, so if we allocate the bootmap bitmap at
107  * the end, we won't clash.
108  */
109 static unsigned int __init
110 find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages)
111 {
112 	unsigned int start_pfn, bank, bootmap_pfn;
113 
114 	start_pfn   = PAGE_ALIGN(__pa(&_end)) >> PAGE_SHIFT;
115 	bootmap_pfn = 0;
116 
117 	for_each_nodebank(bank, mi, node) {
118 		unsigned int start, end;
119 
120 		start = mi->bank[bank].start >> PAGE_SHIFT;
121 		end   = (mi->bank[bank].size +
122 			 mi->bank[bank].start) >> PAGE_SHIFT;
123 
124 		if (end < start_pfn)
125 			continue;
126 
127 		if (start < start_pfn)
128 			start = start_pfn;
129 
130 		if (end <= start)
131 			continue;
132 
133 		if (end - start >= bootmap_pages) {
134 			bootmap_pfn = start;
135 			break;
136 		}
137 	}
138 
139 	if (bootmap_pfn == 0)
140 		BUG();
141 
142 	return bootmap_pfn;
143 }
144 
145 static int __init check_initrd(struct meminfo *mi)
146 {
147 	int initrd_node = -2;
148 #ifdef CONFIG_BLK_DEV_INITRD
149 	unsigned long end = phys_initrd_start + phys_initrd_size;
150 
151 	/*
152 	 * Make sure that the initrd is within a valid area of
153 	 * memory.
154 	 */
155 	if (phys_initrd_size) {
156 		unsigned int i;
157 
158 		initrd_node = -1;
159 
160 		for (i = 0; i < mi->nr_banks; i++) {
161 			unsigned long bank_end;
162 
163 			bank_end = mi->bank[i].start + mi->bank[i].size;
164 
165 			if (mi->bank[i].start <= phys_initrd_start &&
166 			    end <= bank_end)
167 				initrd_node = mi->bank[i].node;
168 		}
169 	}
170 
171 	if (initrd_node == -1) {
172 		printk(KERN_ERR "initrd (0x%08lx - 0x%08lx) extends beyond "
173 		       "physical memory - disabling initrd\n",
174 		       phys_initrd_start, end);
175 		phys_initrd_start = phys_initrd_size = 0;
176 	}
177 #endif
178 
179 	return initrd_node;
180 }
181 
182 /*
183  * Reserve the various regions of node 0
184  */
185 static __init void reserve_node_zero(pg_data_t *pgdat)
186 {
187 	unsigned long res_size = 0;
188 
189 	/*
190 	 * Register the kernel text and data with bootmem.
191 	 * Note that this can only be in node 0.
192 	 */
193 #ifdef CONFIG_XIP_KERNEL
194 	reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start);
195 #else
196 	reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext);
197 #endif
198 
199 	/*
200 	 * Reserve the page tables.  These are already in use,
201 	 * and can only be in node 0.
202 	 */
203 	reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
204 			     PTRS_PER_PGD * sizeof(pgd_t));
205 
206 	/*
207 	 * Hmm... This should go elsewhere, but we really really need to
208 	 * stop things allocating the low memory; ideally we need a better
209 	 * implementation of GFP_DMA which does not assume that DMA-able
210 	 * memory starts at zero.
211 	 */
212 	if (machine_is_integrator() || machine_is_cintegrator())
213 		res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
214 
215 	/*
216 	 * These should likewise go elsewhere.  They pre-reserve the
217 	 * screen memory region at the start of main system memory.
218 	 */
219 	if (machine_is_edb7211())
220 		res_size = 0x00020000;
221 	if (machine_is_p720t())
222 		res_size = 0x00014000;
223 
224 #ifdef CONFIG_SA1111
225 	/*
226 	 * Because of the SA1111 DMA bug, we want to preserve our
227 	 * precious DMA-able memory...
228 	 */
229 	res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
230 #endif
231 	if (res_size)
232 		reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size);
233 }
234 
235 void __init build_mem_type_table(void);
236 void __init create_mapping(struct map_desc *md);
237 
238 static unsigned long __init
239 bootmem_init_node(int node, int initrd_node, struct meminfo *mi)
240 {
241 	unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
242 	unsigned long start_pfn, end_pfn, boot_pfn;
243 	unsigned int boot_pages;
244 	pg_data_t *pgdat;
245 	int i;
246 
247 	start_pfn = -1UL;
248 	end_pfn = 0;
249 
250 	/*
251 	 * Calculate the pfn range, and map the memory banks for this node.
252 	 */
253 	for_each_nodebank(i, mi, node) {
254 		unsigned long start, end;
255 		struct map_desc map;
256 
257 		start = mi->bank[i].start >> PAGE_SHIFT;
258 		end = (mi->bank[i].start + mi->bank[i].size) >> PAGE_SHIFT;
259 
260 		if (start_pfn > start)
261 			start_pfn = start;
262 		if (end_pfn < end)
263 			end_pfn = end;
264 
265 		map.pfn = __phys_to_pfn(mi->bank[i].start);
266 		map.virtual = __phys_to_virt(mi->bank[i].start);
267 		map.length = mi->bank[i].size;
268 		map.type = MT_MEMORY;
269 
270 		create_mapping(&map);
271 	}
272 
273 	/*
274 	 * If there is no memory in this node, ignore it.
275 	 */
276 	if (end_pfn == 0)
277 		return end_pfn;
278 
279 	/*
280 	 * Allocate the bootmem bitmap page.
281 	 */
282 	boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
283 	boot_pfn = find_bootmap_pfn(node, mi, boot_pages);
284 
285 	/*
286 	 * Initialise the bootmem allocator for this node, handing the
287 	 * memory banks over to bootmem.
288 	 */
289 	node_set_online(node);
290 	pgdat = NODE_DATA(node);
291 	init_bootmem_node(pgdat, boot_pfn, start_pfn, end_pfn);
292 
293 	for_each_nodebank(i, mi, node)
294 		free_bootmem_node(pgdat, mi->bank[i].start, mi->bank[i].size);
295 
296 	/*
297 	 * Reserve the bootmem bitmap for this node.
298 	 */
299 	reserve_bootmem_node(pgdat, boot_pfn << PAGE_SHIFT,
300 			     boot_pages << PAGE_SHIFT);
301 
302 #ifdef CONFIG_BLK_DEV_INITRD
303 	/*
304 	 * If the initrd is in this node, reserve its memory.
305 	 */
306 	if (node == initrd_node) {
307 		reserve_bootmem_node(pgdat, phys_initrd_start,
308 				     phys_initrd_size);
309 		initrd_start = __phys_to_virt(phys_initrd_start);
310 		initrd_end = initrd_start + phys_initrd_size;
311 	}
312 #endif
313 
314 	/*
315 	 * Finally, reserve any node zero regions.
316 	 */
317 	if (node == 0)
318 		reserve_node_zero(pgdat);
319 
320 	/*
321 	 * initialise the zones within this node.
322 	 */
323 	memset(zone_size, 0, sizeof(zone_size));
324 	memset(zhole_size, 0, sizeof(zhole_size));
325 
326 	/*
327 	 * The size of this node has already been determined.  If we need
328 	 * to do anything fancy with the allocation of this memory to the
329 	 * zones, now is the time to do it.
330 	 */
331 	zone_size[0] = end_pfn - start_pfn;
332 
333 	/*
334 	 * For each bank in this node, calculate the size of the holes.
335 	 *  holes = node_size - sum(bank_sizes_in_node)
336 	 */
337 	zhole_size[0] = zone_size[0];
338 	for_each_nodebank(i, mi, node)
339 		zhole_size[0] -= mi->bank[i].size >> PAGE_SHIFT;
340 
341 	/*
342 	 * Adjust the sizes according to any special requirements for
343 	 * this machine type.
344 	 */
345 	arch_adjust_zones(node, zone_size, zhole_size);
346 
347 	free_area_init_node(node, pgdat, zone_size, start_pfn, zhole_size);
348 
349 	return end_pfn;
350 }
351 
352 static void __init bootmem_init(struct meminfo *mi)
353 {
354 	unsigned long addr, memend_pfn = 0;
355 	int node, initrd_node, i;
356 
357 	/*
358 	 * Invalidate the node number for empty or invalid memory banks
359 	 */
360 	for (i = 0; i < mi->nr_banks; i++)
361 		if (mi->bank[i].size == 0 || mi->bank[i].node >= MAX_NUMNODES)
362 			mi->bank[i].node = -1;
363 
364 	memcpy(&meminfo, mi, sizeof(meminfo));
365 
366 	/*
367 	 * Clear out all the mappings below the kernel image.
368 	 */
369 	for (addr = 0; addr < MODULE_START; addr += PGDIR_SIZE)
370 		pmd_clear(pmd_off_k(addr));
371 #ifdef CONFIG_XIP_KERNEL
372 	/* The XIP kernel is mapped in the module area -- skip over it */
373 	addr = ((unsigned long)&_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
374 #endif
375 	for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
376 		pmd_clear(pmd_off_k(addr));
377 
378 	/*
379 	 * Clear out all the kernel space mappings, except for the first
380 	 * memory bank, up to the end of the vmalloc region.
381 	 */
382 	for (addr = __phys_to_virt(mi->bank[0].start + mi->bank[0].size);
383 	     addr < VMALLOC_END; addr += PGDIR_SIZE)
384 		pmd_clear(pmd_off_k(addr));
385 
386 	/*
387 	 * Locate which node contains the ramdisk image, if any.
388 	 */
389 	initrd_node = check_initrd(mi);
390 
391 	/*
392 	 * Run through each node initialising the bootmem allocator.
393 	 */
394 	for_each_node(node) {
395 		unsigned long end_pfn;
396 
397 		end_pfn = bootmem_init_node(node, initrd_node, mi);
398 
399 		/*
400 		 * Remember the highest memory PFN.
401 		 */
402 		if (end_pfn > memend_pfn)
403 			memend_pfn = end_pfn;
404 	}
405 
406 	high_memory = __va(memend_pfn << PAGE_SHIFT);
407 
408 	/*
409 	 * This doesn't seem to be used by the Linux memory manager any
410 	 * more, but is used by ll_rw_block.  If we can get rid of it, we
411 	 * also get rid of some of the stuff above as well.
412 	 *
413 	 * Note: max_low_pfn and max_pfn reflect the number of _pages_ in
414 	 * the system, not the maximum PFN.
415 	 */
416 	max_pfn = max_low_pfn = memend_pfn - PHYS_PFN_OFFSET;
417 }
418 
419 /*
420  * Set up device the mappings.  Since we clear out the page tables for all
421  * mappings above VMALLOC_END, we will remove any debug device mappings.
422  * This means you have to be careful how you debug this function, or any
423  * called function.  (Do it by code inspection!)
424  */
425 static void __init devicemaps_init(struct machine_desc *mdesc)
426 {
427 	struct map_desc map;
428 	unsigned long addr;
429 	void *vectors;
430 
431 	for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
432 		pmd_clear(pmd_off_k(addr));
433 
434 	/*
435 	 * Map the kernel if it is XIP.
436 	 * It is always first in the modulearea.
437 	 */
438 #ifdef CONFIG_XIP_KERNEL
439 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & PGDIR_MASK);
440 	map.virtual = MODULE_START;
441 	map.length = ((unsigned long)&_etext - map.virtual + ~PGDIR_MASK) & PGDIR_MASK;
442 	map.type = MT_ROM;
443 	create_mapping(&map);
444 #endif
445 
446 	/*
447 	 * Map the cache flushing regions.
448 	 */
449 #ifdef FLUSH_BASE
450 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
451 	map.virtual = FLUSH_BASE;
452 	map.length = PGDIR_SIZE;
453 	map.type = MT_CACHECLEAN;
454 	create_mapping(&map);
455 #endif
456 #ifdef FLUSH_BASE_MINICACHE
457 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + PGDIR_SIZE);
458 	map.virtual = FLUSH_BASE_MINICACHE;
459 	map.length = PGDIR_SIZE;
460 	map.type = MT_MINICLEAN;
461 	create_mapping(&map);
462 #endif
463 
464 	flush_cache_all();
465 	local_flush_tlb_all();
466 
467 	vectors = alloc_bootmem_low_pages(PAGE_SIZE);
468 	BUG_ON(!vectors);
469 
470 	/*
471 	 * Create a mapping for the machine vectors at the high-vectors
472 	 * location (0xffff0000).  If we aren't using high-vectors, also
473 	 * create a mapping at the low-vectors virtual address.
474 	 */
475 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
476 	map.virtual = 0xffff0000;
477 	map.length = PAGE_SIZE;
478 	map.type = MT_HIGH_VECTORS;
479 	create_mapping(&map);
480 
481 	if (!vectors_high()) {
482 		map.virtual = 0;
483 		map.type = MT_LOW_VECTORS;
484 		create_mapping(&map);
485 	}
486 
487 	/*
488 	 * Ask the machine support to map in the statically mapped devices.
489 	 * After this point, we can start to touch devices again.
490 	 */
491 	if (mdesc->map_io)
492 		mdesc->map_io();
493 }
494 
495 /*
496  * paging_init() sets up the page tables, initialises the zone memory
497  * maps, and sets up the zero page, bad page and bad page tables.
498  */
499 void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc)
500 {
501 	void *zero_page;
502 
503 	build_mem_type_table();
504 	bootmem_init(mi);
505 	devicemaps_init(mdesc);
506 
507 	top_pmd = pmd_off_k(0xffff0000);
508 
509 	/*
510 	 * allocate the zero page.  Note that we count on this going ok.
511 	 */
512 	zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
513 	memzero(zero_page, PAGE_SIZE);
514 	empty_zero_page = virt_to_page(zero_page);
515 	flush_dcache_page(empty_zero_page);
516 }
517 
518 static inline void free_area(unsigned long addr, unsigned long end, char *s)
519 {
520 	unsigned int size = (end - addr) >> 10;
521 
522 	for (; addr < end; addr += PAGE_SIZE) {
523 		struct page *page = virt_to_page(addr);
524 		ClearPageReserved(page);
525 		set_page_count(page, 1);
526 		free_page(addr);
527 		totalram_pages++;
528 	}
529 
530 	if (size && s)
531 		printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
532 }
533 
534 static inline void
535 free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn)
536 {
537 	struct page *start_pg, *end_pg;
538 	unsigned long pg, pgend;
539 
540 	/*
541 	 * Convert start_pfn/end_pfn to a struct page pointer.
542 	 */
543 	start_pg = pfn_to_page(start_pfn);
544 	end_pg = pfn_to_page(end_pfn);
545 
546 	/*
547 	 * Convert to physical addresses, and
548 	 * round start upwards and end downwards.
549 	 */
550 	pg = PAGE_ALIGN(__pa(start_pg));
551 	pgend = __pa(end_pg) & PAGE_MASK;
552 
553 	/*
554 	 * If there are free pages between these,
555 	 * free the section of the memmap array.
556 	 */
557 	if (pg < pgend)
558 		free_bootmem_node(NODE_DATA(node), pg, pgend - pg);
559 }
560 
561 /*
562  * The mem_map array can get very big.  Free the unused area of the memory map.
563  */
564 static void __init free_unused_memmap_node(int node, struct meminfo *mi)
565 {
566 	unsigned long bank_start, prev_bank_end = 0;
567 	unsigned int i;
568 
569 	/*
570 	 * [FIXME] This relies on each bank being in address order.  This
571 	 * may not be the case, especially if the user has provided the
572 	 * information on the command line.
573 	 */
574 	for_each_nodebank(i, mi, node) {
575 		bank_start = mi->bank[i].start >> PAGE_SHIFT;
576 		if (bank_start < prev_bank_end) {
577 			printk(KERN_ERR "MEM: unordered memory banks.  "
578 				"Not freeing memmap.\n");
579 			break;
580 		}
581 
582 		/*
583 		 * If we had a previous bank, and there is a space
584 		 * between the current bank and the previous, free it.
585 		 */
586 		if (prev_bank_end && prev_bank_end != bank_start)
587 			free_memmap(node, prev_bank_end, bank_start);
588 
589 		prev_bank_end = (mi->bank[i].start +
590 				 mi->bank[i].size) >> PAGE_SHIFT;
591 	}
592 }
593 
594 /*
595  * mem_init() marks the free areas in the mem_map and tells us how much
596  * memory is free.  This is done after various parts of the system have
597  * claimed their memory after the kernel image.
598  */
599 void __init mem_init(void)
600 {
601 	unsigned int codepages, datapages, initpages;
602 	int i, node;
603 
604 	codepages = &_etext - &_text;
605 	datapages = &_end - &__data_start;
606 	initpages = &__init_end - &__init_begin;
607 
608 #ifndef CONFIG_DISCONTIGMEM
609 	max_mapnr   = virt_to_page(high_memory) - mem_map;
610 #endif
611 
612 	/* this will put all unused low memory onto the freelists */
613 	for_each_online_node(node) {
614 		pg_data_t *pgdat = NODE_DATA(node);
615 
616 		free_unused_memmap_node(node, &meminfo);
617 
618 		if (pgdat->node_spanned_pages != 0)
619 			totalram_pages += free_all_bootmem_node(pgdat);
620 	}
621 
622 #ifdef CONFIG_SA1111
623 	/* now that our DMA memory is actually so designated, we can free it */
624 	free_area(PAGE_OFFSET, (unsigned long)swapper_pg_dir, NULL);
625 #endif
626 
627 	/*
628 	 * Since our memory may not be contiguous, calculate the
629 	 * real number of pages we have in this system
630 	 */
631 	printk(KERN_INFO "Memory:");
632 
633 	num_physpages = 0;
634 	for (i = 0; i < meminfo.nr_banks; i++) {
635 		num_physpages += meminfo.bank[i].size >> PAGE_SHIFT;
636 		printk(" %ldMB", meminfo.bank[i].size >> 20);
637 	}
638 
639 	printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
640 	printk(KERN_NOTICE "Memory: %luKB available (%dK code, "
641 		"%dK data, %dK init)\n",
642 		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
643 		codepages >> 10, datapages >> 10, initpages >> 10);
644 
645 	if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
646 		extern int sysctl_overcommit_memory;
647 		/*
648 		 * On a machine this small we won't get
649 		 * anywhere without overcommit, so turn
650 		 * it on by default.
651 		 */
652 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
653 	}
654 }
655 
656 void free_initmem(void)
657 {
658 	if (!machine_is_integrator() && !machine_is_cintegrator()) {
659 		free_area((unsigned long)(&__init_begin),
660 			  (unsigned long)(&__init_end),
661 			  "init");
662 	}
663 }
664 
665 #ifdef CONFIG_BLK_DEV_INITRD
666 
667 static int keep_initrd;
668 
669 void free_initrd_mem(unsigned long start, unsigned long end)
670 {
671 	if (!keep_initrd)
672 		free_area(start, end, "initrd");
673 }
674 
675 static int __init keepinitrd_setup(char *__unused)
676 {
677 	keep_initrd = 1;
678 	return 1;
679 }
680 
681 __setup("keepinitrd", keepinitrd_setup);
682 #endif
683