xref: /openbmc/linux/arch/arm/mm/init.c (revision 0f0a00be)
1 /*
2  *  linux/arch/arm/mm/init.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 
19 #include <asm/mach-types.h>
20 #include <asm/setup.h>
21 #include <asm/sizes.h>
22 #include <asm/tlb.h>
23 
24 #include <asm/mach/arch.h>
25 #include <asm/mach/map.h>
26 
27 #include "mm.h"
28 
29 extern void _text, _etext, __data_start, _end, __init_begin, __init_end;
30 extern unsigned long phys_initrd_start;
31 extern unsigned long phys_initrd_size;
32 
33 /*
34  * This is used to pass memory configuration data from paging_init
35  * to mem_init, and by show_mem() to skip holes in the memory map.
36  */
37 static struct meminfo meminfo = { 0, };
38 
39 #define for_each_nodebank(iter,mi,no)			\
40 	for (iter = 0; iter < mi->nr_banks; iter++)	\
41 		if (mi->bank[iter].node == no)
42 
43 void show_mem(void)
44 {
45 	int free = 0, total = 0, reserved = 0;
46 	int shared = 0, cached = 0, slab = 0, node, i;
47 	struct meminfo * mi = &meminfo;
48 
49 	printk("Mem-info:\n");
50 	show_free_areas();
51 	printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
52 
53 	for_each_online_node(node) {
54 		pg_data_t *n = NODE_DATA(node);
55 		struct page *map = n->node_mem_map - n->node_start_pfn;
56 
57 		for_each_nodebank (i,mi,node) {
58 			unsigned int pfn1, pfn2;
59 			struct page *page, *end;
60 
61 			pfn1 = __phys_to_pfn(mi->bank[i].start);
62 			pfn2 = __phys_to_pfn(mi->bank[i].size + mi->bank[i].start);
63 
64 			page = map + pfn1;
65 			end  = map + pfn2;
66 
67 			do {
68 				total++;
69 				if (PageReserved(page))
70 					reserved++;
71 				else if (PageSwapCache(page))
72 					cached++;
73 				else if (PageSlab(page))
74 					slab++;
75 				else if (!page_count(page))
76 					free++;
77 				else
78 					shared += page_count(page) - 1;
79 				page++;
80 			} while (page < end);
81 		}
82 	}
83 
84 	printk("%d pages of RAM\n", total);
85 	printk("%d free pages\n", free);
86 	printk("%d reserved pages\n", reserved);
87 	printk("%d slab pages\n", slab);
88 	printk("%d pages shared\n", shared);
89 	printk("%d pages swap cached\n", cached);
90 }
91 
92 /*
93  * FIXME: We really want to avoid allocating the bootmap bitmap
94  * over the top of the initrd.  Hopefully, this is located towards
95  * the start of a bank, so if we allocate the bootmap bitmap at
96  * the end, we won't clash.
97  */
98 static unsigned int __init
99 find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages)
100 {
101 	unsigned int start_pfn, bank, bootmap_pfn;
102 
103 	start_pfn   = PAGE_ALIGN(__pa(&_end)) >> PAGE_SHIFT;
104 	bootmap_pfn = 0;
105 
106 	for_each_nodebank(bank, mi, node) {
107 		unsigned int start, end;
108 
109 		start = mi->bank[bank].start >> PAGE_SHIFT;
110 		end   = (mi->bank[bank].size +
111 			 mi->bank[bank].start) >> PAGE_SHIFT;
112 
113 		if (end < start_pfn)
114 			continue;
115 
116 		if (start < start_pfn)
117 			start = start_pfn;
118 
119 		if (end <= start)
120 			continue;
121 
122 		if (end - start >= bootmap_pages) {
123 			bootmap_pfn = start;
124 			break;
125 		}
126 	}
127 
128 	if (bootmap_pfn == 0)
129 		BUG();
130 
131 	return bootmap_pfn;
132 }
133 
134 static int __init check_initrd(struct meminfo *mi)
135 {
136 	int initrd_node = -2;
137 #ifdef CONFIG_BLK_DEV_INITRD
138 	unsigned long end = phys_initrd_start + phys_initrd_size;
139 
140 	/*
141 	 * Make sure that the initrd is within a valid area of
142 	 * memory.
143 	 */
144 	if (phys_initrd_size) {
145 		unsigned int i;
146 
147 		initrd_node = -1;
148 
149 		for (i = 0; i < mi->nr_banks; i++) {
150 			unsigned long bank_end;
151 
152 			bank_end = mi->bank[i].start + mi->bank[i].size;
153 
154 			if (mi->bank[i].start <= phys_initrd_start &&
155 			    end <= bank_end)
156 				initrd_node = mi->bank[i].node;
157 		}
158 	}
159 
160 	if (initrd_node == -1) {
161 		printk(KERN_ERR "initrd (0x%08lx - 0x%08lx) extends beyond "
162 		       "physical memory - disabling initrd\n",
163 		       phys_initrd_start, end);
164 		phys_initrd_start = phys_initrd_size = 0;
165 	}
166 #endif
167 
168 	return initrd_node;
169 }
170 
171 static inline void map_memory_bank(struct membank *bank)
172 {
173 #ifdef CONFIG_MMU
174 	struct map_desc map;
175 
176 	map.pfn = __phys_to_pfn(bank->start);
177 	map.virtual = __phys_to_virt(bank->start);
178 	map.length = bank->size;
179 	map.type = MT_MEMORY;
180 
181 	create_mapping(&map);
182 #endif
183 }
184 
185 static unsigned long __init
186 bootmem_init_node(int node, int initrd_node, struct meminfo *mi)
187 {
188 	unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
189 	unsigned long start_pfn, end_pfn, boot_pfn;
190 	unsigned int boot_pages;
191 	pg_data_t *pgdat;
192 	int i;
193 
194 	start_pfn = -1UL;
195 	end_pfn = 0;
196 
197 	/*
198 	 * Calculate the pfn range, and map the memory banks for this node.
199 	 */
200 	for_each_nodebank(i, mi, node) {
201 		struct membank *bank = &mi->bank[i];
202 		unsigned long start, end;
203 
204 		start = bank->start >> PAGE_SHIFT;
205 		end = (bank->start + bank->size) >> PAGE_SHIFT;
206 
207 		if (start_pfn > start)
208 			start_pfn = start;
209 		if (end_pfn < end)
210 			end_pfn = end;
211 
212 		map_memory_bank(bank);
213 	}
214 
215 	/*
216 	 * If there is no memory in this node, ignore it.
217 	 */
218 	if (end_pfn == 0)
219 		return end_pfn;
220 
221 	/*
222 	 * Allocate the bootmem bitmap page.
223 	 */
224 	boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
225 	boot_pfn = find_bootmap_pfn(node, mi, boot_pages);
226 
227 	/*
228 	 * Initialise the bootmem allocator for this node, handing the
229 	 * memory banks over to bootmem.
230 	 */
231 	node_set_online(node);
232 	pgdat = NODE_DATA(node);
233 	init_bootmem_node(pgdat, boot_pfn, start_pfn, end_pfn);
234 
235 	for_each_nodebank(i, mi, node)
236 		free_bootmem_node(pgdat, mi->bank[i].start, mi->bank[i].size);
237 
238 	/*
239 	 * Reserve the bootmem bitmap for this node.
240 	 */
241 	reserve_bootmem_node(pgdat, boot_pfn << PAGE_SHIFT,
242 			     boot_pages << PAGE_SHIFT);
243 
244 #ifdef CONFIG_BLK_DEV_INITRD
245 	/*
246 	 * If the initrd is in this node, reserve its memory.
247 	 */
248 	if (node == initrd_node) {
249 		reserve_bootmem_node(pgdat, phys_initrd_start,
250 				     phys_initrd_size);
251 		initrd_start = __phys_to_virt(phys_initrd_start);
252 		initrd_end = initrd_start + phys_initrd_size;
253 	}
254 #endif
255 
256 	/*
257 	 * Finally, reserve any node zero regions.
258 	 */
259 	if (node == 0)
260 		reserve_node_zero(pgdat);
261 
262 	/*
263 	 * initialise the zones within this node.
264 	 */
265 	memset(zone_size, 0, sizeof(zone_size));
266 	memset(zhole_size, 0, sizeof(zhole_size));
267 
268 	/*
269 	 * The size of this node has already been determined.  If we need
270 	 * to do anything fancy with the allocation of this memory to the
271 	 * zones, now is the time to do it.
272 	 */
273 	zone_size[0] = end_pfn - start_pfn;
274 
275 	/*
276 	 * For each bank in this node, calculate the size of the holes.
277 	 *  holes = node_size - sum(bank_sizes_in_node)
278 	 */
279 	zhole_size[0] = zone_size[0];
280 	for_each_nodebank(i, mi, node)
281 		zhole_size[0] -= mi->bank[i].size >> PAGE_SHIFT;
282 
283 	/*
284 	 * Adjust the sizes according to any special requirements for
285 	 * this machine type.
286 	 */
287 	arch_adjust_zones(node, zone_size, zhole_size);
288 
289 	free_area_init_node(node, pgdat, zone_size, start_pfn, zhole_size);
290 
291 	return end_pfn;
292 }
293 
294 void __init bootmem_init(struct meminfo *mi)
295 {
296 	unsigned long memend_pfn = 0;
297 	int node, initrd_node, i;
298 
299 	/*
300 	 * Invalidate the node number for empty or invalid memory banks
301 	 */
302 	for (i = 0; i < mi->nr_banks; i++)
303 		if (mi->bank[i].size == 0 || mi->bank[i].node >= MAX_NUMNODES)
304 			mi->bank[i].node = -1;
305 
306 	memcpy(&meminfo, mi, sizeof(meminfo));
307 
308 	/*
309 	 * Locate which node contains the ramdisk image, if any.
310 	 */
311 	initrd_node = check_initrd(mi);
312 
313 	/*
314 	 * Run through each node initialising the bootmem allocator.
315 	 */
316 	for_each_node(node) {
317 		unsigned long end_pfn;
318 
319 		end_pfn = bootmem_init_node(node, initrd_node, mi);
320 
321 		/*
322 		 * Remember the highest memory PFN.
323 		 */
324 		if (end_pfn > memend_pfn)
325 			memend_pfn = end_pfn;
326 	}
327 
328 	high_memory = __va(memend_pfn << PAGE_SHIFT);
329 
330 	/*
331 	 * This doesn't seem to be used by the Linux memory manager any
332 	 * more, but is used by ll_rw_block.  If we can get rid of it, we
333 	 * also get rid of some of the stuff above as well.
334 	 *
335 	 * Note: max_low_pfn and max_pfn reflect the number of _pages_ in
336 	 * the system, not the maximum PFN.
337 	 */
338 	max_pfn = max_low_pfn = memend_pfn - PHYS_PFN_OFFSET;
339 }
340 
341 static inline void free_area(unsigned long addr, unsigned long end, char *s)
342 {
343 	unsigned int size = (end - addr) >> 10;
344 
345 	for (; addr < end; addr += PAGE_SIZE) {
346 		struct page *page = virt_to_page(addr);
347 		ClearPageReserved(page);
348 		init_page_count(page);
349 		free_page(addr);
350 		totalram_pages++;
351 	}
352 
353 	if (size && s)
354 		printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
355 }
356 
357 static inline void
358 free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn)
359 {
360 	struct page *start_pg, *end_pg;
361 	unsigned long pg, pgend;
362 
363 	/*
364 	 * Convert start_pfn/end_pfn to a struct page pointer.
365 	 */
366 	start_pg = pfn_to_page(start_pfn);
367 	end_pg = pfn_to_page(end_pfn);
368 
369 	/*
370 	 * Convert to physical addresses, and
371 	 * round start upwards and end downwards.
372 	 */
373 	pg = PAGE_ALIGN(__pa(start_pg));
374 	pgend = __pa(end_pg) & PAGE_MASK;
375 
376 	/*
377 	 * If there are free pages between these,
378 	 * free the section of the memmap array.
379 	 */
380 	if (pg < pgend)
381 		free_bootmem_node(NODE_DATA(node), pg, pgend - pg);
382 }
383 
384 /*
385  * The mem_map array can get very big.  Free the unused area of the memory map.
386  */
387 static void __init free_unused_memmap_node(int node, struct meminfo *mi)
388 {
389 	unsigned long bank_start, prev_bank_end = 0;
390 	unsigned int i;
391 
392 	/*
393 	 * [FIXME] This relies on each bank being in address order.  This
394 	 * may not be the case, especially if the user has provided the
395 	 * information on the command line.
396 	 */
397 	for_each_nodebank(i, mi, node) {
398 		bank_start = mi->bank[i].start >> PAGE_SHIFT;
399 		if (bank_start < prev_bank_end) {
400 			printk(KERN_ERR "MEM: unordered memory banks.  "
401 				"Not freeing memmap.\n");
402 			break;
403 		}
404 
405 		/*
406 		 * If we had a previous bank, and there is a space
407 		 * between the current bank and the previous, free it.
408 		 */
409 		if (prev_bank_end && prev_bank_end != bank_start)
410 			free_memmap(node, prev_bank_end, bank_start);
411 
412 		prev_bank_end = (mi->bank[i].start +
413 				 mi->bank[i].size) >> PAGE_SHIFT;
414 	}
415 }
416 
417 /*
418  * mem_init() marks the free areas in the mem_map and tells us how much
419  * memory is free.  This is done after various parts of the system have
420  * claimed their memory after the kernel image.
421  */
422 void __init mem_init(void)
423 {
424 	unsigned int codepages, datapages, initpages;
425 	int i, node;
426 
427 	codepages = &_etext - &_text;
428 	datapages = &_end - &__data_start;
429 	initpages = &__init_end - &__init_begin;
430 
431 #ifndef CONFIG_DISCONTIGMEM
432 	max_mapnr   = virt_to_page(high_memory) - mem_map;
433 #endif
434 
435 	/* this will put all unused low memory onto the freelists */
436 	for_each_online_node(node) {
437 		pg_data_t *pgdat = NODE_DATA(node);
438 
439 		free_unused_memmap_node(node, &meminfo);
440 
441 		if (pgdat->node_spanned_pages != 0)
442 			totalram_pages += free_all_bootmem_node(pgdat);
443 	}
444 
445 #ifdef CONFIG_SA1111
446 	/* now that our DMA memory is actually so designated, we can free it */
447 	free_area(PAGE_OFFSET, (unsigned long)swapper_pg_dir, NULL);
448 #endif
449 
450 	/*
451 	 * Since our memory may not be contiguous, calculate the
452 	 * real number of pages we have in this system
453 	 */
454 	printk(KERN_INFO "Memory:");
455 
456 	num_physpages = 0;
457 	for (i = 0; i < meminfo.nr_banks; i++) {
458 		num_physpages += meminfo.bank[i].size >> PAGE_SHIFT;
459 		printk(" %ldMB", meminfo.bank[i].size >> 20);
460 	}
461 
462 	printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
463 	printk(KERN_NOTICE "Memory: %luKB available (%dK code, "
464 		"%dK data, %dK init)\n",
465 		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
466 		codepages >> 10, datapages >> 10, initpages >> 10);
467 
468 	if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
469 		extern int sysctl_overcommit_memory;
470 		/*
471 		 * On a machine this small we won't get
472 		 * anywhere without overcommit, so turn
473 		 * it on by default.
474 		 */
475 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
476 	}
477 }
478 
479 void free_initmem(void)
480 {
481 	if (!machine_is_integrator() && !machine_is_cintegrator()) {
482 		free_area((unsigned long)(&__init_begin),
483 			  (unsigned long)(&__init_end),
484 			  "init");
485 	}
486 }
487 
488 #ifdef CONFIG_BLK_DEV_INITRD
489 
490 static int keep_initrd;
491 
492 void free_initrd_mem(unsigned long start, unsigned long end)
493 {
494 	if (!keep_initrd)
495 		free_area(start, end, "initrd");
496 }
497 
498 static int __init keepinitrd_setup(char *__unused)
499 {
500 	keep_initrd = 1;
501 	return 1;
502 }
503 
504 __setup("keepinitrd", keepinitrd_setup);
505 #endif
506