1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/mm/fault.c 4 * 5 * Copyright (C) 1995 Linus Torvalds 6 * Modifications for ARM processor (c) 1995-2004 Russell King 7 */ 8 #include <linux/extable.h> 9 #include <linux/signal.h> 10 #include <linux/mm.h> 11 #include <linux/hardirq.h> 12 #include <linux/init.h> 13 #include <linux/kprobes.h> 14 #include <linux/uaccess.h> 15 #include <linux/page-flags.h> 16 #include <linux/sched/signal.h> 17 #include <linux/sched/debug.h> 18 #include <linux/highmem.h> 19 #include <linux/perf_event.h> 20 21 #include <asm/system_misc.h> 22 #include <asm/system_info.h> 23 #include <asm/tlbflush.h> 24 25 #include "fault.h" 26 27 #ifdef CONFIG_MMU 28 29 /* 30 * This is useful to dump out the page tables associated with 31 * 'addr' in mm 'mm'. 32 */ 33 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr) 34 { 35 pgd_t *pgd; 36 37 if (!mm) 38 mm = &init_mm; 39 40 printk("%spgd = %p\n", lvl, mm->pgd); 41 pgd = pgd_offset(mm, addr); 42 printk("%s[%08lx] *pgd=%08llx", lvl, addr, (long long)pgd_val(*pgd)); 43 44 do { 45 p4d_t *p4d; 46 pud_t *pud; 47 pmd_t *pmd; 48 pte_t *pte; 49 50 p4d = p4d_offset(pgd, addr); 51 if (p4d_none(*p4d)) 52 break; 53 54 if (p4d_bad(*p4d)) { 55 pr_cont("(bad)"); 56 break; 57 } 58 59 pud = pud_offset(p4d, addr); 60 if (PTRS_PER_PUD != 1) 61 pr_cont(", *pud=%08llx", (long long)pud_val(*pud)); 62 63 if (pud_none(*pud)) 64 break; 65 66 if (pud_bad(*pud)) { 67 pr_cont("(bad)"); 68 break; 69 } 70 71 pmd = pmd_offset(pud, addr); 72 if (PTRS_PER_PMD != 1) 73 pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd)); 74 75 if (pmd_none(*pmd)) 76 break; 77 78 if (pmd_bad(*pmd)) { 79 pr_cont("(bad)"); 80 break; 81 } 82 83 /* We must not map this if we have highmem enabled */ 84 if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT))) 85 break; 86 87 pte = pte_offset_map(pmd, addr); 88 pr_cont(", *pte=%08llx", (long long)pte_val(*pte)); 89 #ifndef CONFIG_ARM_LPAE 90 pr_cont(", *ppte=%08llx", 91 (long long)pte_val(pte[PTE_HWTABLE_PTRS])); 92 #endif 93 pte_unmap(pte); 94 } while(0); 95 96 pr_cont("\n"); 97 } 98 #else /* CONFIG_MMU */ 99 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr) 100 { } 101 #endif /* CONFIG_MMU */ 102 103 /* 104 * Oops. The kernel tried to access some page that wasn't present. 105 */ 106 static void 107 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr, 108 struct pt_regs *regs) 109 { 110 /* 111 * Are we prepared to handle this kernel fault? 112 */ 113 if (fixup_exception(regs)) 114 return; 115 116 /* 117 * No handler, we'll have to terminate things with extreme prejudice. 118 */ 119 bust_spinlocks(1); 120 pr_alert("8<--- cut here ---\n"); 121 pr_alert("Unable to handle kernel %s at virtual address %08lx\n", 122 (addr < PAGE_SIZE) ? "NULL pointer dereference" : 123 "paging request", addr); 124 125 show_pte(KERN_ALERT, mm, addr); 126 die("Oops", regs, fsr); 127 bust_spinlocks(0); 128 do_exit(SIGKILL); 129 } 130 131 /* 132 * Something tried to access memory that isn't in our memory map.. 133 * User mode accesses just cause a SIGSEGV 134 */ 135 static void 136 __do_user_fault(unsigned long addr, unsigned int fsr, unsigned int sig, 137 int code, struct pt_regs *regs) 138 { 139 struct task_struct *tsk = current; 140 141 if (addr > TASK_SIZE) 142 harden_branch_predictor(); 143 144 #ifdef CONFIG_DEBUG_USER 145 if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) || 146 ((user_debug & UDBG_BUS) && (sig == SIGBUS))) { 147 pr_err("8<--- cut here ---\n"); 148 pr_err("%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n", 149 tsk->comm, sig, addr, fsr); 150 show_pte(KERN_ERR, tsk->mm, addr); 151 show_regs(regs); 152 } 153 #endif 154 #ifndef CONFIG_KUSER_HELPERS 155 if ((sig == SIGSEGV) && ((addr & PAGE_MASK) == 0xffff0000)) 156 printk_ratelimited(KERN_DEBUG 157 "%s: CONFIG_KUSER_HELPERS disabled at 0x%08lx\n", 158 tsk->comm, addr); 159 #endif 160 161 tsk->thread.address = addr; 162 tsk->thread.error_code = fsr; 163 tsk->thread.trap_no = 14; 164 force_sig_fault(sig, code, (void __user *)addr); 165 } 166 167 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 168 { 169 struct task_struct *tsk = current; 170 struct mm_struct *mm = tsk->active_mm; 171 172 /* 173 * If we are in kernel mode at this point, we 174 * have no context to handle this fault with. 175 */ 176 if (user_mode(regs)) 177 __do_user_fault(addr, fsr, SIGSEGV, SEGV_MAPERR, regs); 178 else 179 __do_kernel_fault(mm, addr, fsr, regs); 180 } 181 182 #ifdef CONFIG_MMU 183 #define VM_FAULT_BADMAP 0x010000 184 #define VM_FAULT_BADACCESS 0x020000 185 186 /* 187 * Check that the permissions on the VMA allow for the fault which occurred. 188 * If we encountered a write fault, we must have write permission, otherwise 189 * we allow any permission. 190 */ 191 static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma) 192 { 193 unsigned int mask = VM_ACCESS_FLAGS; 194 195 if ((fsr & FSR_WRITE) && !(fsr & FSR_CM)) 196 mask = VM_WRITE; 197 if (fsr & FSR_LNX_PF) 198 mask = VM_EXEC; 199 200 return vma->vm_flags & mask ? false : true; 201 } 202 203 static vm_fault_t __kprobes 204 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr, 205 unsigned int flags, struct task_struct *tsk) 206 { 207 struct vm_area_struct *vma; 208 vm_fault_t fault; 209 210 vma = find_vma(mm, addr); 211 fault = VM_FAULT_BADMAP; 212 if (unlikely(!vma)) 213 goto out; 214 if (unlikely(vma->vm_start > addr)) 215 goto check_stack; 216 217 /* 218 * Ok, we have a good vm_area for this 219 * memory access, so we can handle it. 220 */ 221 good_area: 222 if (access_error(fsr, vma)) { 223 fault = VM_FAULT_BADACCESS; 224 goto out; 225 } 226 227 return handle_mm_fault(vma, addr & PAGE_MASK, flags); 228 229 check_stack: 230 /* Don't allow expansion below FIRST_USER_ADDRESS */ 231 if (vma->vm_flags & VM_GROWSDOWN && 232 addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr)) 233 goto good_area; 234 out: 235 return fault; 236 } 237 238 static int __kprobes 239 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 240 { 241 struct task_struct *tsk; 242 struct mm_struct *mm; 243 int sig, code; 244 vm_fault_t fault; 245 unsigned int flags = FAULT_FLAG_DEFAULT; 246 247 if (kprobe_page_fault(regs, fsr)) 248 return 0; 249 250 tsk = current; 251 mm = tsk->mm; 252 253 /* Enable interrupts if they were enabled in the parent context. */ 254 if (interrupts_enabled(regs)) 255 local_irq_enable(); 256 257 /* 258 * If we're in an interrupt or have no user 259 * context, we must not take the fault.. 260 */ 261 if (faulthandler_disabled() || !mm) 262 goto no_context; 263 264 if (user_mode(regs)) 265 flags |= FAULT_FLAG_USER; 266 if ((fsr & FSR_WRITE) && !(fsr & FSR_CM)) 267 flags |= FAULT_FLAG_WRITE; 268 269 /* 270 * As per x86, we may deadlock here. However, since the kernel only 271 * validly references user space from well defined areas of the code, 272 * we can bug out early if this is from code which shouldn't. 273 */ 274 if (!mmap_read_trylock(mm)) { 275 if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc)) 276 goto no_context; 277 retry: 278 mmap_read_lock(mm); 279 } else { 280 /* 281 * The above down_read_trylock() might have succeeded in 282 * which case, we'll have missed the might_sleep() from 283 * down_read() 284 */ 285 might_sleep(); 286 #ifdef CONFIG_DEBUG_VM 287 if (!user_mode(regs) && 288 !search_exception_tables(regs->ARM_pc)) 289 goto no_context; 290 #endif 291 } 292 293 fault = __do_page_fault(mm, addr, fsr, flags, tsk); 294 295 /* If we need to retry but a fatal signal is pending, handle the 296 * signal first. We do not need to release the mmap_lock because 297 * it would already be released in __lock_page_or_retry in 298 * mm/filemap.c. */ 299 if (fault_signal_pending(fault, regs)) { 300 if (!user_mode(regs)) 301 goto no_context; 302 return 0; 303 } 304 305 /* 306 * Major/minor page fault accounting is only done on the 307 * initial attempt. If we go through a retry, it is extremely 308 * likely that the page will be found in page cache at that point. 309 */ 310 311 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); 312 if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) { 313 if (fault & VM_FAULT_MAJOR) { 314 tsk->maj_flt++; 315 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 316 regs, addr); 317 } else { 318 tsk->min_flt++; 319 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 320 regs, addr); 321 } 322 if (fault & VM_FAULT_RETRY) { 323 flags |= FAULT_FLAG_TRIED; 324 goto retry; 325 } 326 } 327 328 mmap_read_unlock(mm); 329 330 /* 331 * Handle the "normal" case first - VM_FAULT_MAJOR 332 */ 333 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS)))) 334 return 0; 335 336 /* 337 * If we are in kernel mode at this point, we 338 * have no context to handle this fault with. 339 */ 340 if (!user_mode(regs)) 341 goto no_context; 342 343 if (fault & VM_FAULT_OOM) { 344 /* 345 * We ran out of memory, call the OOM killer, and return to 346 * userspace (which will retry the fault, or kill us if we 347 * got oom-killed) 348 */ 349 pagefault_out_of_memory(); 350 return 0; 351 } 352 353 if (fault & VM_FAULT_SIGBUS) { 354 /* 355 * We had some memory, but were unable to 356 * successfully fix up this page fault. 357 */ 358 sig = SIGBUS; 359 code = BUS_ADRERR; 360 } else { 361 /* 362 * Something tried to access memory that 363 * isn't in our memory map.. 364 */ 365 sig = SIGSEGV; 366 code = fault == VM_FAULT_BADACCESS ? 367 SEGV_ACCERR : SEGV_MAPERR; 368 } 369 370 __do_user_fault(addr, fsr, sig, code, regs); 371 return 0; 372 373 no_context: 374 __do_kernel_fault(mm, addr, fsr, regs); 375 return 0; 376 } 377 #else /* CONFIG_MMU */ 378 static int 379 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 380 { 381 return 0; 382 } 383 #endif /* CONFIG_MMU */ 384 385 /* 386 * First Level Translation Fault Handler 387 * 388 * We enter here because the first level page table doesn't contain 389 * a valid entry for the address. 390 * 391 * If the address is in kernel space (>= TASK_SIZE), then we are 392 * probably faulting in the vmalloc() area. 393 * 394 * If the init_task's first level page tables contains the relevant 395 * entry, we copy the it to this task. If not, we send the process 396 * a signal, fixup the exception, or oops the kernel. 397 * 398 * NOTE! We MUST NOT take any locks for this case. We may be in an 399 * interrupt or a critical region, and should only copy the information 400 * from the master page table, nothing more. 401 */ 402 #ifdef CONFIG_MMU 403 static int __kprobes 404 do_translation_fault(unsigned long addr, unsigned int fsr, 405 struct pt_regs *regs) 406 { 407 unsigned int index; 408 pgd_t *pgd, *pgd_k; 409 p4d_t *p4d, *p4d_k; 410 pud_t *pud, *pud_k; 411 pmd_t *pmd, *pmd_k; 412 413 if (addr < TASK_SIZE) 414 return do_page_fault(addr, fsr, regs); 415 416 if (user_mode(regs)) 417 goto bad_area; 418 419 index = pgd_index(addr); 420 421 pgd = cpu_get_pgd() + index; 422 pgd_k = init_mm.pgd + index; 423 424 p4d = p4d_offset(pgd, addr); 425 p4d_k = p4d_offset(pgd_k, addr); 426 427 if (p4d_none(*p4d_k)) 428 goto bad_area; 429 if (!p4d_present(*p4d)) 430 set_p4d(p4d, *p4d_k); 431 432 pud = pud_offset(p4d, addr); 433 pud_k = pud_offset(p4d_k, addr); 434 435 if (pud_none(*pud_k)) 436 goto bad_area; 437 if (!pud_present(*pud)) 438 set_pud(pud, *pud_k); 439 440 pmd = pmd_offset(pud, addr); 441 pmd_k = pmd_offset(pud_k, addr); 442 443 #ifdef CONFIG_ARM_LPAE 444 /* 445 * Only one hardware entry per PMD with LPAE. 446 */ 447 index = 0; 448 #else 449 /* 450 * On ARM one Linux PGD entry contains two hardware entries (see page 451 * tables layout in pgtable.h). We normally guarantee that we always 452 * fill both L1 entries. But create_mapping() doesn't follow the rule. 453 * It can create inidividual L1 entries, so here we have to call 454 * pmd_none() check for the entry really corresponded to address, not 455 * for the first of pair. 456 */ 457 index = (addr >> SECTION_SHIFT) & 1; 458 #endif 459 if (pmd_none(pmd_k[index])) 460 goto bad_area; 461 462 copy_pmd(pmd, pmd_k); 463 return 0; 464 465 bad_area: 466 do_bad_area(addr, fsr, regs); 467 return 0; 468 } 469 #else /* CONFIG_MMU */ 470 static int 471 do_translation_fault(unsigned long addr, unsigned int fsr, 472 struct pt_regs *regs) 473 { 474 return 0; 475 } 476 #endif /* CONFIG_MMU */ 477 478 /* 479 * Some section permission faults need to be handled gracefully. 480 * They can happen due to a __{get,put}_user during an oops. 481 */ 482 #ifndef CONFIG_ARM_LPAE 483 static int 484 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 485 { 486 do_bad_area(addr, fsr, regs); 487 return 0; 488 } 489 #endif /* CONFIG_ARM_LPAE */ 490 491 /* 492 * This abort handler always returns "fault". 493 */ 494 static int 495 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 496 { 497 return 1; 498 } 499 500 struct fsr_info { 501 int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs); 502 int sig; 503 int code; 504 const char *name; 505 }; 506 507 /* FSR definition */ 508 #ifdef CONFIG_ARM_LPAE 509 #include "fsr-3level.c" 510 #else 511 #include "fsr-2level.c" 512 #endif 513 514 void __init 515 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), 516 int sig, int code, const char *name) 517 { 518 if (nr < 0 || nr >= ARRAY_SIZE(fsr_info)) 519 BUG(); 520 521 fsr_info[nr].fn = fn; 522 fsr_info[nr].sig = sig; 523 fsr_info[nr].code = code; 524 fsr_info[nr].name = name; 525 } 526 527 /* 528 * Dispatch a data abort to the relevant handler. 529 */ 530 asmlinkage void 531 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 532 { 533 const struct fsr_info *inf = fsr_info + fsr_fs(fsr); 534 535 if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs)) 536 return; 537 538 pr_alert("8<--- cut here ---\n"); 539 pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n", 540 inf->name, fsr, addr); 541 show_pte(KERN_ALERT, current->mm, addr); 542 543 arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr, 544 fsr, 0); 545 } 546 547 void __init 548 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), 549 int sig, int code, const char *name) 550 { 551 if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info)) 552 BUG(); 553 554 ifsr_info[nr].fn = fn; 555 ifsr_info[nr].sig = sig; 556 ifsr_info[nr].code = code; 557 ifsr_info[nr].name = name; 558 } 559 560 asmlinkage void 561 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs) 562 { 563 const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr); 564 565 if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs)) 566 return; 567 568 pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n", 569 inf->name, ifsr, addr); 570 571 arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr, 572 ifsr, 0); 573 } 574 575 /* 576 * Abort handler to be used only during first unmasking of asynchronous aborts 577 * on the boot CPU. This makes sure that the machine will not die if the 578 * firmware/bootloader left an imprecise abort pending for us to trip over. 579 */ 580 static int __init early_abort_handler(unsigned long addr, unsigned int fsr, 581 struct pt_regs *regs) 582 { 583 pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during " 584 "first unmask, this is most likely caused by a " 585 "firmware/bootloader bug.\n", fsr); 586 587 return 0; 588 } 589 590 void __init early_abt_enable(void) 591 { 592 fsr_info[FSR_FS_AEA].fn = early_abort_handler; 593 local_abt_enable(); 594 fsr_info[FSR_FS_AEA].fn = do_bad; 595 } 596 597 #ifndef CONFIG_ARM_LPAE 598 static int __init exceptions_init(void) 599 { 600 if (cpu_architecture() >= CPU_ARCH_ARMv6) { 601 hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR, 602 "I-cache maintenance fault"); 603 } 604 605 if (cpu_architecture() >= CPU_ARCH_ARMv7) { 606 /* 607 * TODO: Access flag faults introduced in ARMv6K. 608 * Runtime check for 'K' extension is needed 609 */ 610 hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR, 611 "section access flag fault"); 612 hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR, 613 "section access flag fault"); 614 } 615 616 return 0; 617 } 618 619 arch_initcall(exceptions_init); 620 #endif 621