xref: /openbmc/linux/arch/arm/mm/fault.c (revision df297bf6)
1 /*
2  *  linux/arch/arm/mm/fault.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Modifications for ARM processor (c) 1995-2004 Russell King
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/signal.h>
13 #include <linux/mm.h>
14 #include <linux/hardirq.h>
15 #include <linux/init.h>
16 #include <linux/kprobes.h>
17 #include <linux/uaccess.h>
18 #include <linux/page-flags.h>
19 #include <linux/sched.h>
20 #include <linux/highmem.h>
21 
22 #include <asm/system.h>
23 #include <asm/pgtable.h>
24 #include <asm/tlbflush.h>
25 
26 #include "fault.h"
27 
28 /*
29  * Fault status register encodings.  We steal bit 31 for our own purposes.
30  */
31 #define FSR_LNX_PF		(1 << 31)
32 #define FSR_WRITE		(1 << 11)
33 #define FSR_FS4			(1 << 10)
34 #define FSR_FS3_0		(15)
35 
36 static inline int fsr_fs(unsigned int fsr)
37 {
38 	return (fsr & FSR_FS3_0) | (fsr & FSR_FS4) >> 6;
39 }
40 
41 #ifdef CONFIG_MMU
42 
43 #ifdef CONFIG_KPROBES
44 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
45 {
46 	int ret = 0;
47 
48 	if (!user_mode(regs)) {
49 		/* kprobe_running() needs smp_processor_id() */
50 		preempt_disable();
51 		if (kprobe_running() && kprobe_fault_handler(regs, fsr))
52 			ret = 1;
53 		preempt_enable();
54 	}
55 
56 	return ret;
57 }
58 #else
59 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
60 {
61 	return 0;
62 }
63 #endif
64 
65 /*
66  * This is useful to dump out the page tables associated with
67  * 'addr' in mm 'mm'.
68  */
69 void show_pte(struct mm_struct *mm, unsigned long addr)
70 {
71 	pgd_t *pgd;
72 
73 	if (!mm)
74 		mm = &init_mm;
75 
76 	printk(KERN_ALERT "pgd = %p\n", mm->pgd);
77 	pgd = pgd_offset(mm, addr);
78 	printk(KERN_ALERT "[%08lx] *pgd=%08lx", addr, pgd_val(*pgd));
79 
80 	do {
81 		pmd_t *pmd;
82 		pte_t *pte;
83 
84 		if (pgd_none(*pgd))
85 			break;
86 
87 		if (pgd_bad(*pgd)) {
88 			printk("(bad)");
89 			break;
90 		}
91 
92 		pmd = pmd_offset(pgd, addr);
93 		if (PTRS_PER_PMD != 1)
94 			printk(", *pmd=%08lx", pmd_val(*pmd));
95 
96 		if (pmd_none(*pmd))
97 			break;
98 
99 		if (pmd_bad(*pmd)) {
100 			printk("(bad)");
101 			break;
102 		}
103 
104 		/* We must not map this if we have highmem enabled */
105 		if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
106 			break;
107 
108 		pte = pte_offset_map(pmd, addr);
109 		printk(", *pte=%08lx", pte_val(*pte));
110 		printk(", *ppte=%08lx", pte_val(pte[-PTRS_PER_PTE]));
111 		pte_unmap(pte);
112 	} while(0);
113 
114 	printk("\n");
115 }
116 #else					/* CONFIG_MMU */
117 void show_pte(struct mm_struct *mm, unsigned long addr)
118 { }
119 #endif					/* CONFIG_MMU */
120 
121 /*
122  * Oops.  The kernel tried to access some page that wasn't present.
123  */
124 static void
125 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
126 		  struct pt_regs *regs)
127 {
128 	/*
129 	 * Are we prepared to handle this kernel fault?
130 	 */
131 	if (fixup_exception(regs))
132 		return;
133 
134 	/*
135 	 * No handler, we'll have to terminate things with extreme prejudice.
136 	 */
137 	bust_spinlocks(1);
138 	printk(KERN_ALERT
139 		"Unable to handle kernel %s at virtual address %08lx\n",
140 		(addr < PAGE_SIZE) ? "NULL pointer dereference" :
141 		"paging request", addr);
142 
143 	show_pte(mm, addr);
144 	die("Oops", regs, fsr);
145 	bust_spinlocks(0);
146 	do_exit(SIGKILL);
147 }
148 
149 /*
150  * Something tried to access memory that isn't in our memory map..
151  * User mode accesses just cause a SIGSEGV
152  */
153 static void
154 __do_user_fault(struct task_struct *tsk, unsigned long addr,
155 		unsigned int fsr, unsigned int sig, int code,
156 		struct pt_regs *regs)
157 {
158 	struct siginfo si;
159 
160 #ifdef CONFIG_DEBUG_USER
161 	if (user_debug & UDBG_SEGV) {
162 		printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
163 		       tsk->comm, sig, addr, fsr);
164 		show_pte(tsk->mm, addr);
165 		show_regs(regs);
166 	}
167 #endif
168 
169 	tsk->thread.address = addr;
170 	tsk->thread.error_code = fsr;
171 	tsk->thread.trap_no = 14;
172 	si.si_signo = sig;
173 	si.si_errno = 0;
174 	si.si_code = code;
175 	si.si_addr = (void __user *)addr;
176 	force_sig_info(sig, &si, tsk);
177 }
178 
179 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
180 {
181 	struct task_struct *tsk = current;
182 	struct mm_struct *mm = tsk->active_mm;
183 
184 	/*
185 	 * If we are in kernel mode at this point, we
186 	 * have no context to handle this fault with.
187 	 */
188 	if (user_mode(regs))
189 		__do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
190 	else
191 		__do_kernel_fault(mm, addr, fsr, regs);
192 }
193 
194 #ifdef CONFIG_MMU
195 #define VM_FAULT_BADMAP		0x010000
196 #define VM_FAULT_BADACCESS	0x020000
197 
198 /*
199  * Check that the permissions on the VMA allow for the fault which occurred.
200  * If we encountered a write fault, we must have write permission, otherwise
201  * we allow any permission.
202  */
203 static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
204 {
205 	unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
206 
207 	if (fsr & FSR_WRITE)
208 		mask = VM_WRITE;
209 	if (fsr & FSR_LNX_PF)
210 		mask = VM_EXEC;
211 
212 	return vma->vm_flags & mask ? false : true;
213 }
214 
215 static int __kprobes
216 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
217 		struct task_struct *tsk)
218 {
219 	struct vm_area_struct *vma;
220 	int fault;
221 
222 	vma = find_vma(mm, addr);
223 	fault = VM_FAULT_BADMAP;
224 	if (unlikely(!vma))
225 		goto out;
226 	if (unlikely(vma->vm_start > addr))
227 		goto check_stack;
228 
229 	/*
230 	 * Ok, we have a good vm_area for this
231 	 * memory access, so we can handle it.
232 	 */
233 good_area:
234 	if (access_error(fsr, vma)) {
235 		fault = VM_FAULT_BADACCESS;
236 		goto out;
237 	}
238 
239 	/*
240 	 * If for any reason at all we couldn't handle the fault, make
241 	 * sure we exit gracefully rather than endlessly redo the fault.
242 	 */
243 	fault = handle_mm_fault(mm, vma, addr & PAGE_MASK, (fsr & FSR_WRITE) ? FAULT_FLAG_WRITE : 0);
244 	if (unlikely(fault & VM_FAULT_ERROR))
245 		return fault;
246 	if (fault & VM_FAULT_MAJOR)
247 		tsk->maj_flt++;
248 	else
249 		tsk->min_flt++;
250 	return fault;
251 
252 check_stack:
253 	if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
254 		goto good_area;
255 out:
256 	return fault;
257 }
258 
259 static int __kprobes
260 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
261 {
262 	struct task_struct *tsk;
263 	struct mm_struct *mm;
264 	int fault, sig, code;
265 
266 	if (notify_page_fault(regs, fsr))
267 		return 0;
268 
269 	tsk = current;
270 	mm  = tsk->mm;
271 
272 	/*
273 	 * If we're in an interrupt or have no user
274 	 * context, we must not take the fault..
275 	 */
276 	if (in_atomic() || !mm)
277 		goto no_context;
278 
279 	/*
280 	 * As per x86, we may deadlock here.  However, since the kernel only
281 	 * validly references user space from well defined areas of the code,
282 	 * we can bug out early if this is from code which shouldn't.
283 	 */
284 	if (!down_read_trylock(&mm->mmap_sem)) {
285 		if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
286 			goto no_context;
287 		down_read(&mm->mmap_sem);
288 	} else {
289 		/*
290 		 * The above down_read_trylock() might have succeeded in
291 		 * which case, we'll have missed the might_sleep() from
292 		 * down_read()
293 		 */
294 		might_sleep();
295 	}
296 
297 	fault = __do_page_fault(mm, addr, fsr, tsk);
298 	up_read(&mm->mmap_sem);
299 
300 	/*
301 	 * Handle the "normal" case first - VM_FAULT_MAJOR / VM_FAULT_MINOR
302 	 */
303 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
304 		return 0;
305 
306 	if (fault & VM_FAULT_OOM) {
307 		/*
308 		 * We ran out of memory, call the OOM killer, and return to
309 		 * userspace (which will retry the fault, or kill us if we
310 		 * got oom-killed)
311 		 */
312 		pagefault_out_of_memory();
313 		return 0;
314 	}
315 
316 	/*
317 	 * If we are in kernel mode at this point, we
318 	 * have no context to handle this fault with.
319 	 */
320 	if (!user_mode(regs))
321 		goto no_context;
322 
323 	if (fault & VM_FAULT_SIGBUS) {
324 		/*
325 		 * We had some memory, but were unable to
326 		 * successfully fix up this page fault.
327 		 */
328 		sig = SIGBUS;
329 		code = BUS_ADRERR;
330 	} else {
331 		/*
332 		 * Something tried to access memory that
333 		 * isn't in our memory map..
334 		 */
335 		sig = SIGSEGV;
336 		code = fault == VM_FAULT_BADACCESS ?
337 			SEGV_ACCERR : SEGV_MAPERR;
338 	}
339 
340 	__do_user_fault(tsk, addr, fsr, sig, code, regs);
341 	return 0;
342 
343 no_context:
344 	__do_kernel_fault(mm, addr, fsr, regs);
345 	return 0;
346 }
347 #else					/* CONFIG_MMU */
348 static int
349 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
350 {
351 	return 0;
352 }
353 #endif					/* CONFIG_MMU */
354 
355 /*
356  * First Level Translation Fault Handler
357  *
358  * We enter here because the first level page table doesn't contain
359  * a valid entry for the address.
360  *
361  * If the address is in kernel space (>= TASK_SIZE), then we are
362  * probably faulting in the vmalloc() area.
363  *
364  * If the init_task's first level page tables contains the relevant
365  * entry, we copy the it to this task.  If not, we send the process
366  * a signal, fixup the exception, or oops the kernel.
367  *
368  * NOTE! We MUST NOT take any locks for this case. We may be in an
369  * interrupt or a critical region, and should only copy the information
370  * from the master page table, nothing more.
371  */
372 #ifdef CONFIG_MMU
373 static int __kprobes
374 do_translation_fault(unsigned long addr, unsigned int fsr,
375 		     struct pt_regs *regs)
376 {
377 	unsigned int index;
378 	pgd_t *pgd, *pgd_k;
379 	pmd_t *pmd, *pmd_k;
380 
381 	if (addr < TASK_SIZE)
382 		return do_page_fault(addr, fsr, regs);
383 
384 	index = pgd_index(addr);
385 
386 	/*
387 	 * FIXME: CP15 C1 is write only on ARMv3 architectures.
388 	 */
389 	pgd = cpu_get_pgd() + index;
390 	pgd_k = init_mm.pgd + index;
391 
392 	if (pgd_none(*pgd_k))
393 		goto bad_area;
394 
395 	if (!pgd_present(*pgd))
396 		set_pgd(pgd, *pgd_k);
397 
398 	pmd_k = pmd_offset(pgd_k, addr);
399 	pmd   = pmd_offset(pgd, addr);
400 
401 	if (pmd_none(*pmd_k))
402 		goto bad_area;
403 
404 	copy_pmd(pmd, pmd_k);
405 	return 0;
406 
407 bad_area:
408 	do_bad_area(addr, fsr, regs);
409 	return 0;
410 }
411 #else					/* CONFIG_MMU */
412 static int
413 do_translation_fault(unsigned long addr, unsigned int fsr,
414 		     struct pt_regs *regs)
415 {
416 	return 0;
417 }
418 #endif					/* CONFIG_MMU */
419 
420 /*
421  * Some section permission faults need to be handled gracefully.
422  * They can happen due to a __{get,put}_user during an oops.
423  */
424 static int
425 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
426 {
427 	do_bad_area(addr, fsr, regs);
428 	return 0;
429 }
430 
431 /*
432  * This abort handler always returns "fault".
433  */
434 static int
435 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
436 {
437 	return 1;
438 }
439 
440 static struct fsr_info {
441 	int	(*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
442 	int	sig;
443 	int	code;
444 	const char *name;
445 } fsr_info[] = {
446 	/*
447 	 * The following are the standard ARMv3 and ARMv4 aborts.  ARMv5
448 	 * defines these to be "precise" aborts.
449 	 */
450 	{ do_bad,		SIGSEGV, 0,		"vector exception"		   },
451 	{ do_bad,		SIGILL,	 BUS_ADRALN,	"alignment exception"		   },
452 	{ do_bad,		SIGKILL, 0,		"terminal exception"		   },
453 	{ do_bad,		SIGILL,	 BUS_ADRALN,	"alignment exception"		   },
454 	{ do_bad,		SIGBUS,	 0,		"external abort on linefetch"	   },
455 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"section translation fault"	   },
456 	{ do_bad,		SIGBUS,	 0,		"external abort on linefetch"	   },
457 	{ do_page_fault,	SIGSEGV, SEGV_MAPERR,	"page translation fault"	   },
458 	{ do_bad,		SIGBUS,	 0,		"external abort on non-linefetch"  },
459 	{ do_bad,		SIGSEGV, SEGV_ACCERR,	"section domain fault"		   },
460 	{ do_bad,		SIGBUS,	 0,		"external abort on non-linefetch"  },
461 	{ do_bad,		SIGSEGV, SEGV_ACCERR,	"page domain fault"		   },
462 	{ do_bad,		SIGBUS,	 0,		"external abort on translation"	   },
463 	{ do_sect_fault,	SIGSEGV, SEGV_ACCERR,	"section permission fault"	   },
464 	{ do_bad,		SIGBUS,	 0,		"external abort on translation"	   },
465 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"page permission fault"		   },
466 	/*
467 	 * The following are "imprecise" aborts, which are signalled by bit
468 	 * 10 of the FSR, and may not be recoverable.  These are only
469 	 * supported if the CPU abort handler supports bit 10.
470 	 */
471 	{ do_bad,		SIGBUS,  0,		"unknown 16"			   },
472 	{ do_bad,		SIGBUS,  0,		"unknown 17"			   },
473 	{ do_bad,		SIGBUS,  0,		"unknown 18"			   },
474 	{ do_bad,		SIGBUS,  0,		"unknown 19"			   },
475 	{ do_bad,		SIGBUS,  0,		"lock abort"			   }, /* xscale */
476 	{ do_bad,		SIGBUS,  0,		"unknown 21"			   },
477 	{ do_bad,		SIGBUS,  BUS_OBJERR,	"imprecise external abort"	   }, /* xscale */
478 	{ do_bad,		SIGBUS,  0,		"unknown 23"			   },
479 	{ do_bad,		SIGBUS,  0,		"dcache parity error"		   }, /* xscale */
480 	{ do_bad,		SIGBUS,  0,		"unknown 25"			   },
481 	{ do_bad,		SIGBUS,  0,		"unknown 26"			   },
482 	{ do_bad,		SIGBUS,  0,		"unknown 27"			   },
483 	{ do_bad,		SIGBUS,  0,		"unknown 28"			   },
484 	{ do_bad,		SIGBUS,  0,		"unknown 29"			   },
485 	{ do_bad,		SIGBUS,  0,		"unknown 30"			   },
486 	{ do_bad,		SIGBUS,  0,		"unknown 31"			   }
487 };
488 
489 void __init
490 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
491 		int sig, const char *name)
492 {
493 	if (nr >= 0 && nr < ARRAY_SIZE(fsr_info)) {
494 		fsr_info[nr].fn   = fn;
495 		fsr_info[nr].sig  = sig;
496 		fsr_info[nr].name = name;
497 	}
498 }
499 
500 /*
501  * Dispatch a data abort to the relevant handler.
502  */
503 asmlinkage void __exception
504 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
505 {
506 	const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
507 	struct siginfo info;
508 
509 	if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
510 		return;
511 
512 	printk(KERN_ALERT "Unhandled fault: %s (0x%03x) at 0x%08lx\n",
513 		inf->name, fsr, addr);
514 
515 	info.si_signo = inf->sig;
516 	info.si_errno = 0;
517 	info.si_code  = inf->code;
518 	info.si_addr  = (void __user *)addr;
519 	arm_notify_die("", regs, &info, fsr, 0);
520 }
521 
522 asmlinkage void __exception
523 do_PrefetchAbort(unsigned long addr, struct pt_regs *regs)
524 {
525 	do_translation_fault(addr, FSR_LNX_PF, regs);
526 }
527 
528