1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/mm/fault.c 4 * 5 * Copyright (C) 1995 Linus Torvalds 6 * Modifications for ARM processor (c) 1995-2004 Russell King 7 */ 8 #include <linux/extable.h> 9 #include <linux/signal.h> 10 #include <linux/mm.h> 11 #include <linux/hardirq.h> 12 #include <linux/init.h> 13 #include <linux/kprobes.h> 14 #include <linux/uaccess.h> 15 #include <linux/page-flags.h> 16 #include <linux/sched/signal.h> 17 #include <linux/sched/debug.h> 18 #include <linux/highmem.h> 19 #include <linux/perf_event.h> 20 #include <linux/kfence.h> 21 22 #include <asm/system_misc.h> 23 #include <asm/system_info.h> 24 #include <asm/tlbflush.h> 25 26 #include "fault.h" 27 28 #ifdef CONFIG_MMU 29 30 /* 31 * This is useful to dump out the page tables associated with 32 * 'addr' in mm 'mm'. 33 */ 34 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr) 35 { 36 pgd_t *pgd; 37 38 if (!mm) 39 mm = &init_mm; 40 41 pgd = pgd_offset(mm, addr); 42 printk("%s[%08lx] *pgd=%08llx", lvl, addr, (long long)pgd_val(*pgd)); 43 44 do { 45 p4d_t *p4d; 46 pud_t *pud; 47 pmd_t *pmd; 48 pte_t *pte; 49 50 p4d = p4d_offset(pgd, addr); 51 if (p4d_none(*p4d)) 52 break; 53 54 if (p4d_bad(*p4d)) { 55 pr_cont("(bad)"); 56 break; 57 } 58 59 pud = pud_offset(p4d, addr); 60 if (PTRS_PER_PUD != 1) 61 pr_cont(", *pud=%08llx", (long long)pud_val(*pud)); 62 63 if (pud_none(*pud)) 64 break; 65 66 if (pud_bad(*pud)) { 67 pr_cont("(bad)"); 68 break; 69 } 70 71 pmd = pmd_offset(pud, addr); 72 if (PTRS_PER_PMD != 1) 73 pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd)); 74 75 if (pmd_none(*pmd)) 76 break; 77 78 if (pmd_bad(*pmd)) { 79 pr_cont("(bad)"); 80 break; 81 } 82 83 /* We must not map this if we have highmem enabled */ 84 if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT))) 85 break; 86 87 pte = pte_offset_map(pmd, addr); 88 pr_cont(", *pte=%08llx", (long long)pte_val(*pte)); 89 #ifndef CONFIG_ARM_LPAE 90 pr_cont(", *ppte=%08llx", 91 (long long)pte_val(pte[PTE_HWTABLE_PTRS])); 92 #endif 93 pte_unmap(pte); 94 } while(0); 95 96 pr_cont("\n"); 97 } 98 #else /* CONFIG_MMU */ 99 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr) 100 { } 101 #endif /* CONFIG_MMU */ 102 103 static inline bool is_write_fault(unsigned int fsr) 104 { 105 return (fsr & FSR_WRITE) && !(fsr & FSR_CM); 106 } 107 108 static void die_kernel_fault(const char *msg, struct mm_struct *mm, 109 unsigned long addr, unsigned int fsr, 110 struct pt_regs *regs) 111 { 112 bust_spinlocks(1); 113 pr_alert("8<--- cut here ---\n"); 114 pr_alert("Unable to handle kernel %s at virtual address %08lx\n", 115 msg, addr); 116 117 show_pte(KERN_ALERT, mm, addr); 118 die("Oops", regs, fsr); 119 bust_spinlocks(0); 120 make_task_dead(SIGKILL); 121 } 122 123 /* 124 * Oops. The kernel tried to access some page that wasn't present. 125 */ 126 static void 127 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr, 128 struct pt_regs *regs) 129 { 130 const char *msg; 131 /* 132 * Are we prepared to handle this kernel fault? 133 */ 134 if (fixup_exception(regs)) 135 return; 136 137 /* 138 * No handler, we'll have to terminate things with extreme prejudice. 139 */ 140 if (addr < PAGE_SIZE) { 141 msg = "NULL pointer dereference"; 142 } else { 143 if (kfence_handle_page_fault(addr, is_write_fault(fsr), regs)) 144 return; 145 146 msg = "paging request"; 147 } 148 149 die_kernel_fault(msg, mm, addr, fsr, regs); 150 } 151 152 /* 153 * Something tried to access memory that isn't in our memory map.. 154 * User mode accesses just cause a SIGSEGV 155 */ 156 static void 157 __do_user_fault(unsigned long addr, unsigned int fsr, unsigned int sig, 158 int code, struct pt_regs *regs) 159 { 160 struct task_struct *tsk = current; 161 162 if (addr > TASK_SIZE) 163 harden_branch_predictor(); 164 165 #ifdef CONFIG_DEBUG_USER 166 if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) || 167 ((user_debug & UDBG_BUS) && (sig == SIGBUS))) { 168 pr_err("8<--- cut here ---\n"); 169 pr_err("%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n", 170 tsk->comm, sig, addr, fsr); 171 show_pte(KERN_ERR, tsk->mm, addr); 172 show_regs(regs); 173 } 174 #endif 175 #ifndef CONFIG_KUSER_HELPERS 176 if ((sig == SIGSEGV) && ((addr & PAGE_MASK) == 0xffff0000)) 177 printk_ratelimited(KERN_DEBUG 178 "%s: CONFIG_KUSER_HELPERS disabled at 0x%08lx\n", 179 tsk->comm, addr); 180 #endif 181 182 tsk->thread.address = addr; 183 tsk->thread.error_code = fsr; 184 tsk->thread.trap_no = 14; 185 force_sig_fault(sig, code, (void __user *)addr); 186 } 187 188 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 189 { 190 struct task_struct *tsk = current; 191 struct mm_struct *mm = tsk->active_mm; 192 193 /* 194 * If we are in kernel mode at this point, we 195 * have no context to handle this fault with. 196 */ 197 if (user_mode(regs)) 198 __do_user_fault(addr, fsr, SIGSEGV, SEGV_MAPERR, regs); 199 else 200 __do_kernel_fault(mm, addr, fsr, regs); 201 } 202 203 #ifdef CONFIG_MMU 204 #define VM_FAULT_BADMAP ((__force vm_fault_t)0x010000) 205 #define VM_FAULT_BADACCESS ((__force vm_fault_t)0x020000) 206 207 static inline bool is_permission_fault(unsigned int fsr) 208 { 209 int fs = fsr_fs(fsr); 210 #ifdef CONFIG_ARM_LPAE 211 if ((fs & FS_PERM_NOLL_MASK) == FS_PERM_NOLL) 212 return true; 213 #else 214 if (fs == FS_L1_PERM || fs == FS_L2_PERM) 215 return true; 216 #endif 217 return false; 218 } 219 220 static vm_fault_t __kprobes 221 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int flags, 222 unsigned long vma_flags, struct pt_regs *regs) 223 { 224 struct vm_area_struct *vma = find_vma(mm, addr); 225 if (unlikely(!vma)) 226 return VM_FAULT_BADMAP; 227 228 if (unlikely(vma->vm_start > addr)) { 229 if (!(vma->vm_flags & VM_GROWSDOWN)) 230 return VM_FAULT_BADMAP; 231 if (addr < FIRST_USER_ADDRESS) 232 return VM_FAULT_BADMAP; 233 if (expand_stack(vma, addr)) 234 return VM_FAULT_BADMAP; 235 } 236 237 /* 238 * ok, we have a good vm_area for this memory access, check the 239 * permissions on the VMA allow for the fault which occurred. 240 */ 241 if (!(vma->vm_flags & vma_flags)) 242 return VM_FAULT_BADACCESS; 243 244 return handle_mm_fault(vma, addr & PAGE_MASK, flags, regs); 245 } 246 247 static int __kprobes 248 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 249 { 250 struct mm_struct *mm = current->mm; 251 int sig, code; 252 vm_fault_t fault; 253 unsigned int flags = FAULT_FLAG_DEFAULT; 254 unsigned long vm_flags = VM_ACCESS_FLAGS; 255 256 if (kprobe_page_fault(regs, fsr)) 257 return 0; 258 259 260 /* Enable interrupts if they were enabled in the parent context. */ 261 if (interrupts_enabled(regs)) 262 local_irq_enable(); 263 264 /* 265 * If we're in an interrupt or have no user 266 * context, we must not take the fault.. 267 */ 268 if (faulthandler_disabled() || !mm) 269 goto no_context; 270 271 if (user_mode(regs)) 272 flags |= FAULT_FLAG_USER; 273 274 if (is_write_fault(fsr)) { 275 flags |= FAULT_FLAG_WRITE; 276 vm_flags = VM_WRITE; 277 } 278 279 if (fsr & FSR_LNX_PF) { 280 vm_flags = VM_EXEC; 281 282 if (is_permission_fault(fsr) && !user_mode(regs)) 283 die_kernel_fault("execution of memory", 284 mm, addr, fsr, regs); 285 } 286 287 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); 288 289 /* 290 * As per x86, we may deadlock here. However, since the kernel only 291 * validly references user space from well defined areas of the code, 292 * we can bug out early if this is from code which shouldn't. 293 */ 294 if (!mmap_read_trylock(mm)) { 295 if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc)) 296 goto no_context; 297 retry: 298 mmap_read_lock(mm); 299 } else { 300 /* 301 * The above down_read_trylock() might have succeeded in 302 * which case, we'll have missed the might_sleep() from 303 * down_read() 304 */ 305 might_sleep(); 306 #ifdef CONFIG_DEBUG_VM 307 if (!user_mode(regs) && 308 !search_exception_tables(regs->ARM_pc)) 309 goto no_context; 310 #endif 311 } 312 313 fault = __do_page_fault(mm, addr, flags, vm_flags, regs); 314 315 /* If we need to retry but a fatal signal is pending, handle the 316 * signal first. We do not need to release the mmap_lock because 317 * it would already be released in __lock_page_or_retry in 318 * mm/filemap.c. */ 319 if (fault_signal_pending(fault, regs)) { 320 if (!user_mode(regs)) 321 goto no_context; 322 return 0; 323 } 324 325 if (!(fault & VM_FAULT_ERROR)) { 326 if (fault & VM_FAULT_RETRY) { 327 flags |= FAULT_FLAG_TRIED; 328 goto retry; 329 } 330 } 331 332 mmap_read_unlock(mm); 333 334 /* 335 * Handle the "normal" case first - VM_FAULT_MAJOR 336 */ 337 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS)))) 338 return 0; 339 340 /* 341 * If we are in kernel mode at this point, we 342 * have no context to handle this fault with. 343 */ 344 if (!user_mode(regs)) 345 goto no_context; 346 347 if (fault & VM_FAULT_OOM) { 348 /* 349 * We ran out of memory, call the OOM killer, and return to 350 * userspace (which will retry the fault, or kill us if we 351 * got oom-killed) 352 */ 353 pagefault_out_of_memory(); 354 return 0; 355 } 356 357 if (fault & VM_FAULT_SIGBUS) { 358 /* 359 * We had some memory, but were unable to 360 * successfully fix up this page fault. 361 */ 362 sig = SIGBUS; 363 code = BUS_ADRERR; 364 } else { 365 /* 366 * Something tried to access memory that 367 * isn't in our memory map.. 368 */ 369 sig = SIGSEGV; 370 code = fault == VM_FAULT_BADACCESS ? 371 SEGV_ACCERR : SEGV_MAPERR; 372 } 373 374 __do_user_fault(addr, fsr, sig, code, regs); 375 return 0; 376 377 no_context: 378 __do_kernel_fault(mm, addr, fsr, regs); 379 return 0; 380 } 381 #else /* CONFIG_MMU */ 382 static int 383 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 384 { 385 return 0; 386 } 387 #endif /* CONFIG_MMU */ 388 389 /* 390 * First Level Translation Fault Handler 391 * 392 * We enter here because the first level page table doesn't contain 393 * a valid entry for the address. 394 * 395 * If the address is in kernel space (>= TASK_SIZE), then we are 396 * probably faulting in the vmalloc() area. 397 * 398 * If the init_task's first level page tables contains the relevant 399 * entry, we copy the it to this task. If not, we send the process 400 * a signal, fixup the exception, or oops the kernel. 401 * 402 * NOTE! We MUST NOT take any locks for this case. We may be in an 403 * interrupt or a critical region, and should only copy the information 404 * from the master page table, nothing more. 405 */ 406 #ifdef CONFIG_MMU 407 static int __kprobes 408 do_translation_fault(unsigned long addr, unsigned int fsr, 409 struct pt_regs *regs) 410 { 411 unsigned int index; 412 pgd_t *pgd, *pgd_k; 413 p4d_t *p4d, *p4d_k; 414 pud_t *pud, *pud_k; 415 pmd_t *pmd, *pmd_k; 416 417 if (addr < TASK_SIZE) 418 return do_page_fault(addr, fsr, regs); 419 420 if (user_mode(regs)) 421 goto bad_area; 422 423 index = pgd_index(addr); 424 425 pgd = cpu_get_pgd() + index; 426 pgd_k = init_mm.pgd + index; 427 428 p4d = p4d_offset(pgd, addr); 429 p4d_k = p4d_offset(pgd_k, addr); 430 431 if (p4d_none(*p4d_k)) 432 goto bad_area; 433 if (!p4d_present(*p4d)) 434 set_p4d(p4d, *p4d_k); 435 436 pud = pud_offset(p4d, addr); 437 pud_k = pud_offset(p4d_k, addr); 438 439 if (pud_none(*pud_k)) 440 goto bad_area; 441 if (!pud_present(*pud)) 442 set_pud(pud, *pud_k); 443 444 pmd = pmd_offset(pud, addr); 445 pmd_k = pmd_offset(pud_k, addr); 446 447 #ifdef CONFIG_ARM_LPAE 448 /* 449 * Only one hardware entry per PMD with LPAE. 450 */ 451 index = 0; 452 #else 453 /* 454 * On ARM one Linux PGD entry contains two hardware entries (see page 455 * tables layout in pgtable.h). We normally guarantee that we always 456 * fill both L1 entries. But create_mapping() doesn't follow the rule. 457 * It can create inidividual L1 entries, so here we have to call 458 * pmd_none() check for the entry really corresponded to address, not 459 * for the first of pair. 460 */ 461 index = (addr >> SECTION_SHIFT) & 1; 462 #endif 463 if (pmd_none(pmd_k[index])) 464 goto bad_area; 465 466 copy_pmd(pmd, pmd_k); 467 return 0; 468 469 bad_area: 470 do_bad_area(addr, fsr, regs); 471 return 0; 472 } 473 #else /* CONFIG_MMU */ 474 static int 475 do_translation_fault(unsigned long addr, unsigned int fsr, 476 struct pt_regs *regs) 477 { 478 return 0; 479 } 480 #endif /* CONFIG_MMU */ 481 482 /* 483 * Some section permission faults need to be handled gracefully. 484 * They can happen due to a __{get,put}_user during an oops. 485 */ 486 #ifndef CONFIG_ARM_LPAE 487 static int 488 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 489 { 490 do_bad_area(addr, fsr, regs); 491 return 0; 492 } 493 #endif /* CONFIG_ARM_LPAE */ 494 495 /* 496 * This abort handler always returns "fault". 497 */ 498 static int 499 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 500 { 501 return 1; 502 } 503 504 struct fsr_info { 505 int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs); 506 int sig; 507 int code; 508 const char *name; 509 }; 510 511 /* FSR definition */ 512 #ifdef CONFIG_ARM_LPAE 513 #include "fsr-3level.c" 514 #else 515 #include "fsr-2level.c" 516 #endif 517 518 void __init 519 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), 520 int sig, int code, const char *name) 521 { 522 if (nr < 0 || nr >= ARRAY_SIZE(fsr_info)) 523 BUG(); 524 525 fsr_info[nr].fn = fn; 526 fsr_info[nr].sig = sig; 527 fsr_info[nr].code = code; 528 fsr_info[nr].name = name; 529 } 530 531 /* 532 * Dispatch a data abort to the relevant handler. 533 */ 534 asmlinkage void 535 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 536 { 537 const struct fsr_info *inf = fsr_info + fsr_fs(fsr); 538 539 if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs)) 540 return; 541 542 pr_alert("8<--- cut here ---\n"); 543 pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n", 544 inf->name, fsr, addr); 545 show_pte(KERN_ALERT, current->mm, addr); 546 547 arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr, 548 fsr, 0); 549 } 550 551 void __init 552 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), 553 int sig, int code, const char *name) 554 { 555 if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info)) 556 BUG(); 557 558 ifsr_info[nr].fn = fn; 559 ifsr_info[nr].sig = sig; 560 ifsr_info[nr].code = code; 561 ifsr_info[nr].name = name; 562 } 563 564 asmlinkage void 565 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs) 566 { 567 const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr); 568 569 if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs)) 570 return; 571 572 pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n", 573 inf->name, ifsr, addr); 574 575 arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr, 576 ifsr, 0); 577 } 578 579 /* 580 * Abort handler to be used only during first unmasking of asynchronous aborts 581 * on the boot CPU. This makes sure that the machine will not die if the 582 * firmware/bootloader left an imprecise abort pending for us to trip over. 583 */ 584 static int __init early_abort_handler(unsigned long addr, unsigned int fsr, 585 struct pt_regs *regs) 586 { 587 pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during " 588 "first unmask, this is most likely caused by a " 589 "firmware/bootloader bug.\n", fsr); 590 591 return 0; 592 } 593 594 void __init early_abt_enable(void) 595 { 596 fsr_info[FSR_FS_AEA].fn = early_abort_handler; 597 local_abt_enable(); 598 fsr_info[FSR_FS_AEA].fn = do_bad; 599 } 600 601 #ifndef CONFIG_ARM_LPAE 602 static int __init exceptions_init(void) 603 { 604 if (cpu_architecture() >= CPU_ARCH_ARMv6) { 605 hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR, 606 "I-cache maintenance fault"); 607 } 608 609 if (cpu_architecture() >= CPU_ARCH_ARMv7) { 610 /* 611 * TODO: Access flag faults introduced in ARMv6K. 612 * Runtime check for 'K' extension is needed 613 */ 614 hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR, 615 "section access flag fault"); 616 hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR, 617 "section access flag fault"); 618 } 619 620 return 0; 621 } 622 623 arch_initcall(exceptions_init); 624 #endif 625