xref: /openbmc/linux/arch/arm/mm/fault.c (revision c32e64e8)
1 /*
2  *  linux/arch/arm/mm/fault.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Modifications for ARM processor (c) 1995-2004 Russell King
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/extable.h>
12 #include <linux/signal.h>
13 #include <linux/mm.h>
14 #include <linux/hardirq.h>
15 #include <linux/init.h>
16 #include <linux/kprobes.h>
17 #include <linux/uaccess.h>
18 #include <linux/page-flags.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/debug.h>
21 #include <linux/highmem.h>
22 #include <linux/perf_event.h>
23 
24 #include <asm/pgtable.h>
25 #include <asm/system_misc.h>
26 #include <asm/system_info.h>
27 #include <asm/tlbflush.h>
28 
29 #include "fault.h"
30 
31 #ifdef CONFIG_MMU
32 
33 #ifdef CONFIG_KPROBES
34 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
35 {
36 	int ret = 0;
37 
38 	if (!user_mode(regs)) {
39 		/* kprobe_running() needs smp_processor_id() */
40 		preempt_disable();
41 		if (kprobe_running() && kprobe_fault_handler(regs, fsr))
42 			ret = 1;
43 		preempt_enable();
44 	}
45 
46 	return ret;
47 }
48 #else
49 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
50 {
51 	return 0;
52 }
53 #endif
54 
55 /*
56  * This is useful to dump out the page tables associated with
57  * 'addr' in mm 'mm'.
58  */
59 void show_pte(struct mm_struct *mm, unsigned long addr)
60 {
61 	pgd_t *pgd;
62 
63 	if (!mm)
64 		mm = &init_mm;
65 
66 	pr_alert("pgd = %p\n", mm->pgd);
67 	pgd = pgd_offset(mm, addr);
68 	pr_alert("[%08lx] *pgd=%08llx",
69 			addr, (long long)pgd_val(*pgd));
70 
71 	do {
72 		pud_t *pud;
73 		pmd_t *pmd;
74 		pte_t *pte;
75 
76 		if (pgd_none(*pgd))
77 			break;
78 
79 		if (pgd_bad(*pgd)) {
80 			pr_cont("(bad)");
81 			break;
82 		}
83 
84 		pud = pud_offset(pgd, addr);
85 		if (PTRS_PER_PUD != 1)
86 			pr_cont(", *pud=%08llx", (long long)pud_val(*pud));
87 
88 		if (pud_none(*pud))
89 			break;
90 
91 		if (pud_bad(*pud)) {
92 			pr_cont("(bad)");
93 			break;
94 		}
95 
96 		pmd = pmd_offset(pud, addr);
97 		if (PTRS_PER_PMD != 1)
98 			pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd));
99 
100 		if (pmd_none(*pmd))
101 			break;
102 
103 		if (pmd_bad(*pmd)) {
104 			pr_cont("(bad)");
105 			break;
106 		}
107 
108 		/* We must not map this if we have highmem enabled */
109 		if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
110 			break;
111 
112 		pte = pte_offset_map(pmd, addr);
113 		pr_cont(", *pte=%08llx", (long long)pte_val(*pte));
114 #ifndef CONFIG_ARM_LPAE
115 		pr_cont(", *ppte=%08llx",
116 		       (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
117 #endif
118 		pte_unmap(pte);
119 	} while(0);
120 
121 	pr_cont("\n");
122 }
123 #else					/* CONFIG_MMU */
124 void show_pte(struct mm_struct *mm, unsigned long addr)
125 { }
126 #endif					/* CONFIG_MMU */
127 
128 /*
129  * Oops.  The kernel tried to access some page that wasn't present.
130  */
131 static void
132 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
133 		  struct pt_regs *regs)
134 {
135 	/*
136 	 * Are we prepared to handle this kernel fault?
137 	 */
138 	if (fixup_exception(regs))
139 		return;
140 
141 	/*
142 	 * No handler, we'll have to terminate things with extreme prejudice.
143 	 */
144 	bust_spinlocks(1);
145 	pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
146 		 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
147 		 "paging request", addr);
148 
149 	show_pte(mm, addr);
150 	die("Oops", regs, fsr);
151 	bust_spinlocks(0);
152 	do_exit(SIGKILL);
153 }
154 
155 /*
156  * Something tried to access memory that isn't in our memory map..
157  * User mode accesses just cause a SIGSEGV
158  */
159 static void
160 __do_user_fault(struct task_struct *tsk, unsigned long addr,
161 		unsigned int fsr, unsigned int sig, int code,
162 		struct pt_regs *regs)
163 {
164 	struct siginfo si;
165 
166 	if (addr > TASK_SIZE)
167 		harden_branch_predictor();
168 
169 	clear_siginfo(&si);
170 
171 #ifdef CONFIG_DEBUG_USER
172 	if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
173 	    ((user_debug & UDBG_BUS)  && (sig == SIGBUS))) {
174 		printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
175 		       tsk->comm, sig, addr, fsr);
176 		show_pte(tsk->mm, addr);
177 		show_regs(regs);
178 	}
179 #endif
180 
181 	tsk->thread.address = addr;
182 	tsk->thread.error_code = fsr;
183 	tsk->thread.trap_no = 14;
184 	si.si_signo = sig;
185 	si.si_errno = 0;
186 	si.si_code = code;
187 	si.si_addr = (void __user *)addr;
188 	force_sig_info(sig, &si, tsk);
189 }
190 
191 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
192 {
193 	struct task_struct *tsk = current;
194 	struct mm_struct *mm = tsk->active_mm;
195 
196 	/*
197 	 * If we are in kernel mode at this point, we
198 	 * have no context to handle this fault with.
199 	 */
200 	if (user_mode(regs))
201 		__do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
202 	else
203 		__do_kernel_fault(mm, addr, fsr, regs);
204 }
205 
206 #ifdef CONFIG_MMU
207 #define VM_FAULT_BADMAP		0x010000
208 #define VM_FAULT_BADACCESS	0x020000
209 
210 /*
211  * Check that the permissions on the VMA allow for the fault which occurred.
212  * If we encountered a write fault, we must have write permission, otherwise
213  * we allow any permission.
214  */
215 static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
216 {
217 	unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
218 
219 	if (fsr & FSR_WRITE)
220 		mask = VM_WRITE;
221 	if (fsr & FSR_LNX_PF)
222 		mask = VM_EXEC;
223 
224 	return vma->vm_flags & mask ? false : true;
225 }
226 
227 static vm_fault_t __kprobes
228 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
229 		unsigned int flags, struct task_struct *tsk)
230 {
231 	struct vm_area_struct *vma;
232 	vm_fault_t fault;
233 
234 	vma = find_vma(mm, addr);
235 	fault = VM_FAULT_BADMAP;
236 	if (unlikely(!vma))
237 		goto out;
238 	if (unlikely(vma->vm_start > addr))
239 		goto check_stack;
240 
241 	/*
242 	 * Ok, we have a good vm_area for this
243 	 * memory access, so we can handle it.
244 	 */
245 good_area:
246 	if (access_error(fsr, vma)) {
247 		fault = VM_FAULT_BADACCESS;
248 		goto out;
249 	}
250 
251 	return handle_mm_fault(vma, addr & PAGE_MASK, flags);
252 
253 check_stack:
254 	/* Don't allow expansion below FIRST_USER_ADDRESS */
255 	if (vma->vm_flags & VM_GROWSDOWN &&
256 	    addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr))
257 		goto good_area;
258 out:
259 	return fault;
260 }
261 
262 static int __kprobes
263 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
264 {
265 	struct task_struct *tsk;
266 	struct mm_struct *mm;
267 	int sig, code;
268 	vm_fault_t fault;
269 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
270 
271 	if (notify_page_fault(regs, fsr))
272 		return 0;
273 
274 	tsk = current;
275 	mm  = tsk->mm;
276 
277 	/* Enable interrupts if they were enabled in the parent context. */
278 	if (interrupts_enabled(regs))
279 		local_irq_enable();
280 
281 	/*
282 	 * If we're in an interrupt or have no user
283 	 * context, we must not take the fault..
284 	 */
285 	if (faulthandler_disabled() || !mm)
286 		goto no_context;
287 
288 	if (user_mode(regs))
289 		flags |= FAULT_FLAG_USER;
290 	if (fsr & FSR_WRITE)
291 		flags |= FAULT_FLAG_WRITE;
292 
293 	/*
294 	 * As per x86, we may deadlock here.  However, since the kernel only
295 	 * validly references user space from well defined areas of the code,
296 	 * we can bug out early if this is from code which shouldn't.
297 	 */
298 	if (!down_read_trylock(&mm->mmap_sem)) {
299 		if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
300 			goto no_context;
301 retry:
302 		down_read(&mm->mmap_sem);
303 	} else {
304 		/*
305 		 * The above down_read_trylock() might have succeeded in
306 		 * which case, we'll have missed the might_sleep() from
307 		 * down_read()
308 		 */
309 		might_sleep();
310 #ifdef CONFIG_DEBUG_VM
311 		if (!user_mode(regs) &&
312 		    !search_exception_tables(regs->ARM_pc))
313 			goto no_context;
314 #endif
315 	}
316 
317 	fault = __do_page_fault(mm, addr, fsr, flags, tsk);
318 
319 	/* If we need to retry but a fatal signal is pending, handle the
320 	 * signal first. We do not need to release the mmap_sem because
321 	 * it would already be released in __lock_page_or_retry in
322 	 * mm/filemap.c. */
323 	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
324 		if (!user_mode(regs))
325 			goto no_context;
326 		return 0;
327 	}
328 
329 	/*
330 	 * Major/minor page fault accounting is only done on the
331 	 * initial attempt. If we go through a retry, it is extremely
332 	 * likely that the page will be found in page cache at that point.
333 	 */
334 
335 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
336 	if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) {
337 		if (fault & VM_FAULT_MAJOR) {
338 			tsk->maj_flt++;
339 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
340 					regs, addr);
341 		} else {
342 			tsk->min_flt++;
343 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
344 					regs, addr);
345 		}
346 		if (fault & VM_FAULT_RETRY) {
347 			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
348 			* of starvation. */
349 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
350 			flags |= FAULT_FLAG_TRIED;
351 			goto retry;
352 		}
353 	}
354 
355 	up_read(&mm->mmap_sem);
356 
357 	/*
358 	 * Handle the "normal" case first - VM_FAULT_MAJOR
359 	 */
360 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
361 		return 0;
362 
363 	/*
364 	 * If we are in kernel mode at this point, we
365 	 * have no context to handle this fault with.
366 	 */
367 	if (!user_mode(regs))
368 		goto no_context;
369 
370 	if (fault & VM_FAULT_OOM) {
371 		/*
372 		 * We ran out of memory, call the OOM killer, and return to
373 		 * userspace (which will retry the fault, or kill us if we
374 		 * got oom-killed)
375 		 */
376 		pagefault_out_of_memory();
377 		return 0;
378 	}
379 
380 	if (fault & VM_FAULT_SIGBUS) {
381 		/*
382 		 * We had some memory, but were unable to
383 		 * successfully fix up this page fault.
384 		 */
385 		sig = SIGBUS;
386 		code = BUS_ADRERR;
387 	} else {
388 		/*
389 		 * Something tried to access memory that
390 		 * isn't in our memory map..
391 		 */
392 		sig = SIGSEGV;
393 		code = fault == VM_FAULT_BADACCESS ?
394 			SEGV_ACCERR : SEGV_MAPERR;
395 	}
396 
397 	__do_user_fault(tsk, addr, fsr, sig, code, regs);
398 	return 0;
399 
400 no_context:
401 	__do_kernel_fault(mm, addr, fsr, regs);
402 	return 0;
403 }
404 #else					/* CONFIG_MMU */
405 static int
406 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
407 {
408 	return 0;
409 }
410 #endif					/* CONFIG_MMU */
411 
412 /*
413  * First Level Translation Fault Handler
414  *
415  * We enter here because the first level page table doesn't contain
416  * a valid entry for the address.
417  *
418  * If the address is in kernel space (>= TASK_SIZE), then we are
419  * probably faulting in the vmalloc() area.
420  *
421  * If the init_task's first level page tables contains the relevant
422  * entry, we copy the it to this task.  If not, we send the process
423  * a signal, fixup the exception, or oops the kernel.
424  *
425  * NOTE! We MUST NOT take any locks for this case. We may be in an
426  * interrupt or a critical region, and should only copy the information
427  * from the master page table, nothing more.
428  */
429 #ifdef CONFIG_MMU
430 static int __kprobes
431 do_translation_fault(unsigned long addr, unsigned int fsr,
432 		     struct pt_regs *regs)
433 {
434 	unsigned int index;
435 	pgd_t *pgd, *pgd_k;
436 	pud_t *pud, *pud_k;
437 	pmd_t *pmd, *pmd_k;
438 
439 	if (addr < TASK_SIZE)
440 		return do_page_fault(addr, fsr, regs);
441 
442 	if (user_mode(regs))
443 		goto bad_area;
444 
445 	index = pgd_index(addr);
446 
447 	pgd = cpu_get_pgd() + index;
448 	pgd_k = init_mm.pgd + index;
449 
450 	if (pgd_none(*pgd_k))
451 		goto bad_area;
452 	if (!pgd_present(*pgd))
453 		set_pgd(pgd, *pgd_k);
454 
455 	pud = pud_offset(pgd, addr);
456 	pud_k = pud_offset(pgd_k, addr);
457 
458 	if (pud_none(*pud_k))
459 		goto bad_area;
460 	if (!pud_present(*pud))
461 		set_pud(pud, *pud_k);
462 
463 	pmd = pmd_offset(pud, addr);
464 	pmd_k = pmd_offset(pud_k, addr);
465 
466 #ifdef CONFIG_ARM_LPAE
467 	/*
468 	 * Only one hardware entry per PMD with LPAE.
469 	 */
470 	index = 0;
471 #else
472 	/*
473 	 * On ARM one Linux PGD entry contains two hardware entries (see page
474 	 * tables layout in pgtable.h). We normally guarantee that we always
475 	 * fill both L1 entries. But create_mapping() doesn't follow the rule.
476 	 * It can create inidividual L1 entries, so here we have to call
477 	 * pmd_none() check for the entry really corresponded to address, not
478 	 * for the first of pair.
479 	 */
480 	index = (addr >> SECTION_SHIFT) & 1;
481 #endif
482 	if (pmd_none(pmd_k[index]))
483 		goto bad_area;
484 
485 	copy_pmd(pmd, pmd_k);
486 	return 0;
487 
488 bad_area:
489 	do_bad_area(addr, fsr, regs);
490 	return 0;
491 }
492 #else					/* CONFIG_MMU */
493 static int
494 do_translation_fault(unsigned long addr, unsigned int fsr,
495 		     struct pt_regs *regs)
496 {
497 	return 0;
498 }
499 #endif					/* CONFIG_MMU */
500 
501 /*
502  * Some section permission faults need to be handled gracefully.
503  * They can happen due to a __{get,put}_user during an oops.
504  */
505 #ifndef CONFIG_ARM_LPAE
506 static int
507 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
508 {
509 	do_bad_area(addr, fsr, regs);
510 	return 0;
511 }
512 #endif /* CONFIG_ARM_LPAE */
513 
514 /*
515  * This abort handler always returns "fault".
516  */
517 static int
518 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
519 {
520 	return 1;
521 }
522 
523 struct fsr_info {
524 	int	(*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
525 	int	sig;
526 	int	code;
527 	const char *name;
528 };
529 
530 /* FSR definition */
531 #ifdef CONFIG_ARM_LPAE
532 #include "fsr-3level.c"
533 #else
534 #include "fsr-2level.c"
535 #endif
536 
537 void __init
538 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
539 		int sig, int code, const char *name)
540 {
541 	if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
542 		BUG();
543 
544 	fsr_info[nr].fn   = fn;
545 	fsr_info[nr].sig  = sig;
546 	fsr_info[nr].code = code;
547 	fsr_info[nr].name = name;
548 }
549 
550 /*
551  * Dispatch a data abort to the relevant handler.
552  */
553 asmlinkage void
554 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
555 {
556 	const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
557 	struct siginfo info;
558 
559 	if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
560 		return;
561 
562 	pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n",
563 		inf->name, fsr, addr);
564 	show_pte(current->mm, addr);
565 
566 	clear_siginfo(&info);
567 	info.si_signo = inf->sig;
568 	info.si_errno = 0;
569 	info.si_code  = inf->code;
570 	info.si_addr  = (void __user *)addr;
571 	arm_notify_die("", regs, &info, fsr, 0);
572 }
573 
574 void __init
575 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
576 		 int sig, int code, const char *name)
577 {
578 	if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
579 		BUG();
580 
581 	ifsr_info[nr].fn   = fn;
582 	ifsr_info[nr].sig  = sig;
583 	ifsr_info[nr].code = code;
584 	ifsr_info[nr].name = name;
585 }
586 
587 asmlinkage void
588 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
589 {
590 	const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
591 	struct siginfo info;
592 
593 	if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
594 		return;
595 
596 	pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
597 		inf->name, ifsr, addr);
598 
599 	clear_siginfo(&info);
600 	info.si_signo = inf->sig;
601 	info.si_errno = 0;
602 	info.si_code  = inf->code;
603 	info.si_addr  = (void __user *)addr;
604 	arm_notify_die("", regs, &info, ifsr, 0);
605 }
606 
607 /*
608  * Abort handler to be used only during first unmasking of asynchronous aborts
609  * on the boot CPU. This makes sure that the machine will not die if the
610  * firmware/bootloader left an imprecise abort pending for us to trip over.
611  */
612 static int __init early_abort_handler(unsigned long addr, unsigned int fsr,
613 				      struct pt_regs *regs)
614 {
615 	pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during "
616 		"first unmask, this is most likely caused by a "
617 		"firmware/bootloader bug.\n", fsr);
618 
619 	return 0;
620 }
621 
622 void __init early_abt_enable(void)
623 {
624 	fsr_info[FSR_FS_AEA].fn = early_abort_handler;
625 	local_abt_enable();
626 	fsr_info[FSR_FS_AEA].fn = do_bad;
627 }
628 
629 #ifndef CONFIG_ARM_LPAE
630 static int __init exceptions_init(void)
631 {
632 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
633 		hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
634 				"I-cache maintenance fault");
635 	}
636 
637 	if (cpu_architecture() >= CPU_ARCH_ARMv7) {
638 		/*
639 		 * TODO: Access flag faults introduced in ARMv6K.
640 		 * Runtime check for 'K' extension is needed
641 		 */
642 		hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
643 				"section access flag fault");
644 		hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
645 				"section access flag fault");
646 	}
647 
648 	return 0;
649 }
650 
651 arch_initcall(exceptions_init);
652 #endif
653