1 /* 2 * linux/arch/arm/mm/fault.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Modifications for ARM processor (c) 1995-2004 Russell King 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/extable.h> 12 #include <linux/signal.h> 13 #include <linux/mm.h> 14 #include <linux/hardirq.h> 15 #include <linux/init.h> 16 #include <linux/kprobes.h> 17 #include <linux/uaccess.h> 18 #include <linux/page-flags.h> 19 #include <linux/sched/signal.h> 20 #include <linux/sched/debug.h> 21 #include <linux/highmem.h> 22 #include <linux/perf_event.h> 23 24 #include <asm/pgtable.h> 25 #include <asm/system_misc.h> 26 #include <asm/system_info.h> 27 #include <asm/tlbflush.h> 28 29 #include "fault.h" 30 31 #ifdef CONFIG_MMU 32 33 #ifdef CONFIG_KPROBES 34 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr) 35 { 36 int ret = 0; 37 38 if (!user_mode(regs)) { 39 /* kprobe_running() needs smp_processor_id() */ 40 preempt_disable(); 41 if (kprobe_running() && kprobe_fault_handler(regs, fsr)) 42 ret = 1; 43 preempt_enable(); 44 } 45 46 return ret; 47 } 48 #else 49 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr) 50 { 51 return 0; 52 } 53 #endif 54 55 /* 56 * This is useful to dump out the page tables associated with 57 * 'addr' in mm 'mm'. 58 */ 59 void show_pte(struct mm_struct *mm, unsigned long addr) 60 { 61 pgd_t *pgd; 62 63 if (!mm) 64 mm = &init_mm; 65 66 pr_alert("pgd = %p\n", mm->pgd); 67 pgd = pgd_offset(mm, addr); 68 pr_alert("[%08lx] *pgd=%08llx", 69 addr, (long long)pgd_val(*pgd)); 70 71 do { 72 pud_t *pud; 73 pmd_t *pmd; 74 pte_t *pte; 75 76 if (pgd_none(*pgd)) 77 break; 78 79 if (pgd_bad(*pgd)) { 80 pr_cont("(bad)"); 81 break; 82 } 83 84 pud = pud_offset(pgd, addr); 85 if (PTRS_PER_PUD != 1) 86 pr_cont(", *pud=%08llx", (long long)pud_val(*pud)); 87 88 if (pud_none(*pud)) 89 break; 90 91 if (pud_bad(*pud)) { 92 pr_cont("(bad)"); 93 break; 94 } 95 96 pmd = pmd_offset(pud, addr); 97 if (PTRS_PER_PMD != 1) 98 pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd)); 99 100 if (pmd_none(*pmd)) 101 break; 102 103 if (pmd_bad(*pmd)) { 104 pr_cont("(bad)"); 105 break; 106 } 107 108 /* We must not map this if we have highmem enabled */ 109 if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT))) 110 break; 111 112 pte = pte_offset_map(pmd, addr); 113 pr_cont(", *pte=%08llx", (long long)pte_val(*pte)); 114 #ifndef CONFIG_ARM_LPAE 115 pr_cont(", *ppte=%08llx", 116 (long long)pte_val(pte[PTE_HWTABLE_PTRS])); 117 #endif 118 pte_unmap(pte); 119 } while(0); 120 121 pr_cont("\n"); 122 } 123 #else /* CONFIG_MMU */ 124 void show_pte(struct mm_struct *mm, unsigned long addr) 125 { } 126 #endif /* CONFIG_MMU */ 127 128 /* 129 * Oops. The kernel tried to access some page that wasn't present. 130 */ 131 static void 132 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr, 133 struct pt_regs *regs) 134 { 135 /* 136 * Are we prepared to handle this kernel fault? 137 */ 138 if (fixup_exception(regs)) 139 return; 140 141 /* 142 * No handler, we'll have to terminate things with extreme prejudice. 143 */ 144 bust_spinlocks(1); 145 pr_alert("Unable to handle kernel %s at virtual address %08lx\n", 146 (addr < PAGE_SIZE) ? "NULL pointer dereference" : 147 "paging request", addr); 148 149 show_pte(mm, addr); 150 die("Oops", regs, fsr); 151 bust_spinlocks(0); 152 do_exit(SIGKILL); 153 } 154 155 /* 156 * Something tried to access memory that isn't in our memory map.. 157 * User mode accesses just cause a SIGSEGV 158 */ 159 static void 160 __do_user_fault(struct task_struct *tsk, unsigned long addr, 161 unsigned int fsr, unsigned int sig, int code, 162 struct pt_regs *regs) 163 { 164 if (addr > TASK_SIZE) 165 harden_branch_predictor(); 166 167 #ifdef CONFIG_DEBUG_USER 168 if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) || 169 ((user_debug & UDBG_BUS) && (sig == SIGBUS))) { 170 printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n", 171 tsk->comm, sig, addr, fsr); 172 show_pte(tsk->mm, addr); 173 show_regs(regs); 174 } 175 #endif 176 #ifndef CONFIG_KUSER_HELPERS 177 if ((sig == SIGSEGV) && ((addr & PAGE_MASK) == 0xffff0000)) 178 printk_ratelimited(KERN_DEBUG 179 "%s: CONFIG_KUSER_HELPERS disabled at 0x%08lx\n", 180 tsk->comm, addr); 181 #endif 182 183 tsk->thread.address = addr; 184 tsk->thread.error_code = fsr; 185 tsk->thread.trap_no = 14; 186 force_sig_fault(sig, code, (void __user *)addr, tsk); 187 } 188 189 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 190 { 191 struct task_struct *tsk = current; 192 struct mm_struct *mm = tsk->active_mm; 193 194 /* 195 * If we are in kernel mode at this point, we 196 * have no context to handle this fault with. 197 */ 198 if (user_mode(regs)) 199 __do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs); 200 else 201 __do_kernel_fault(mm, addr, fsr, regs); 202 } 203 204 #ifdef CONFIG_MMU 205 #define VM_FAULT_BADMAP 0x010000 206 #define VM_FAULT_BADACCESS 0x020000 207 208 /* 209 * Check that the permissions on the VMA allow for the fault which occurred. 210 * If we encountered a write fault, we must have write permission, otherwise 211 * we allow any permission. 212 */ 213 static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma) 214 { 215 unsigned int mask = VM_READ | VM_WRITE | VM_EXEC; 216 217 if (fsr & FSR_WRITE) 218 mask = VM_WRITE; 219 if (fsr & FSR_LNX_PF) 220 mask = VM_EXEC; 221 222 return vma->vm_flags & mask ? false : true; 223 } 224 225 static vm_fault_t __kprobes 226 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr, 227 unsigned int flags, struct task_struct *tsk) 228 { 229 struct vm_area_struct *vma; 230 vm_fault_t fault; 231 232 vma = find_vma(mm, addr); 233 fault = VM_FAULT_BADMAP; 234 if (unlikely(!vma)) 235 goto out; 236 if (unlikely(vma->vm_start > addr)) 237 goto check_stack; 238 239 /* 240 * Ok, we have a good vm_area for this 241 * memory access, so we can handle it. 242 */ 243 good_area: 244 if (access_error(fsr, vma)) { 245 fault = VM_FAULT_BADACCESS; 246 goto out; 247 } 248 249 return handle_mm_fault(vma, addr & PAGE_MASK, flags); 250 251 check_stack: 252 /* Don't allow expansion below FIRST_USER_ADDRESS */ 253 if (vma->vm_flags & VM_GROWSDOWN && 254 addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr)) 255 goto good_area; 256 out: 257 return fault; 258 } 259 260 static int __kprobes 261 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 262 { 263 struct task_struct *tsk; 264 struct mm_struct *mm; 265 int sig, code; 266 vm_fault_t fault; 267 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 268 269 if (notify_page_fault(regs, fsr)) 270 return 0; 271 272 tsk = current; 273 mm = tsk->mm; 274 275 /* Enable interrupts if they were enabled in the parent context. */ 276 if (interrupts_enabled(regs)) 277 local_irq_enable(); 278 279 /* 280 * If we're in an interrupt or have no user 281 * context, we must not take the fault.. 282 */ 283 if (faulthandler_disabled() || !mm) 284 goto no_context; 285 286 if (user_mode(regs)) 287 flags |= FAULT_FLAG_USER; 288 if (fsr & FSR_WRITE) 289 flags |= FAULT_FLAG_WRITE; 290 291 /* 292 * As per x86, we may deadlock here. However, since the kernel only 293 * validly references user space from well defined areas of the code, 294 * we can bug out early if this is from code which shouldn't. 295 */ 296 if (!down_read_trylock(&mm->mmap_sem)) { 297 if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc)) 298 goto no_context; 299 retry: 300 down_read(&mm->mmap_sem); 301 } else { 302 /* 303 * The above down_read_trylock() might have succeeded in 304 * which case, we'll have missed the might_sleep() from 305 * down_read() 306 */ 307 might_sleep(); 308 #ifdef CONFIG_DEBUG_VM 309 if (!user_mode(regs) && 310 !search_exception_tables(regs->ARM_pc)) 311 goto no_context; 312 #endif 313 } 314 315 fault = __do_page_fault(mm, addr, fsr, flags, tsk); 316 317 /* If we need to retry but a fatal signal is pending, handle the 318 * signal first. We do not need to release the mmap_sem because 319 * it would already be released in __lock_page_or_retry in 320 * mm/filemap.c. */ 321 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) { 322 if (!user_mode(regs)) 323 goto no_context; 324 return 0; 325 } 326 327 /* 328 * Major/minor page fault accounting is only done on the 329 * initial attempt. If we go through a retry, it is extremely 330 * likely that the page will be found in page cache at that point. 331 */ 332 333 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); 334 if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) { 335 if (fault & VM_FAULT_MAJOR) { 336 tsk->maj_flt++; 337 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 338 regs, addr); 339 } else { 340 tsk->min_flt++; 341 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 342 regs, addr); 343 } 344 if (fault & VM_FAULT_RETRY) { 345 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk 346 * of starvation. */ 347 flags &= ~FAULT_FLAG_ALLOW_RETRY; 348 flags |= FAULT_FLAG_TRIED; 349 goto retry; 350 } 351 } 352 353 up_read(&mm->mmap_sem); 354 355 /* 356 * Handle the "normal" case first - VM_FAULT_MAJOR 357 */ 358 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS)))) 359 return 0; 360 361 /* 362 * If we are in kernel mode at this point, we 363 * have no context to handle this fault with. 364 */ 365 if (!user_mode(regs)) 366 goto no_context; 367 368 if (fault & VM_FAULT_OOM) { 369 /* 370 * We ran out of memory, call the OOM killer, and return to 371 * userspace (which will retry the fault, or kill us if we 372 * got oom-killed) 373 */ 374 pagefault_out_of_memory(); 375 return 0; 376 } 377 378 if (fault & VM_FAULT_SIGBUS) { 379 /* 380 * We had some memory, but were unable to 381 * successfully fix up this page fault. 382 */ 383 sig = SIGBUS; 384 code = BUS_ADRERR; 385 } else { 386 /* 387 * Something tried to access memory that 388 * isn't in our memory map.. 389 */ 390 sig = SIGSEGV; 391 code = fault == VM_FAULT_BADACCESS ? 392 SEGV_ACCERR : SEGV_MAPERR; 393 } 394 395 __do_user_fault(tsk, addr, fsr, sig, code, regs); 396 return 0; 397 398 no_context: 399 __do_kernel_fault(mm, addr, fsr, regs); 400 return 0; 401 } 402 #else /* CONFIG_MMU */ 403 static int 404 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 405 { 406 return 0; 407 } 408 #endif /* CONFIG_MMU */ 409 410 /* 411 * First Level Translation Fault Handler 412 * 413 * We enter here because the first level page table doesn't contain 414 * a valid entry for the address. 415 * 416 * If the address is in kernel space (>= TASK_SIZE), then we are 417 * probably faulting in the vmalloc() area. 418 * 419 * If the init_task's first level page tables contains the relevant 420 * entry, we copy the it to this task. If not, we send the process 421 * a signal, fixup the exception, or oops the kernel. 422 * 423 * NOTE! We MUST NOT take any locks for this case. We may be in an 424 * interrupt or a critical region, and should only copy the information 425 * from the master page table, nothing more. 426 */ 427 #ifdef CONFIG_MMU 428 static int __kprobes 429 do_translation_fault(unsigned long addr, unsigned int fsr, 430 struct pt_regs *regs) 431 { 432 unsigned int index; 433 pgd_t *pgd, *pgd_k; 434 pud_t *pud, *pud_k; 435 pmd_t *pmd, *pmd_k; 436 437 if (addr < TASK_SIZE) 438 return do_page_fault(addr, fsr, regs); 439 440 if (user_mode(regs)) 441 goto bad_area; 442 443 index = pgd_index(addr); 444 445 pgd = cpu_get_pgd() + index; 446 pgd_k = init_mm.pgd + index; 447 448 if (pgd_none(*pgd_k)) 449 goto bad_area; 450 if (!pgd_present(*pgd)) 451 set_pgd(pgd, *pgd_k); 452 453 pud = pud_offset(pgd, addr); 454 pud_k = pud_offset(pgd_k, addr); 455 456 if (pud_none(*pud_k)) 457 goto bad_area; 458 if (!pud_present(*pud)) 459 set_pud(pud, *pud_k); 460 461 pmd = pmd_offset(pud, addr); 462 pmd_k = pmd_offset(pud_k, addr); 463 464 #ifdef CONFIG_ARM_LPAE 465 /* 466 * Only one hardware entry per PMD with LPAE. 467 */ 468 index = 0; 469 #else 470 /* 471 * On ARM one Linux PGD entry contains two hardware entries (see page 472 * tables layout in pgtable.h). We normally guarantee that we always 473 * fill both L1 entries. But create_mapping() doesn't follow the rule. 474 * It can create inidividual L1 entries, so here we have to call 475 * pmd_none() check for the entry really corresponded to address, not 476 * for the first of pair. 477 */ 478 index = (addr >> SECTION_SHIFT) & 1; 479 #endif 480 if (pmd_none(pmd_k[index])) 481 goto bad_area; 482 483 copy_pmd(pmd, pmd_k); 484 return 0; 485 486 bad_area: 487 do_bad_area(addr, fsr, regs); 488 return 0; 489 } 490 #else /* CONFIG_MMU */ 491 static int 492 do_translation_fault(unsigned long addr, unsigned int fsr, 493 struct pt_regs *regs) 494 { 495 return 0; 496 } 497 #endif /* CONFIG_MMU */ 498 499 /* 500 * Some section permission faults need to be handled gracefully. 501 * They can happen due to a __{get,put}_user during an oops. 502 */ 503 #ifndef CONFIG_ARM_LPAE 504 static int 505 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 506 { 507 do_bad_area(addr, fsr, regs); 508 return 0; 509 } 510 #endif /* CONFIG_ARM_LPAE */ 511 512 /* 513 * This abort handler always returns "fault". 514 */ 515 static int 516 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 517 { 518 return 1; 519 } 520 521 struct fsr_info { 522 int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs); 523 int sig; 524 int code; 525 const char *name; 526 }; 527 528 /* FSR definition */ 529 #ifdef CONFIG_ARM_LPAE 530 #include "fsr-3level.c" 531 #else 532 #include "fsr-2level.c" 533 #endif 534 535 void __init 536 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), 537 int sig, int code, const char *name) 538 { 539 if (nr < 0 || nr >= ARRAY_SIZE(fsr_info)) 540 BUG(); 541 542 fsr_info[nr].fn = fn; 543 fsr_info[nr].sig = sig; 544 fsr_info[nr].code = code; 545 fsr_info[nr].name = name; 546 } 547 548 /* 549 * Dispatch a data abort to the relevant handler. 550 */ 551 asmlinkage void 552 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 553 { 554 const struct fsr_info *inf = fsr_info + fsr_fs(fsr); 555 556 if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs)) 557 return; 558 559 pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n", 560 inf->name, fsr, addr); 561 show_pte(current->mm, addr); 562 563 arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr, 564 fsr, 0); 565 } 566 567 void __init 568 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), 569 int sig, int code, const char *name) 570 { 571 if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info)) 572 BUG(); 573 574 ifsr_info[nr].fn = fn; 575 ifsr_info[nr].sig = sig; 576 ifsr_info[nr].code = code; 577 ifsr_info[nr].name = name; 578 } 579 580 asmlinkage void 581 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs) 582 { 583 const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr); 584 585 if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs)) 586 return; 587 588 pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n", 589 inf->name, ifsr, addr); 590 591 arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr, 592 ifsr, 0); 593 } 594 595 /* 596 * Abort handler to be used only during first unmasking of asynchronous aborts 597 * on the boot CPU. This makes sure that the machine will not die if the 598 * firmware/bootloader left an imprecise abort pending for us to trip over. 599 */ 600 static int __init early_abort_handler(unsigned long addr, unsigned int fsr, 601 struct pt_regs *regs) 602 { 603 pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during " 604 "first unmask, this is most likely caused by a " 605 "firmware/bootloader bug.\n", fsr); 606 607 return 0; 608 } 609 610 void __init early_abt_enable(void) 611 { 612 fsr_info[FSR_FS_AEA].fn = early_abort_handler; 613 local_abt_enable(); 614 fsr_info[FSR_FS_AEA].fn = do_bad; 615 } 616 617 #ifndef CONFIG_ARM_LPAE 618 static int __init exceptions_init(void) 619 { 620 if (cpu_architecture() >= CPU_ARCH_ARMv6) { 621 hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR, 622 "I-cache maintenance fault"); 623 } 624 625 if (cpu_architecture() >= CPU_ARCH_ARMv7) { 626 /* 627 * TODO: Access flag faults introduced in ARMv6K. 628 * Runtime check for 'K' extension is needed 629 */ 630 hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR, 631 "section access flag fault"); 632 hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR, 633 "section access flag fault"); 634 } 635 636 return 0; 637 } 638 639 arch_initcall(exceptions_init); 640 #endif 641