1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/mm/fault.c 4 * 5 * Copyright (C) 1995 Linus Torvalds 6 * Modifications for ARM processor (c) 1995-2004 Russell King 7 */ 8 #include <linux/extable.h> 9 #include <linux/signal.h> 10 #include <linux/mm.h> 11 #include <linux/hardirq.h> 12 #include <linux/init.h> 13 #include <linux/kprobes.h> 14 #include <linux/uaccess.h> 15 #include <linux/page-flags.h> 16 #include <linux/sched/signal.h> 17 #include <linux/sched/debug.h> 18 #include <linux/highmem.h> 19 #include <linux/perf_event.h> 20 21 #include <asm/pgtable.h> 22 #include <asm/system_misc.h> 23 #include <asm/system_info.h> 24 #include <asm/tlbflush.h> 25 26 #include "fault.h" 27 28 #ifdef CONFIG_MMU 29 30 /* 31 * This is useful to dump out the page tables associated with 32 * 'addr' in mm 'mm'. 33 */ 34 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr) 35 { 36 pgd_t *pgd; 37 38 if (!mm) 39 mm = &init_mm; 40 41 printk("%spgd = %p\n", lvl, mm->pgd); 42 pgd = pgd_offset(mm, addr); 43 printk("%s[%08lx] *pgd=%08llx", lvl, addr, (long long)pgd_val(*pgd)); 44 45 do { 46 pud_t *pud; 47 pmd_t *pmd; 48 pte_t *pte; 49 50 if (pgd_none(*pgd)) 51 break; 52 53 if (pgd_bad(*pgd)) { 54 pr_cont("(bad)"); 55 break; 56 } 57 58 pud = pud_offset(pgd, addr); 59 if (PTRS_PER_PUD != 1) 60 pr_cont(", *pud=%08llx", (long long)pud_val(*pud)); 61 62 if (pud_none(*pud)) 63 break; 64 65 if (pud_bad(*pud)) { 66 pr_cont("(bad)"); 67 break; 68 } 69 70 pmd = pmd_offset(pud, addr); 71 if (PTRS_PER_PMD != 1) 72 pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd)); 73 74 if (pmd_none(*pmd)) 75 break; 76 77 if (pmd_bad(*pmd)) { 78 pr_cont("(bad)"); 79 break; 80 } 81 82 /* We must not map this if we have highmem enabled */ 83 if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT))) 84 break; 85 86 pte = pte_offset_map(pmd, addr); 87 pr_cont(", *pte=%08llx", (long long)pte_val(*pte)); 88 #ifndef CONFIG_ARM_LPAE 89 pr_cont(", *ppte=%08llx", 90 (long long)pte_val(pte[PTE_HWTABLE_PTRS])); 91 #endif 92 pte_unmap(pte); 93 } while(0); 94 95 pr_cont("\n"); 96 } 97 #else /* CONFIG_MMU */ 98 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr) 99 { } 100 #endif /* CONFIG_MMU */ 101 102 /* 103 * Oops. The kernel tried to access some page that wasn't present. 104 */ 105 static void 106 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr, 107 struct pt_regs *regs) 108 { 109 /* 110 * Are we prepared to handle this kernel fault? 111 */ 112 if (fixup_exception(regs)) 113 return; 114 115 /* 116 * No handler, we'll have to terminate things with extreme prejudice. 117 */ 118 bust_spinlocks(1); 119 pr_alert("8<--- cut here ---\n"); 120 pr_alert("Unable to handle kernel %s at virtual address %08lx\n", 121 (addr < PAGE_SIZE) ? "NULL pointer dereference" : 122 "paging request", addr); 123 124 show_pte(KERN_ALERT, mm, addr); 125 die("Oops", regs, fsr); 126 bust_spinlocks(0); 127 do_exit(SIGKILL); 128 } 129 130 /* 131 * Something tried to access memory that isn't in our memory map.. 132 * User mode accesses just cause a SIGSEGV 133 */ 134 static void 135 __do_user_fault(unsigned long addr, unsigned int fsr, unsigned int sig, 136 int code, struct pt_regs *regs) 137 { 138 struct task_struct *tsk = current; 139 140 if (addr > TASK_SIZE) 141 harden_branch_predictor(); 142 143 #ifdef CONFIG_DEBUG_USER 144 if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) || 145 ((user_debug & UDBG_BUS) && (sig == SIGBUS))) { 146 pr_err("8<--- cut here ---\n"); 147 pr_err("%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n", 148 tsk->comm, sig, addr, fsr); 149 show_pte(KERN_ERR, tsk->mm, addr); 150 show_regs(regs); 151 } 152 #endif 153 #ifndef CONFIG_KUSER_HELPERS 154 if ((sig == SIGSEGV) && ((addr & PAGE_MASK) == 0xffff0000)) 155 printk_ratelimited(KERN_DEBUG 156 "%s: CONFIG_KUSER_HELPERS disabled at 0x%08lx\n", 157 tsk->comm, addr); 158 #endif 159 160 tsk->thread.address = addr; 161 tsk->thread.error_code = fsr; 162 tsk->thread.trap_no = 14; 163 force_sig_fault(sig, code, (void __user *)addr); 164 } 165 166 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 167 { 168 struct task_struct *tsk = current; 169 struct mm_struct *mm = tsk->active_mm; 170 171 /* 172 * If we are in kernel mode at this point, we 173 * have no context to handle this fault with. 174 */ 175 if (user_mode(regs)) 176 __do_user_fault(addr, fsr, SIGSEGV, SEGV_MAPERR, regs); 177 else 178 __do_kernel_fault(mm, addr, fsr, regs); 179 } 180 181 #ifdef CONFIG_MMU 182 #define VM_FAULT_BADMAP 0x010000 183 #define VM_FAULT_BADACCESS 0x020000 184 185 /* 186 * Check that the permissions on the VMA allow for the fault which occurred. 187 * If we encountered a write fault, we must have write permission, otherwise 188 * we allow any permission. 189 */ 190 static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma) 191 { 192 unsigned int mask = VM_ACCESS_FLAGS; 193 194 if ((fsr & FSR_WRITE) && !(fsr & FSR_CM)) 195 mask = VM_WRITE; 196 if (fsr & FSR_LNX_PF) 197 mask = VM_EXEC; 198 199 return vma->vm_flags & mask ? false : true; 200 } 201 202 static vm_fault_t __kprobes 203 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr, 204 unsigned int flags, struct task_struct *tsk) 205 { 206 struct vm_area_struct *vma; 207 vm_fault_t fault; 208 209 vma = find_vma(mm, addr); 210 fault = VM_FAULT_BADMAP; 211 if (unlikely(!vma)) 212 goto out; 213 if (unlikely(vma->vm_start > addr)) 214 goto check_stack; 215 216 /* 217 * Ok, we have a good vm_area for this 218 * memory access, so we can handle it. 219 */ 220 good_area: 221 if (access_error(fsr, vma)) { 222 fault = VM_FAULT_BADACCESS; 223 goto out; 224 } 225 226 return handle_mm_fault(vma, addr & PAGE_MASK, flags); 227 228 check_stack: 229 /* Don't allow expansion below FIRST_USER_ADDRESS */ 230 if (vma->vm_flags & VM_GROWSDOWN && 231 addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr)) 232 goto good_area; 233 out: 234 return fault; 235 } 236 237 static int __kprobes 238 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 239 { 240 struct task_struct *tsk; 241 struct mm_struct *mm; 242 int sig, code; 243 vm_fault_t fault; 244 unsigned int flags = FAULT_FLAG_DEFAULT; 245 246 if (kprobe_page_fault(regs, fsr)) 247 return 0; 248 249 tsk = current; 250 mm = tsk->mm; 251 252 /* Enable interrupts if they were enabled in the parent context. */ 253 if (interrupts_enabled(regs)) 254 local_irq_enable(); 255 256 /* 257 * If we're in an interrupt or have no user 258 * context, we must not take the fault.. 259 */ 260 if (faulthandler_disabled() || !mm) 261 goto no_context; 262 263 if (user_mode(regs)) 264 flags |= FAULT_FLAG_USER; 265 if ((fsr & FSR_WRITE) && !(fsr & FSR_CM)) 266 flags |= FAULT_FLAG_WRITE; 267 268 /* 269 * As per x86, we may deadlock here. However, since the kernel only 270 * validly references user space from well defined areas of the code, 271 * we can bug out early if this is from code which shouldn't. 272 */ 273 if (!down_read_trylock(&mm->mmap_sem)) { 274 if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc)) 275 goto no_context; 276 retry: 277 down_read(&mm->mmap_sem); 278 } else { 279 /* 280 * The above down_read_trylock() might have succeeded in 281 * which case, we'll have missed the might_sleep() from 282 * down_read() 283 */ 284 might_sleep(); 285 #ifdef CONFIG_DEBUG_VM 286 if (!user_mode(regs) && 287 !search_exception_tables(regs->ARM_pc)) 288 goto no_context; 289 #endif 290 } 291 292 fault = __do_page_fault(mm, addr, fsr, flags, tsk); 293 294 /* If we need to retry but a fatal signal is pending, handle the 295 * signal first. We do not need to release the mmap_sem because 296 * it would already be released in __lock_page_or_retry in 297 * mm/filemap.c. */ 298 if (fault_signal_pending(fault, regs)) { 299 if (!user_mode(regs)) 300 goto no_context; 301 return 0; 302 } 303 304 /* 305 * Major/minor page fault accounting is only done on the 306 * initial attempt. If we go through a retry, it is extremely 307 * likely that the page will be found in page cache at that point. 308 */ 309 310 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); 311 if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) { 312 if (fault & VM_FAULT_MAJOR) { 313 tsk->maj_flt++; 314 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 315 regs, addr); 316 } else { 317 tsk->min_flt++; 318 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 319 regs, addr); 320 } 321 if (fault & VM_FAULT_RETRY) { 322 flags |= FAULT_FLAG_TRIED; 323 goto retry; 324 } 325 } 326 327 up_read(&mm->mmap_sem); 328 329 /* 330 * Handle the "normal" case first - VM_FAULT_MAJOR 331 */ 332 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS)))) 333 return 0; 334 335 /* 336 * If we are in kernel mode at this point, we 337 * have no context to handle this fault with. 338 */ 339 if (!user_mode(regs)) 340 goto no_context; 341 342 if (fault & VM_FAULT_OOM) { 343 /* 344 * We ran out of memory, call the OOM killer, and return to 345 * userspace (which will retry the fault, or kill us if we 346 * got oom-killed) 347 */ 348 pagefault_out_of_memory(); 349 return 0; 350 } 351 352 if (fault & VM_FAULT_SIGBUS) { 353 /* 354 * We had some memory, but were unable to 355 * successfully fix up this page fault. 356 */ 357 sig = SIGBUS; 358 code = BUS_ADRERR; 359 } else { 360 /* 361 * Something tried to access memory that 362 * isn't in our memory map.. 363 */ 364 sig = SIGSEGV; 365 code = fault == VM_FAULT_BADACCESS ? 366 SEGV_ACCERR : SEGV_MAPERR; 367 } 368 369 __do_user_fault(addr, fsr, sig, code, regs); 370 return 0; 371 372 no_context: 373 __do_kernel_fault(mm, addr, fsr, regs); 374 return 0; 375 } 376 #else /* CONFIG_MMU */ 377 static int 378 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 379 { 380 return 0; 381 } 382 #endif /* CONFIG_MMU */ 383 384 /* 385 * First Level Translation Fault Handler 386 * 387 * We enter here because the first level page table doesn't contain 388 * a valid entry for the address. 389 * 390 * If the address is in kernel space (>= TASK_SIZE), then we are 391 * probably faulting in the vmalloc() area. 392 * 393 * If the init_task's first level page tables contains the relevant 394 * entry, we copy the it to this task. If not, we send the process 395 * a signal, fixup the exception, or oops the kernel. 396 * 397 * NOTE! We MUST NOT take any locks for this case. We may be in an 398 * interrupt or a critical region, and should only copy the information 399 * from the master page table, nothing more. 400 */ 401 #ifdef CONFIG_MMU 402 static int __kprobes 403 do_translation_fault(unsigned long addr, unsigned int fsr, 404 struct pt_regs *regs) 405 { 406 unsigned int index; 407 pgd_t *pgd, *pgd_k; 408 pud_t *pud, *pud_k; 409 pmd_t *pmd, *pmd_k; 410 411 if (addr < TASK_SIZE) 412 return do_page_fault(addr, fsr, regs); 413 414 if (user_mode(regs)) 415 goto bad_area; 416 417 index = pgd_index(addr); 418 419 pgd = cpu_get_pgd() + index; 420 pgd_k = init_mm.pgd + index; 421 422 if (pgd_none(*pgd_k)) 423 goto bad_area; 424 if (!pgd_present(*pgd)) 425 set_pgd(pgd, *pgd_k); 426 427 pud = pud_offset(pgd, addr); 428 pud_k = pud_offset(pgd_k, addr); 429 430 if (pud_none(*pud_k)) 431 goto bad_area; 432 if (!pud_present(*pud)) 433 set_pud(pud, *pud_k); 434 435 pmd = pmd_offset(pud, addr); 436 pmd_k = pmd_offset(pud_k, addr); 437 438 #ifdef CONFIG_ARM_LPAE 439 /* 440 * Only one hardware entry per PMD with LPAE. 441 */ 442 index = 0; 443 #else 444 /* 445 * On ARM one Linux PGD entry contains two hardware entries (see page 446 * tables layout in pgtable.h). We normally guarantee that we always 447 * fill both L1 entries. But create_mapping() doesn't follow the rule. 448 * It can create inidividual L1 entries, so here we have to call 449 * pmd_none() check for the entry really corresponded to address, not 450 * for the first of pair. 451 */ 452 index = (addr >> SECTION_SHIFT) & 1; 453 #endif 454 if (pmd_none(pmd_k[index])) 455 goto bad_area; 456 457 copy_pmd(pmd, pmd_k); 458 return 0; 459 460 bad_area: 461 do_bad_area(addr, fsr, regs); 462 return 0; 463 } 464 #else /* CONFIG_MMU */ 465 static int 466 do_translation_fault(unsigned long addr, unsigned int fsr, 467 struct pt_regs *regs) 468 { 469 return 0; 470 } 471 #endif /* CONFIG_MMU */ 472 473 /* 474 * Some section permission faults need to be handled gracefully. 475 * They can happen due to a __{get,put}_user during an oops. 476 */ 477 #ifndef CONFIG_ARM_LPAE 478 static int 479 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 480 { 481 do_bad_area(addr, fsr, regs); 482 return 0; 483 } 484 #endif /* CONFIG_ARM_LPAE */ 485 486 /* 487 * This abort handler always returns "fault". 488 */ 489 static int 490 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 491 { 492 return 1; 493 } 494 495 struct fsr_info { 496 int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs); 497 int sig; 498 int code; 499 const char *name; 500 }; 501 502 /* FSR definition */ 503 #ifdef CONFIG_ARM_LPAE 504 #include "fsr-3level.c" 505 #else 506 #include "fsr-2level.c" 507 #endif 508 509 void __init 510 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), 511 int sig, int code, const char *name) 512 { 513 if (nr < 0 || nr >= ARRAY_SIZE(fsr_info)) 514 BUG(); 515 516 fsr_info[nr].fn = fn; 517 fsr_info[nr].sig = sig; 518 fsr_info[nr].code = code; 519 fsr_info[nr].name = name; 520 } 521 522 /* 523 * Dispatch a data abort to the relevant handler. 524 */ 525 asmlinkage void 526 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 527 { 528 const struct fsr_info *inf = fsr_info + fsr_fs(fsr); 529 530 if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs)) 531 return; 532 533 pr_alert("8<--- cut here ---\n"); 534 pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n", 535 inf->name, fsr, addr); 536 show_pte(KERN_ALERT, current->mm, addr); 537 538 arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr, 539 fsr, 0); 540 } 541 542 void __init 543 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), 544 int sig, int code, const char *name) 545 { 546 if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info)) 547 BUG(); 548 549 ifsr_info[nr].fn = fn; 550 ifsr_info[nr].sig = sig; 551 ifsr_info[nr].code = code; 552 ifsr_info[nr].name = name; 553 } 554 555 asmlinkage void 556 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs) 557 { 558 const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr); 559 560 if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs)) 561 return; 562 563 pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n", 564 inf->name, ifsr, addr); 565 566 arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr, 567 ifsr, 0); 568 } 569 570 /* 571 * Abort handler to be used only during first unmasking of asynchronous aborts 572 * on the boot CPU. This makes sure that the machine will not die if the 573 * firmware/bootloader left an imprecise abort pending for us to trip over. 574 */ 575 static int __init early_abort_handler(unsigned long addr, unsigned int fsr, 576 struct pt_regs *regs) 577 { 578 pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during " 579 "first unmask, this is most likely caused by a " 580 "firmware/bootloader bug.\n", fsr); 581 582 return 0; 583 } 584 585 void __init early_abt_enable(void) 586 { 587 fsr_info[FSR_FS_AEA].fn = early_abort_handler; 588 local_abt_enable(); 589 fsr_info[FSR_FS_AEA].fn = do_bad; 590 } 591 592 #ifndef CONFIG_ARM_LPAE 593 static int __init exceptions_init(void) 594 { 595 if (cpu_architecture() >= CPU_ARCH_ARMv6) { 596 hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR, 597 "I-cache maintenance fault"); 598 } 599 600 if (cpu_architecture() >= CPU_ARCH_ARMv7) { 601 /* 602 * TODO: Access flag faults introduced in ARMv6K. 603 * Runtime check for 'K' extension is needed 604 */ 605 hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR, 606 "section access flag fault"); 607 hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR, 608 "section access flag fault"); 609 } 610 611 return 0; 612 } 613 614 arch_initcall(exceptions_init); 615 #endif 616