xref: /openbmc/linux/arch/arm/mm/fault.c (revision b8d312aa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/fault.c
4  *
5  *  Copyright (C) 1995  Linus Torvalds
6  *  Modifications for ARM processor (c) 1995-2004 Russell King
7  */
8 #include <linux/extable.h>
9 #include <linux/signal.h>
10 #include <linux/mm.h>
11 #include <linux/hardirq.h>
12 #include <linux/init.h>
13 #include <linux/kprobes.h>
14 #include <linux/uaccess.h>
15 #include <linux/page-flags.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/debug.h>
18 #include <linux/highmem.h>
19 #include <linux/perf_event.h>
20 
21 #include <asm/pgtable.h>
22 #include <asm/system_misc.h>
23 #include <asm/system_info.h>
24 #include <asm/tlbflush.h>
25 
26 #include "fault.h"
27 
28 #ifdef CONFIG_MMU
29 
30 /*
31  * This is useful to dump out the page tables associated with
32  * 'addr' in mm 'mm'.
33  */
34 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr)
35 {
36 	pgd_t *pgd;
37 
38 	if (!mm)
39 		mm = &init_mm;
40 
41 	printk("%spgd = %p\n", lvl, mm->pgd);
42 	pgd = pgd_offset(mm, addr);
43 	printk("%s[%08lx] *pgd=%08llx", lvl, addr, (long long)pgd_val(*pgd));
44 
45 	do {
46 		pud_t *pud;
47 		pmd_t *pmd;
48 		pte_t *pte;
49 
50 		if (pgd_none(*pgd))
51 			break;
52 
53 		if (pgd_bad(*pgd)) {
54 			pr_cont("(bad)");
55 			break;
56 		}
57 
58 		pud = pud_offset(pgd, addr);
59 		if (PTRS_PER_PUD != 1)
60 			pr_cont(", *pud=%08llx", (long long)pud_val(*pud));
61 
62 		if (pud_none(*pud))
63 			break;
64 
65 		if (pud_bad(*pud)) {
66 			pr_cont("(bad)");
67 			break;
68 		}
69 
70 		pmd = pmd_offset(pud, addr);
71 		if (PTRS_PER_PMD != 1)
72 			pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd));
73 
74 		if (pmd_none(*pmd))
75 			break;
76 
77 		if (pmd_bad(*pmd)) {
78 			pr_cont("(bad)");
79 			break;
80 		}
81 
82 		/* We must not map this if we have highmem enabled */
83 		if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
84 			break;
85 
86 		pte = pte_offset_map(pmd, addr);
87 		pr_cont(", *pte=%08llx", (long long)pte_val(*pte));
88 #ifndef CONFIG_ARM_LPAE
89 		pr_cont(", *ppte=%08llx",
90 		       (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
91 #endif
92 		pte_unmap(pte);
93 	} while(0);
94 
95 	pr_cont("\n");
96 }
97 #else					/* CONFIG_MMU */
98 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr)
99 { }
100 #endif					/* CONFIG_MMU */
101 
102 /*
103  * Oops.  The kernel tried to access some page that wasn't present.
104  */
105 static void
106 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
107 		  struct pt_regs *regs)
108 {
109 	/*
110 	 * Are we prepared to handle this kernel fault?
111 	 */
112 	if (fixup_exception(regs))
113 		return;
114 
115 	/*
116 	 * No handler, we'll have to terminate things with extreme prejudice.
117 	 */
118 	bust_spinlocks(1);
119 	pr_alert("8<--- cut here ---\n");
120 	pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
121 		 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
122 		 "paging request", addr);
123 
124 	show_pte(KERN_ALERT, mm, addr);
125 	die("Oops", regs, fsr);
126 	bust_spinlocks(0);
127 	do_exit(SIGKILL);
128 }
129 
130 /*
131  * Something tried to access memory that isn't in our memory map..
132  * User mode accesses just cause a SIGSEGV
133  */
134 static void
135 __do_user_fault(unsigned long addr, unsigned int fsr, unsigned int sig,
136 		int code, struct pt_regs *regs)
137 {
138 	struct task_struct *tsk = current;
139 
140 	if (addr > TASK_SIZE)
141 		harden_branch_predictor();
142 
143 #ifdef CONFIG_DEBUG_USER
144 	if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
145 	    ((user_debug & UDBG_BUS)  && (sig == SIGBUS))) {
146 		pr_err("8<--- cut here ---\n");
147 		pr_err("%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
148 		       tsk->comm, sig, addr, fsr);
149 		show_pte(KERN_ERR, tsk->mm, addr);
150 		show_regs(regs);
151 	}
152 #endif
153 #ifndef CONFIG_KUSER_HELPERS
154 	if ((sig == SIGSEGV) && ((addr & PAGE_MASK) == 0xffff0000))
155 		printk_ratelimited(KERN_DEBUG
156 				   "%s: CONFIG_KUSER_HELPERS disabled at 0x%08lx\n",
157 				   tsk->comm, addr);
158 #endif
159 
160 	tsk->thread.address = addr;
161 	tsk->thread.error_code = fsr;
162 	tsk->thread.trap_no = 14;
163 	force_sig_fault(sig, code, (void __user *)addr);
164 }
165 
166 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
167 {
168 	struct task_struct *tsk = current;
169 	struct mm_struct *mm = tsk->active_mm;
170 
171 	/*
172 	 * If we are in kernel mode at this point, we
173 	 * have no context to handle this fault with.
174 	 */
175 	if (user_mode(regs))
176 		__do_user_fault(addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
177 	else
178 		__do_kernel_fault(mm, addr, fsr, regs);
179 }
180 
181 #ifdef CONFIG_MMU
182 #define VM_FAULT_BADMAP		0x010000
183 #define VM_FAULT_BADACCESS	0x020000
184 
185 /*
186  * Check that the permissions on the VMA allow for the fault which occurred.
187  * If we encountered a write fault, we must have write permission, otherwise
188  * we allow any permission.
189  */
190 static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
191 {
192 	unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
193 
194 	if (fsr & FSR_WRITE)
195 		mask = VM_WRITE;
196 	if (fsr & FSR_LNX_PF)
197 		mask = VM_EXEC;
198 
199 	return vma->vm_flags & mask ? false : true;
200 }
201 
202 static vm_fault_t __kprobes
203 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
204 		unsigned int flags, struct task_struct *tsk)
205 {
206 	struct vm_area_struct *vma;
207 	vm_fault_t fault;
208 
209 	vma = find_vma(mm, addr);
210 	fault = VM_FAULT_BADMAP;
211 	if (unlikely(!vma))
212 		goto out;
213 	if (unlikely(vma->vm_start > addr))
214 		goto check_stack;
215 
216 	/*
217 	 * Ok, we have a good vm_area for this
218 	 * memory access, so we can handle it.
219 	 */
220 good_area:
221 	if (access_error(fsr, vma)) {
222 		fault = VM_FAULT_BADACCESS;
223 		goto out;
224 	}
225 
226 	return handle_mm_fault(vma, addr & PAGE_MASK, flags);
227 
228 check_stack:
229 	/* Don't allow expansion below FIRST_USER_ADDRESS */
230 	if (vma->vm_flags & VM_GROWSDOWN &&
231 	    addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr))
232 		goto good_area;
233 out:
234 	return fault;
235 }
236 
237 static int __kprobes
238 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
239 {
240 	struct task_struct *tsk;
241 	struct mm_struct *mm;
242 	int sig, code;
243 	vm_fault_t fault;
244 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
245 
246 	if (kprobe_page_fault(regs, fsr))
247 		return 0;
248 
249 	tsk = current;
250 	mm  = tsk->mm;
251 
252 	/* Enable interrupts if they were enabled in the parent context. */
253 	if (interrupts_enabled(regs))
254 		local_irq_enable();
255 
256 	/*
257 	 * If we're in an interrupt or have no user
258 	 * context, we must not take the fault..
259 	 */
260 	if (faulthandler_disabled() || !mm)
261 		goto no_context;
262 
263 	if (user_mode(regs))
264 		flags |= FAULT_FLAG_USER;
265 	if (fsr & FSR_WRITE)
266 		flags |= FAULT_FLAG_WRITE;
267 
268 	/*
269 	 * As per x86, we may deadlock here.  However, since the kernel only
270 	 * validly references user space from well defined areas of the code,
271 	 * we can bug out early if this is from code which shouldn't.
272 	 */
273 	if (!down_read_trylock(&mm->mmap_sem)) {
274 		if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
275 			goto no_context;
276 retry:
277 		down_read(&mm->mmap_sem);
278 	} else {
279 		/*
280 		 * The above down_read_trylock() might have succeeded in
281 		 * which case, we'll have missed the might_sleep() from
282 		 * down_read()
283 		 */
284 		might_sleep();
285 #ifdef CONFIG_DEBUG_VM
286 		if (!user_mode(regs) &&
287 		    !search_exception_tables(regs->ARM_pc))
288 			goto no_context;
289 #endif
290 	}
291 
292 	fault = __do_page_fault(mm, addr, fsr, flags, tsk);
293 
294 	/* If we need to retry but a fatal signal is pending, handle the
295 	 * signal first. We do not need to release the mmap_sem because
296 	 * it would already be released in __lock_page_or_retry in
297 	 * mm/filemap.c. */
298 	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
299 		if (!user_mode(regs))
300 			goto no_context;
301 		return 0;
302 	}
303 
304 	/*
305 	 * Major/minor page fault accounting is only done on the
306 	 * initial attempt. If we go through a retry, it is extremely
307 	 * likely that the page will be found in page cache at that point.
308 	 */
309 
310 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
311 	if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) {
312 		if (fault & VM_FAULT_MAJOR) {
313 			tsk->maj_flt++;
314 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
315 					regs, addr);
316 		} else {
317 			tsk->min_flt++;
318 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
319 					regs, addr);
320 		}
321 		if (fault & VM_FAULT_RETRY) {
322 			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
323 			* of starvation. */
324 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
325 			flags |= FAULT_FLAG_TRIED;
326 			goto retry;
327 		}
328 	}
329 
330 	up_read(&mm->mmap_sem);
331 
332 	/*
333 	 * Handle the "normal" case first - VM_FAULT_MAJOR
334 	 */
335 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
336 		return 0;
337 
338 	/*
339 	 * If we are in kernel mode at this point, we
340 	 * have no context to handle this fault with.
341 	 */
342 	if (!user_mode(regs))
343 		goto no_context;
344 
345 	if (fault & VM_FAULT_OOM) {
346 		/*
347 		 * We ran out of memory, call the OOM killer, and return to
348 		 * userspace (which will retry the fault, or kill us if we
349 		 * got oom-killed)
350 		 */
351 		pagefault_out_of_memory();
352 		return 0;
353 	}
354 
355 	if (fault & VM_FAULT_SIGBUS) {
356 		/*
357 		 * We had some memory, but were unable to
358 		 * successfully fix up this page fault.
359 		 */
360 		sig = SIGBUS;
361 		code = BUS_ADRERR;
362 	} else {
363 		/*
364 		 * Something tried to access memory that
365 		 * isn't in our memory map..
366 		 */
367 		sig = SIGSEGV;
368 		code = fault == VM_FAULT_BADACCESS ?
369 			SEGV_ACCERR : SEGV_MAPERR;
370 	}
371 
372 	__do_user_fault(addr, fsr, sig, code, regs);
373 	return 0;
374 
375 no_context:
376 	__do_kernel_fault(mm, addr, fsr, regs);
377 	return 0;
378 }
379 #else					/* CONFIG_MMU */
380 static int
381 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
382 {
383 	return 0;
384 }
385 #endif					/* CONFIG_MMU */
386 
387 /*
388  * First Level Translation Fault Handler
389  *
390  * We enter here because the first level page table doesn't contain
391  * a valid entry for the address.
392  *
393  * If the address is in kernel space (>= TASK_SIZE), then we are
394  * probably faulting in the vmalloc() area.
395  *
396  * If the init_task's first level page tables contains the relevant
397  * entry, we copy the it to this task.  If not, we send the process
398  * a signal, fixup the exception, or oops the kernel.
399  *
400  * NOTE! We MUST NOT take any locks for this case. We may be in an
401  * interrupt or a critical region, and should only copy the information
402  * from the master page table, nothing more.
403  */
404 #ifdef CONFIG_MMU
405 static int __kprobes
406 do_translation_fault(unsigned long addr, unsigned int fsr,
407 		     struct pt_regs *regs)
408 {
409 	unsigned int index;
410 	pgd_t *pgd, *pgd_k;
411 	pud_t *pud, *pud_k;
412 	pmd_t *pmd, *pmd_k;
413 
414 	if (addr < TASK_SIZE)
415 		return do_page_fault(addr, fsr, regs);
416 
417 	if (user_mode(regs))
418 		goto bad_area;
419 
420 	index = pgd_index(addr);
421 
422 	pgd = cpu_get_pgd() + index;
423 	pgd_k = init_mm.pgd + index;
424 
425 	if (pgd_none(*pgd_k))
426 		goto bad_area;
427 	if (!pgd_present(*pgd))
428 		set_pgd(pgd, *pgd_k);
429 
430 	pud = pud_offset(pgd, addr);
431 	pud_k = pud_offset(pgd_k, addr);
432 
433 	if (pud_none(*pud_k))
434 		goto bad_area;
435 	if (!pud_present(*pud))
436 		set_pud(pud, *pud_k);
437 
438 	pmd = pmd_offset(pud, addr);
439 	pmd_k = pmd_offset(pud_k, addr);
440 
441 #ifdef CONFIG_ARM_LPAE
442 	/*
443 	 * Only one hardware entry per PMD with LPAE.
444 	 */
445 	index = 0;
446 #else
447 	/*
448 	 * On ARM one Linux PGD entry contains two hardware entries (see page
449 	 * tables layout in pgtable.h). We normally guarantee that we always
450 	 * fill both L1 entries. But create_mapping() doesn't follow the rule.
451 	 * It can create inidividual L1 entries, so here we have to call
452 	 * pmd_none() check for the entry really corresponded to address, not
453 	 * for the first of pair.
454 	 */
455 	index = (addr >> SECTION_SHIFT) & 1;
456 #endif
457 	if (pmd_none(pmd_k[index]))
458 		goto bad_area;
459 
460 	copy_pmd(pmd, pmd_k);
461 	return 0;
462 
463 bad_area:
464 	do_bad_area(addr, fsr, regs);
465 	return 0;
466 }
467 #else					/* CONFIG_MMU */
468 static int
469 do_translation_fault(unsigned long addr, unsigned int fsr,
470 		     struct pt_regs *regs)
471 {
472 	return 0;
473 }
474 #endif					/* CONFIG_MMU */
475 
476 /*
477  * Some section permission faults need to be handled gracefully.
478  * They can happen due to a __{get,put}_user during an oops.
479  */
480 #ifndef CONFIG_ARM_LPAE
481 static int
482 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
483 {
484 	do_bad_area(addr, fsr, regs);
485 	return 0;
486 }
487 #endif /* CONFIG_ARM_LPAE */
488 
489 /*
490  * This abort handler always returns "fault".
491  */
492 static int
493 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
494 {
495 	return 1;
496 }
497 
498 struct fsr_info {
499 	int	(*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
500 	int	sig;
501 	int	code;
502 	const char *name;
503 };
504 
505 /* FSR definition */
506 #ifdef CONFIG_ARM_LPAE
507 #include "fsr-3level.c"
508 #else
509 #include "fsr-2level.c"
510 #endif
511 
512 void __init
513 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
514 		int sig, int code, const char *name)
515 {
516 	if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
517 		BUG();
518 
519 	fsr_info[nr].fn   = fn;
520 	fsr_info[nr].sig  = sig;
521 	fsr_info[nr].code = code;
522 	fsr_info[nr].name = name;
523 }
524 
525 /*
526  * Dispatch a data abort to the relevant handler.
527  */
528 asmlinkage void
529 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
530 {
531 	const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
532 
533 	if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
534 		return;
535 
536 	pr_alert("8<--- cut here ---\n");
537 	pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n",
538 		inf->name, fsr, addr);
539 	show_pte(KERN_ALERT, current->mm, addr);
540 
541 	arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
542 		       fsr, 0);
543 }
544 
545 void __init
546 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
547 		 int sig, int code, const char *name)
548 {
549 	if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
550 		BUG();
551 
552 	ifsr_info[nr].fn   = fn;
553 	ifsr_info[nr].sig  = sig;
554 	ifsr_info[nr].code = code;
555 	ifsr_info[nr].name = name;
556 }
557 
558 asmlinkage void
559 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
560 {
561 	const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
562 
563 	if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
564 		return;
565 
566 	pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
567 		inf->name, ifsr, addr);
568 
569 	arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
570 		       ifsr, 0);
571 }
572 
573 /*
574  * Abort handler to be used only during first unmasking of asynchronous aborts
575  * on the boot CPU. This makes sure that the machine will not die if the
576  * firmware/bootloader left an imprecise abort pending for us to trip over.
577  */
578 static int __init early_abort_handler(unsigned long addr, unsigned int fsr,
579 				      struct pt_regs *regs)
580 {
581 	pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during "
582 		"first unmask, this is most likely caused by a "
583 		"firmware/bootloader bug.\n", fsr);
584 
585 	return 0;
586 }
587 
588 void __init early_abt_enable(void)
589 {
590 	fsr_info[FSR_FS_AEA].fn = early_abort_handler;
591 	local_abt_enable();
592 	fsr_info[FSR_FS_AEA].fn = do_bad;
593 }
594 
595 #ifndef CONFIG_ARM_LPAE
596 static int __init exceptions_init(void)
597 {
598 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
599 		hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
600 				"I-cache maintenance fault");
601 	}
602 
603 	if (cpu_architecture() >= CPU_ARCH_ARMv7) {
604 		/*
605 		 * TODO: Access flag faults introduced in ARMv6K.
606 		 * Runtime check for 'K' extension is needed
607 		 */
608 		hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
609 				"section access flag fault");
610 		hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
611 				"section access flag fault");
612 	}
613 
614 	return 0;
615 }
616 
617 arch_initcall(exceptions_init);
618 #endif
619