1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/mm/fault.c 4 * 5 * Copyright (C) 1995 Linus Torvalds 6 * Modifications for ARM processor (c) 1995-2004 Russell King 7 */ 8 #include <linux/extable.h> 9 #include <linux/signal.h> 10 #include <linux/mm.h> 11 #include <linux/hardirq.h> 12 #include <linux/init.h> 13 #include <linux/kprobes.h> 14 #include <linux/uaccess.h> 15 #include <linux/page-flags.h> 16 #include <linux/sched/signal.h> 17 #include <linux/sched/debug.h> 18 #include <linux/highmem.h> 19 #include <linux/perf_event.h> 20 21 #include <asm/pgtable.h> 22 #include <asm/system_misc.h> 23 #include <asm/system_info.h> 24 #include <asm/tlbflush.h> 25 26 #include "fault.h" 27 28 #ifdef CONFIG_MMU 29 30 /* 31 * This is useful to dump out the page tables associated with 32 * 'addr' in mm 'mm'. 33 */ 34 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr) 35 { 36 pgd_t *pgd; 37 38 if (!mm) 39 mm = &init_mm; 40 41 printk("%spgd = %p\n", lvl, mm->pgd); 42 pgd = pgd_offset(mm, addr); 43 printk("%s[%08lx] *pgd=%08llx", lvl, addr, (long long)pgd_val(*pgd)); 44 45 do { 46 p4d_t *p4d; 47 pud_t *pud; 48 pmd_t *pmd; 49 pte_t *pte; 50 51 p4d = p4d_offset(pgd, addr); 52 if (p4d_none(*p4d)) 53 break; 54 55 if (p4d_bad(*p4d)) { 56 pr_cont("(bad)"); 57 break; 58 } 59 60 pud = pud_offset(p4d, addr); 61 if (PTRS_PER_PUD != 1) 62 pr_cont(", *pud=%08llx", (long long)pud_val(*pud)); 63 64 if (pud_none(*pud)) 65 break; 66 67 if (pud_bad(*pud)) { 68 pr_cont("(bad)"); 69 break; 70 } 71 72 pmd = pmd_offset(pud, addr); 73 if (PTRS_PER_PMD != 1) 74 pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd)); 75 76 if (pmd_none(*pmd)) 77 break; 78 79 if (pmd_bad(*pmd)) { 80 pr_cont("(bad)"); 81 break; 82 } 83 84 /* We must not map this if we have highmem enabled */ 85 if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT))) 86 break; 87 88 pte = pte_offset_map(pmd, addr); 89 pr_cont(", *pte=%08llx", (long long)pte_val(*pte)); 90 #ifndef CONFIG_ARM_LPAE 91 pr_cont(", *ppte=%08llx", 92 (long long)pte_val(pte[PTE_HWTABLE_PTRS])); 93 #endif 94 pte_unmap(pte); 95 } while(0); 96 97 pr_cont("\n"); 98 } 99 #else /* CONFIG_MMU */ 100 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr) 101 { } 102 #endif /* CONFIG_MMU */ 103 104 /* 105 * Oops. The kernel tried to access some page that wasn't present. 106 */ 107 static void 108 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr, 109 struct pt_regs *regs) 110 { 111 /* 112 * Are we prepared to handle this kernel fault? 113 */ 114 if (fixup_exception(regs)) 115 return; 116 117 /* 118 * No handler, we'll have to terminate things with extreme prejudice. 119 */ 120 bust_spinlocks(1); 121 pr_alert("8<--- cut here ---\n"); 122 pr_alert("Unable to handle kernel %s at virtual address %08lx\n", 123 (addr < PAGE_SIZE) ? "NULL pointer dereference" : 124 "paging request", addr); 125 126 show_pte(KERN_ALERT, mm, addr); 127 die("Oops", regs, fsr); 128 bust_spinlocks(0); 129 do_exit(SIGKILL); 130 } 131 132 /* 133 * Something tried to access memory that isn't in our memory map.. 134 * User mode accesses just cause a SIGSEGV 135 */ 136 static void 137 __do_user_fault(unsigned long addr, unsigned int fsr, unsigned int sig, 138 int code, struct pt_regs *regs) 139 { 140 struct task_struct *tsk = current; 141 142 if (addr > TASK_SIZE) 143 harden_branch_predictor(); 144 145 #ifdef CONFIG_DEBUG_USER 146 if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) || 147 ((user_debug & UDBG_BUS) && (sig == SIGBUS))) { 148 pr_err("8<--- cut here ---\n"); 149 pr_err("%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n", 150 tsk->comm, sig, addr, fsr); 151 show_pte(KERN_ERR, tsk->mm, addr); 152 show_regs(regs); 153 } 154 #endif 155 #ifndef CONFIG_KUSER_HELPERS 156 if ((sig == SIGSEGV) && ((addr & PAGE_MASK) == 0xffff0000)) 157 printk_ratelimited(KERN_DEBUG 158 "%s: CONFIG_KUSER_HELPERS disabled at 0x%08lx\n", 159 tsk->comm, addr); 160 #endif 161 162 tsk->thread.address = addr; 163 tsk->thread.error_code = fsr; 164 tsk->thread.trap_no = 14; 165 force_sig_fault(sig, code, (void __user *)addr); 166 } 167 168 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 169 { 170 struct task_struct *tsk = current; 171 struct mm_struct *mm = tsk->active_mm; 172 173 /* 174 * If we are in kernel mode at this point, we 175 * have no context to handle this fault with. 176 */ 177 if (user_mode(regs)) 178 __do_user_fault(addr, fsr, SIGSEGV, SEGV_MAPERR, regs); 179 else 180 __do_kernel_fault(mm, addr, fsr, regs); 181 } 182 183 #ifdef CONFIG_MMU 184 #define VM_FAULT_BADMAP 0x010000 185 #define VM_FAULT_BADACCESS 0x020000 186 187 /* 188 * Check that the permissions on the VMA allow for the fault which occurred. 189 * If we encountered a write fault, we must have write permission, otherwise 190 * we allow any permission. 191 */ 192 static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma) 193 { 194 unsigned int mask = VM_ACCESS_FLAGS; 195 196 if ((fsr & FSR_WRITE) && !(fsr & FSR_CM)) 197 mask = VM_WRITE; 198 if (fsr & FSR_LNX_PF) 199 mask = VM_EXEC; 200 201 return vma->vm_flags & mask ? false : true; 202 } 203 204 static vm_fault_t __kprobes 205 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr, 206 unsigned int flags, struct task_struct *tsk) 207 { 208 struct vm_area_struct *vma; 209 vm_fault_t fault; 210 211 vma = find_vma(mm, addr); 212 fault = VM_FAULT_BADMAP; 213 if (unlikely(!vma)) 214 goto out; 215 if (unlikely(vma->vm_start > addr)) 216 goto check_stack; 217 218 /* 219 * Ok, we have a good vm_area for this 220 * memory access, so we can handle it. 221 */ 222 good_area: 223 if (access_error(fsr, vma)) { 224 fault = VM_FAULT_BADACCESS; 225 goto out; 226 } 227 228 return handle_mm_fault(vma, addr & PAGE_MASK, flags); 229 230 check_stack: 231 /* Don't allow expansion below FIRST_USER_ADDRESS */ 232 if (vma->vm_flags & VM_GROWSDOWN && 233 addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr)) 234 goto good_area; 235 out: 236 return fault; 237 } 238 239 static int __kprobes 240 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 241 { 242 struct task_struct *tsk; 243 struct mm_struct *mm; 244 int sig, code; 245 vm_fault_t fault; 246 unsigned int flags = FAULT_FLAG_DEFAULT; 247 248 if (kprobe_page_fault(regs, fsr)) 249 return 0; 250 251 tsk = current; 252 mm = tsk->mm; 253 254 /* Enable interrupts if they were enabled in the parent context. */ 255 if (interrupts_enabled(regs)) 256 local_irq_enable(); 257 258 /* 259 * If we're in an interrupt or have no user 260 * context, we must not take the fault.. 261 */ 262 if (faulthandler_disabled() || !mm) 263 goto no_context; 264 265 if (user_mode(regs)) 266 flags |= FAULT_FLAG_USER; 267 if ((fsr & FSR_WRITE) && !(fsr & FSR_CM)) 268 flags |= FAULT_FLAG_WRITE; 269 270 /* 271 * As per x86, we may deadlock here. However, since the kernel only 272 * validly references user space from well defined areas of the code, 273 * we can bug out early if this is from code which shouldn't. 274 */ 275 if (!down_read_trylock(&mm->mmap_sem)) { 276 if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc)) 277 goto no_context; 278 retry: 279 down_read(&mm->mmap_sem); 280 } else { 281 /* 282 * The above down_read_trylock() might have succeeded in 283 * which case, we'll have missed the might_sleep() from 284 * down_read() 285 */ 286 might_sleep(); 287 #ifdef CONFIG_DEBUG_VM 288 if (!user_mode(regs) && 289 !search_exception_tables(regs->ARM_pc)) 290 goto no_context; 291 #endif 292 } 293 294 fault = __do_page_fault(mm, addr, fsr, flags, tsk); 295 296 /* If we need to retry but a fatal signal is pending, handle the 297 * signal first. We do not need to release the mmap_sem because 298 * it would already be released in __lock_page_or_retry in 299 * mm/filemap.c. */ 300 if (fault_signal_pending(fault, regs)) { 301 if (!user_mode(regs)) 302 goto no_context; 303 return 0; 304 } 305 306 /* 307 * Major/minor page fault accounting is only done on the 308 * initial attempt. If we go through a retry, it is extremely 309 * likely that the page will be found in page cache at that point. 310 */ 311 312 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); 313 if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) { 314 if (fault & VM_FAULT_MAJOR) { 315 tsk->maj_flt++; 316 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 317 regs, addr); 318 } else { 319 tsk->min_flt++; 320 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 321 regs, addr); 322 } 323 if (fault & VM_FAULT_RETRY) { 324 flags |= FAULT_FLAG_TRIED; 325 goto retry; 326 } 327 } 328 329 up_read(&mm->mmap_sem); 330 331 /* 332 * Handle the "normal" case first - VM_FAULT_MAJOR 333 */ 334 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS)))) 335 return 0; 336 337 /* 338 * If we are in kernel mode at this point, we 339 * have no context to handle this fault with. 340 */ 341 if (!user_mode(regs)) 342 goto no_context; 343 344 if (fault & VM_FAULT_OOM) { 345 /* 346 * We ran out of memory, call the OOM killer, and return to 347 * userspace (which will retry the fault, or kill us if we 348 * got oom-killed) 349 */ 350 pagefault_out_of_memory(); 351 return 0; 352 } 353 354 if (fault & VM_FAULT_SIGBUS) { 355 /* 356 * We had some memory, but were unable to 357 * successfully fix up this page fault. 358 */ 359 sig = SIGBUS; 360 code = BUS_ADRERR; 361 } else { 362 /* 363 * Something tried to access memory that 364 * isn't in our memory map.. 365 */ 366 sig = SIGSEGV; 367 code = fault == VM_FAULT_BADACCESS ? 368 SEGV_ACCERR : SEGV_MAPERR; 369 } 370 371 __do_user_fault(addr, fsr, sig, code, regs); 372 return 0; 373 374 no_context: 375 __do_kernel_fault(mm, addr, fsr, regs); 376 return 0; 377 } 378 #else /* CONFIG_MMU */ 379 static int 380 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 381 { 382 return 0; 383 } 384 #endif /* CONFIG_MMU */ 385 386 /* 387 * First Level Translation Fault Handler 388 * 389 * We enter here because the first level page table doesn't contain 390 * a valid entry for the address. 391 * 392 * If the address is in kernel space (>= TASK_SIZE), then we are 393 * probably faulting in the vmalloc() area. 394 * 395 * If the init_task's first level page tables contains the relevant 396 * entry, we copy the it to this task. If not, we send the process 397 * a signal, fixup the exception, or oops the kernel. 398 * 399 * NOTE! We MUST NOT take any locks for this case. We may be in an 400 * interrupt or a critical region, and should only copy the information 401 * from the master page table, nothing more. 402 */ 403 #ifdef CONFIG_MMU 404 static int __kprobes 405 do_translation_fault(unsigned long addr, unsigned int fsr, 406 struct pt_regs *regs) 407 { 408 unsigned int index; 409 pgd_t *pgd, *pgd_k; 410 p4d_t *p4d, *p4d_k; 411 pud_t *pud, *pud_k; 412 pmd_t *pmd, *pmd_k; 413 414 if (addr < TASK_SIZE) 415 return do_page_fault(addr, fsr, regs); 416 417 if (user_mode(regs)) 418 goto bad_area; 419 420 index = pgd_index(addr); 421 422 pgd = cpu_get_pgd() + index; 423 pgd_k = init_mm.pgd + index; 424 425 p4d = p4d_offset(pgd, addr); 426 p4d_k = p4d_offset(pgd_k, addr); 427 428 if (p4d_none(*p4d_k)) 429 goto bad_area; 430 if (!p4d_present(*p4d)) 431 set_p4d(p4d, *p4d_k); 432 433 pud = pud_offset(p4d, addr); 434 pud_k = pud_offset(p4d_k, addr); 435 436 if (pud_none(*pud_k)) 437 goto bad_area; 438 if (!pud_present(*pud)) 439 set_pud(pud, *pud_k); 440 441 pmd = pmd_offset(pud, addr); 442 pmd_k = pmd_offset(pud_k, addr); 443 444 #ifdef CONFIG_ARM_LPAE 445 /* 446 * Only one hardware entry per PMD with LPAE. 447 */ 448 index = 0; 449 #else 450 /* 451 * On ARM one Linux PGD entry contains two hardware entries (see page 452 * tables layout in pgtable.h). We normally guarantee that we always 453 * fill both L1 entries. But create_mapping() doesn't follow the rule. 454 * It can create inidividual L1 entries, so here we have to call 455 * pmd_none() check for the entry really corresponded to address, not 456 * for the first of pair. 457 */ 458 index = (addr >> SECTION_SHIFT) & 1; 459 #endif 460 if (pmd_none(pmd_k[index])) 461 goto bad_area; 462 463 copy_pmd(pmd, pmd_k); 464 return 0; 465 466 bad_area: 467 do_bad_area(addr, fsr, regs); 468 return 0; 469 } 470 #else /* CONFIG_MMU */ 471 static int 472 do_translation_fault(unsigned long addr, unsigned int fsr, 473 struct pt_regs *regs) 474 { 475 return 0; 476 } 477 #endif /* CONFIG_MMU */ 478 479 /* 480 * Some section permission faults need to be handled gracefully. 481 * They can happen due to a __{get,put}_user during an oops. 482 */ 483 #ifndef CONFIG_ARM_LPAE 484 static int 485 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 486 { 487 do_bad_area(addr, fsr, regs); 488 return 0; 489 } 490 #endif /* CONFIG_ARM_LPAE */ 491 492 /* 493 * This abort handler always returns "fault". 494 */ 495 static int 496 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 497 { 498 return 1; 499 } 500 501 struct fsr_info { 502 int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs); 503 int sig; 504 int code; 505 const char *name; 506 }; 507 508 /* FSR definition */ 509 #ifdef CONFIG_ARM_LPAE 510 #include "fsr-3level.c" 511 #else 512 #include "fsr-2level.c" 513 #endif 514 515 void __init 516 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), 517 int sig, int code, const char *name) 518 { 519 if (nr < 0 || nr >= ARRAY_SIZE(fsr_info)) 520 BUG(); 521 522 fsr_info[nr].fn = fn; 523 fsr_info[nr].sig = sig; 524 fsr_info[nr].code = code; 525 fsr_info[nr].name = name; 526 } 527 528 /* 529 * Dispatch a data abort to the relevant handler. 530 */ 531 asmlinkage void 532 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 533 { 534 const struct fsr_info *inf = fsr_info + fsr_fs(fsr); 535 536 if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs)) 537 return; 538 539 pr_alert("8<--- cut here ---\n"); 540 pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n", 541 inf->name, fsr, addr); 542 show_pte(KERN_ALERT, current->mm, addr); 543 544 arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr, 545 fsr, 0); 546 } 547 548 void __init 549 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), 550 int sig, int code, const char *name) 551 { 552 if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info)) 553 BUG(); 554 555 ifsr_info[nr].fn = fn; 556 ifsr_info[nr].sig = sig; 557 ifsr_info[nr].code = code; 558 ifsr_info[nr].name = name; 559 } 560 561 asmlinkage void 562 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs) 563 { 564 const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr); 565 566 if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs)) 567 return; 568 569 pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n", 570 inf->name, ifsr, addr); 571 572 arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr, 573 ifsr, 0); 574 } 575 576 /* 577 * Abort handler to be used only during first unmasking of asynchronous aborts 578 * on the boot CPU. This makes sure that the machine will not die if the 579 * firmware/bootloader left an imprecise abort pending for us to trip over. 580 */ 581 static int __init early_abort_handler(unsigned long addr, unsigned int fsr, 582 struct pt_regs *regs) 583 { 584 pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during " 585 "first unmask, this is most likely caused by a " 586 "firmware/bootloader bug.\n", fsr); 587 588 return 0; 589 } 590 591 void __init early_abt_enable(void) 592 { 593 fsr_info[FSR_FS_AEA].fn = early_abort_handler; 594 local_abt_enable(); 595 fsr_info[FSR_FS_AEA].fn = do_bad; 596 } 597 598 #ifndef CONFIG_ARM_LPAE 599 static int __init exceptions_init(void) 600 { 601 if (cpu_architecture() >= CPU_ARCH_ARMv6) { 602 hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR, 603 "I-cache maintenance fault"); 604 } 605 606 if (cpu_architecture() >= CPU_ARCH_ARMv7) { 607 /* 608 * TODO: Access flag faults introduced in ARMv6K. 609 * Runtime check for 'K' extension is needed 610 */ 611 hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR, 612 "section access flag fault"); 613 hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR, 614 "section access flag fault"); 615 } 616 617 return 0; 618 } 619 620 arch_initcall(exceptions_init); 621 #endif 622