1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/mm/fault.c 4 * 5 * Copyright (C) 1995 Linus Torvalds 6 * Modifications for ARM processor (c) 1995-2004 Russell King 7 */ 8 #include <linux/extable.h> 9 #include <linux/signal.h> 10 #include <linux/mm.h> 11 #include <linux/hardirq.h> 12 #include <linux/init.h> 13 #include <linux/kprobes.h> 14 #include <linux/uaccess.h> 15 #include <linux/page-flags.h> 16 #include <linux/sched/signal.h> 17 #include <linux/sched/debug.h> 18 #include <linux/highmem.h> 19 #include <linux/perf_event.h> 20 #include <linux/kfence.h> 21 22 #include <asm/system_misc.h> 23 #include <asm/system_info.h> 24 #include <asm/tlbflush.h> 25 26 #include "fault.h" 27 28 #ifdef CONFIG_MMU 29 30 /* 31 * This is useful to dump out the page tables associated with 32 * 'addr' in mm 'mm'. 33 */ 34 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr) 35 { 36 pgd_t *pgd; 37 38 if (!mm) 39 mm = &init_mm; 40 41 pgd = pgd_offset(mm, addr); 42 printk("%s[%08lx] *pgd=%08llx", lvl, addr, (long long)pgd_val(*pgd)); 43 44 do { 45 p4d_t *p4d; 46 pud_t *pud; 47 pmd_t *pmd; 48 pte_t *pte; 49 50 p4d = p4d_offset(pgd, addr); 51 if (p4d_none(*p4d)) 52 break; 53 54 if (p4d_bad(*p4d)) { 55 pr_cont("(bad)"); 56 break; 57 } 58 59 pud = pud_offset(p4d, addr); 60 if (PTRS_PER_PUD != 1) 61 pr_cont(", *pud=%08llx", (long long)pud_val(*pud)); 62 63 if (pud_none(*pud)) 64 break; 65 66 if (pud_bad(*pud)) { 67 pr_cont("(bad)"); 68 break; 69 } 70 71 pmd = pmd_offset(pud, addr); 72 if (PTRS_PER_PMD != 1) 73 pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd)); 74 75 if (pmd_none(*pmd)) 76 break; 77 78 if (pmd_bad(*pmd)) { 79 pr_cont("(bad)"); 80 break; 81 } 82 83 /* We must not map this if we have highmem enabled */ 84 if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT))) 85 break; 86 87 pte = pte_offset_map(pmd, addr); 88 if (!pte) 89 break; 90 91 pr_cont(", *pte=%08llx", (long long)pte_val(*pte)); 92 #ifndef CONFIG_ARM_LPAE 93 pr_cont(", *ppte=%08llx", 94 (long long)pte_val(pte[PTE_HWTABLE_PTRS])); 95 #endif 96 pte_unmap(pte); 97 } while(0); 98 99 pr_cont("\n"); 100 } 101 #else /* CONFIG_MMU */ 102 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr) 103 { } 104 #endif /* CONFIG_MMU */ 105 106 static inline bool is_write_fault(unsigned int fsr) 107 { 108 return (fsr & FSR_WRITE) && !(fsr & FSR_CM); 109 } 110 111 static inline bool is_translation_fault(unsigned int fsr) 112 { 113 int fs = fsr_fs(fsr); 114 #ifdef CONFIG_ARM_LPAE 115 if ((fs & FS_MMU_NOLL_MASK) == FS_TRANS_NOLL) 116 return true; 117 #else 118 if (fs == FS_L1_TRANS || fs == FS_L2_TRANS) 119 return true; 120 #endif 121 return false; 122 } 123 124 static void die_kernel_fault(const char *msg, struct mm_struct *mm, 125 unsigned long addr, unsigned int fsr, 126 struct pt_regs *regs) 127 { 128 bust_spinlocks(1); 129 pr_alert("8<--- cut here ---\n"); 130 pr_alert("Unable to handle kernel %s at virtual address %08lx when %s\n", 131 msg, addr, fsr & FSR_LNX_PF ? "execute" : 132 fsr & FSR_WRITE ? "write" : "read"); 133 134 show_pte(KERN_ALERT, mm, addr); 135 die("Oops", regs, fsr); 136 bust_spinlocks(0); 137 make_task_dead(SIGKILL); 138 } 139 140 /* 141 * Oops. The kernel tried to access some page that wasn't present. 142 */ 143 static void 144 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr, 145 struct pt_regs *regs) 146 { 147 const char *msg; 148 /* 149 * Are we prepared to handle this kernel fault? 150 */ 151 if (fixup_exception(regs)) 152 return; 153 154 /* 155 * No handler, we'll have to terminate things with extreme prejudice. 156 */ 157 if (addr < PAGE_SIZE) { 158 msg = "NULL pointer dereference"; 159 } else { 160 if (is_translation_fault(fsr) && 161 kfence_handle_page_fault(addr, is_write_fault(fsr), regs)) 162 return; 163 164 msg = "paging request"; 165 } 166 167 die_kernel_fault(msg, mm, addr, fsr, regs); 168 } 169 170 /* 171 * Something tried to access memory that isn't in our memory map.. 172 * User mode accesses just cause a SIGSEGV 173 */ 174 static void 175 __do_user_fault(unsigned long addr, unsigned int fsr, unsigned int sig, 176 int code, struct pt_regs *regs) 177 { 178 struct task_struct *tsk = current; 179 180 if (addr > TASK_SIZE) 181 harden_branch_predictor(); 182 183 #ifdef CONFIG_DEBUG_USER 184 if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) || 185 ((user_debug & UDBG_BUS) && (sig == SIGBUS))) { 186 pr_err("8<--- cut here ---\n"); 187 pr_err("%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n", 188 tsk->comm, sig, addr, fsr); 189 show_pte(KERN_ERR, tsk->mm, addr); 190 show_regs(regs); 191 } 192 #endif 193 #ifndef CONFIG_KUSER_HELPERS 194 if ((sig == SIGSEGV) && ((addr & PAGE_MASK) == 0xffff0000)) 195 printk_ratelimited(KERN_DEBUG 196 "%s: CONFIG_KUSER_HELPERS disabled at 0x%08lx\n", 197 tsk->comm, addr); 198 #endif 199 200 tsk->thread.address = addr; 201 tsk->thread.error_code = fsr; 202 tsk->thread.trap_no = 14; 203 force_sig_fault(sig, code, (void __user *)addr); 204 } 205 206 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 207 { 208 struct task_struct *tsk = current; 209 struct mm_struct *mm = tsk->active_mm; 210 211 /* 212 * If we are in kernel mode at this point, we 213 * have no context to handle this fault with. 214 */ 215 if (user_mode(regs)) 216 __do_user_fault(addr, fsr, SIGSEGV, SEGV_MAPERR, regs); 217 else 218 __do_kernel_fault(mm, addr, fsr, regs); 219 } 220 221 #ifdef CONFIG_MMU 222 #define VM_FAULT_BADMAP ((__force vm_fault_t)0x010000) 223 #define VM_FAULT_BADACCESS ((__force vm_fault_t)0x020000) 224 225 static inline bool is_permission_fault(unsigned int fsr) 226 { 227 int fs = fsr_fs(fsr); 228 #ifdef CONFIG_ARM_LPAE 229 if ((fs & FS_MMU_NOLL_MASK) == FS_PERM_NOLL) 230 return true; 231 #else 232 if (fs == FS_L1_PERM || fs == FS_L2_PERM) 233 return true; 234 #endif 235 return false; 236 } 237 238 static vm_fault_t __kprobes 239 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int flags, 240 unsigned long vma_flags, struct pt_regs *regs) 241 { 242 struct vm_area_struct *vma = find_vma(mm, addr); 243 if (unlikely(!vma)) 244 return VM_FAULT_BADMAP; 245 246 if (unlikely(vma->vm_start > addr)) { 247 if (!(vma->vm_flags & VM_GROWSDOWN)) 248 return VM_FAULT_BADMAP; 249 if (addr < FIRST_USER_ADDRESS) 250 return VM_FAULT_BADMAP; 251 if (expand_stack(vma, addr)) 252 return VM_FAULT_BADMAP; 253 } 254 255 /* 256 * ok, we have a good vm_area for this memory access, check the 257 * permissions on the VMA allow for the fault which occurred. 258 */ 259 if (!(vma->vm_flags & vma_flags)) 260 return VM_FAULT_BADACCESS; 261 262 return handle_mm_fault(vma, addr & PAGE_MASK, flags, regs); 263 } 264 265 static int __kprobes 266 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 267 { 268 struct mm_struct *mm = current->mm; 269 int sig, code; 270 vm_fault_t fault; 271 unsigned int flags = FAULT_FLAG_DEFAULT; 272 unsigned long vm_flags = VM_ACCESS_FLAGS; 273 274 if (kprobe_page_fault(regs, fsr)) 275 return 0; 276 277 278 /* Enable interrupts if they were enabled in the parent context. */ 279 if (interrupts_enabled(regs)) 280 local_irq_enable(); 281 282 /* 283 * If we're in an interrupt or have no user 284 * context, we must not take the fault.. 285 */ 286 if (faulthandler_disabled() || !mm) 287 goto no_context; 288 289 if (user_mode(regs)) 290 flags |= FAULT_FLAG_USER; 291 292 if (is_write_fault(fsr)) { 293 flags |= FAULT_FLAG_WRITE; 294 vm_flags = VM_WRITE; 295 } 296 297 if (fsr & FSR_LNX_PF) { 298 vm_flags = VM_EXEC; 299 300 if (is_permission_fault(fsr) && !user_mode(regs)) 301 die_kernel_fault("execution of memory", 302 mm, addr, fsr, regs); 303 } 304 305 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); 306 307 /* 308 * As per x86, we may deadlock here. However, since the kernel only 309 * validly references user space from well defined areas of the code, 310 * we can bug out early if this is from code which shouldn't. 311 */ 312 if (!mmap_read_trylock(mm)) { 313 if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc)) 314 goto no_context; 315 retry: 316 mmap_read_lock(mm); 317 } else { 318 /* 319 * The above down_read_trylock() might have succeeded in 320 * which case, we'll have missed the might_sleep() from 321 * down_read() 322 */ 323 might_sleep(); 324 #ifdef CONFIG_DEBUG_VM 325 if (!user_mode(regs) && 326 !search_exception_tables(regs->ARM_pc)) 327 goto no_context; 328 #endif 329 } 330 331 fault = __do_page_fault(mm, addr, flags, vm_flags, regs); 332 333 /* If we need to retry but a fatal signal is pending, handle the 334 * signal first. We do not need to release the mmap_lock because 335 * it would already be released in __lock_page_or_retry in 336 * mm/filemap.c. */ 337 if (fault_signal_pending(fault, regs)) { 338 if (!user_mode(regs)) 339 goto no_context; 340 return 0; 341 } 342 343 /* The fault is fully completed (including releasing mmap lock) */ 344 if (fault & VM_FAULT_COMPLETED) 345 return 0; 346 347 if (!(fault & VM_FAULT_ERROR)) { 348 if (fault & VM_FAULT_RETRY) { 349 flags |= FAULT_FLAG_TRIED; 350 goto retry; 351 } 352 } 353 354 mmap_read_unlock(mm); 355 356 /* 357 * Handle the "normal" case first - VM_FAULT_MAJOR 358 */ 359 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS)))) 360 return 0; 361 362 /* 363 * If we are in kernel mode at this point, we 364 * have no context to handle this fault with. 365 */ 366 if (!user_mode(regs)) 367 goto no_context; 368 369 if (fault & VM_FAULT_OOM) { 370 /* 371 * We ran out of memory, call the OOM killer, and return to 372 * userspace (which will retry the fault, or kill us if we 373 * got oom-killed) 374 */ 375 pagefault_out_of_memory(); 376 return 0; 377 } 378 379 if (fault & VM_FAULT_SIGBUS) { 380 /* 381 * We had some memory, but were unable to 382 * successfully fix up this page fault. 383 */ 384 sig = SIGBUS; 385 code = BUS_ADRERR; 386 } else { 387 /* 388 * Something tried to access memory that 389 * isn't in our memory map.. 390 */ 391 sig = SIGSEGV; 392 code = fault == VM_FAULT_BADACCESS ? 393 SEGV_ACCERR : SEGV_MAPERR; 394 } 395 396 __do_user_fault(addr, fsr, sig, code, regs); 397 return 0; 398 399 no_context: 400 __do_kernel_fault(mm, addr, fsr, regs); 401 return 0; 402 } 403 #else /* CONFIG_MMU */ 404 static int 405 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 406 { 407 return 0; 408 } 409 #endif /* CONFIG_MMU */ 410 411 /* 412 * First Level Translation Fault Handler 413 * 414 * We enter here because the first level page table doesn't contain 415 * a valid entry for the address. 416 * 417 * If the address is in kernel space (>= TASK_SIZE), then we are 418 * probably faulting in the vmalloc() area. 419 * 420 * If the init_task's first level page tables contains the relevant 421 * entry, we copy the it to this task. If not, we send the process 422 * a signal, fixup the exception, or oops the kernel. 423 * 424 * NOTE! We MUST NOT take any locks for this case. We may be in an 425 * interrupt or a critical region, and should only copy the information 426 * from the master page table, nothing more. 427 */ 428 #ifdef CONFIG_MMU 429 static int __kprobes 430 do_translation_fault(unsigned long addr, unsigned int fsr, 431 struct pt_regs *regs) 432 { 433 unsigned int index; 434 pgd_t *pgd, *pgd_k; 435 p4d_t *p4d, *p4d_k; 436 pud_t *pud, *pud_k; 437 pmd_t *pmd, *pmd_k; 438 439 if (addr < TASK_SIZE) 440 return do_page_fault(addr, fsr, regs); 441 442 if (user_mode(regs)) 443 goto bad_area; 444 445 index = pgd_index(addr); 446 447 pgd = cpu_get_pgd() + index; 448 pgd_k = init_mm.pgd + index; 449 450 p4d = p4d_offset(pgd, addr); 451 p4d_k = p4d_offset(pgd_k, addr); 452 453 if (p4d_none(*p4d_k)) 454 goto bad_area; 455 if (!p4d_present(*p4d)) 456 set_p4d(p4d, *p4d_k); 457 458 pud = pud_offset(p4d, addr); 459 pud_k = pud_offset(p4d_k, addr); 460 461 if (pud_none(*pud_k)) 462 goto bad_area; 463 if (!pud_present(*pud)) 464 set_pud(pud, *pud_k); 465 466 pmd = pmd_offset(pud, addr); 467 pmd_k = pmd_offset(pud_k, addr); 468 469 #ifdef CONFIG_ARM_LPAE 470 /* 471 * Only one hardware entry per PMD with LPAE. 472 */ 473 index = 0; 474 #else 475 /* 476 * On ARM one Linux PGD entry contains two hardware entries (see page 477 * tables layout in pgtable.h). We normally guarantee that we always 478 * fill both L1 entries. But create_mapping() doesn't follow the rule. 479 * It can create inidividual L1 entries, so here we have to call 480 * pmd_none() check for the entry really corresponded to address, not 481 * for the first of pair. 482 */ 483 index = (addr >> SECTION_SHIFT) & 1; 484 #endif 485 if (pmd_none(pmd_k[index])) 486 goto bad_area; 487 488 copy_pmd(pmd, pmd_k); 489 return 0; 490 491 bad_area: 492 do_bad_area(addr, fsr, regs); 493 return 0; 494 } 495 #else /* CONFIG_MMU */ 496 static int 497 do_translation_fault(unsigned long addr, unsigned int fsr, 498 struct pt_regs *regs) 499 { 500 return 0; 501 } 502 #endif /* CONFIG_MMU */ 503 504 /* 505 * Some section permission faults need to be handled gracefully. 506 * They can happen due to a __{get,put}_user during an oops. 507 */ 508 #ifndef CONFIG_ARM_LPAE 509 static int 510 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 511 { 512 do_bad_area(addr, fsr, regs); 513 return 0; 514 } 515 #endif /* CONFIG_ARM_LPAE */ 516 517 /* 518 * This abort handler always returns "fault". 519 */ 520 static int 521 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 522 { 523 return 1; 524 } 525 526 struct fsr_info { 527 int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs); 528 int sig; 529 int code; 530 const char *name; 531 }; 532 533 /* FSR definition */ 534 #ifdef CONFIG_ARM_LPAE 535 #include "fsr-3level.c" 536 #else 537 #include "fsr-2level.c" 538 #endif 539 540 void __init 541 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), 542 int sig, int code, const char *name) 543 { 544 if (nr < 0 || nr >= ARRAY_SIZE(fsr_info)) 545 BUG(); 546 547 fsr_info[nr].fn = fn; 548 fsr_info[nr].sig = sig; 549 fsr_info[nr].code = code; 550 fsr_info[nr].name = name; 551 } 552 553 /* 554 * Dispatch a data abort to the relevant handler. 555 */ 556 asmlinkage void 557 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 558 { 559 const struct fsr_info *inf = fsr_info + fsr_fs(fsr); 560 561 if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs)) 562 return; 563 564 pr_alert("8<--- cut here ---\n"); 565 pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n", 566 inf->name, fsr, addr); 567 show_pte(KERN_ALERT, current->mm, addr); 568 569 arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr, 570 fsr, 0); 571 } 572 573 void __init 574 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), 575 int sig, int code, const char *name) 576 { 577 if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info)) 578 BUG(); 579 580 ifsr_info[nr].fn = fn; 581 ifsr_info[nr].sig = sig; 582 ifsr_info[nr].code = code; 583 ifsr_info[nr].name = name; 584 } 585 586 asmlinkage void 587 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs) 588 { 589 const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr); 590 591 if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs)) 592 return; 593 594 pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n", 595 inf->name, ifsr, addr); 596 597 arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr, 598 ifsr, 0); 599 } 600 601 /* 602 * Abort handler to be used only during first unmasking of asynchronous aborts 603 * on the boot CPU. This makes sure that the machine will not die if the 604 * firmware/bootloader left an imprecise abort pending for us to trip over. 605 */ 606 static int __init early_abort_handler(unsigned long addr, unsigned int fsr, 607 struct pt_regs *regs) 608 { 609 pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during " 610 "first unmask, this is most likely caused by a " 611 "firmware/bootloader bug.\n", fsr); 612 613 return 0; 614 } 615 616 void __init early_abt_enable(void) 617 { 618 fsr_info[FSR_FS_AEA].fn = early_abort_handler; 619 local_abt_enable(); 620 fsr_info[FSR_FS_AEA].fn = do_bad; 621 } 622 623 #ifndef CONFIG_ARM_LPAE 624 static int __init exceptions_init(void) 625 { 626 if (cpu_architecture() >= CPU_ARCH_ARMv6) { 627 hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR, 628 "I-cache maintenance fault"); 629 } 630 631 if (cpu_architecture() >= CPU_ARCH_ARMv7) { 632 /* 633 * TODO: Access flag faults introduced in ARMv6K. 634 * Runtime check for 'K' extension is needed 635 */ 636 hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR, 637 "section access flag fault"); 638 hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR, 639 "section access flag fault"); 640 } 641 642 return 0; 643 } 644 645 arch_initcall(exceptions_init); 646 #endif 647