xref: /openbmc/linux/arch/arm/mm/fault.c (revision 565d76cb)
1 /*
2  *  linux/arch/arm/mm/fault.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Modifications for ARM processor (c) 1995-2004 Russell King
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/signal.h>
13 #include <linux/mm.h>
14 #include <linux/hardirq.h>
15 #include <linux/init.h>
16 #include <linux/kprobes.h>
17 #include <linux/uaccess.h>
18 #include <linux/page-flags.h>
19 #include <linux/sched.h>
20 #include <linux/highmem.h>
21 #include <linux/perf_event.h>
22 
23 #include <asm/system.h>
24 #include <asm/pgtable.h>
25 #include <asm/tlbflush.h>
26 
27 #include "fault.h"
28 
29 /*
30  * Fault status register encodings.  We steal bit 31 for our own purposes.
31  */
32 #define FSR_LNX_PF		(1 << 31)
33 #define FSR_WRITE		(1 << 11)
34 #define FSR_FS4			(1 << 10)
35 #define FSR_FS3_0		(15)
36 
37 static inline int fsr_fs(unsigned int fsr)
38 {
39 	return (fsr & FSR_FS3_0) | (fsr & FSR_FS4) >> 6;
40 }
41 
42 #ifdef CONFIG_MMU
43 
44 #ifdef CONFIG_KPROBES
45 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
46 {
47 	int ret = 0;
48 
49 	if (!user_mode(regs)) {
50 		/* kprobe_running() needs smp_processor_id() */
51 		preempt_disable();
52 		if (kprobe_running() && kprobe_fault_handler(regs, fsr))
53 			ret = 1;
54 		preempt_enable();
55 	}
56 
57 	return ret;
58 }
59 #else
60 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
61 {
62 	return 0;
63 }
64 #endif
65 
66 /*
67  * This is useful to dump out the page tables associated with
68  * 'addr' in mm 'mm'.
69  */
70 void show_pte(struct mm_struct *mm, unsigned long addr)
71 {
72 	pgd_t *pgd;
73 
74 	if (!mm)
75 		mm = &init_mm;
76 
77 	printk(KERN_ALERT "pgd = %p\n", mm->pgd);
78 	pgd = pgd_offset(mm, addr);
79 	printk(KERN_ALERT "[%08lx] *pgd=%08lx", addr, pgd_val(*pgd));
80 
81 	do {
82 		pmd_t *pmd;
83 		pte_t *pte;
84 
85 		if (pgd_none(*pgd))
86 			break;
87 
88 		if (pgd_bad(*pgd)) {
89 			printk("(bad)");
90 			break;
91 		}
92 
93 		pmd = pmd_offset(pgd, addr);
94 		if (PTRS_PER_PMD != 1)
95 			printk(", *pmd=%08lx", pmd_val(*pmd));
96 
97 		if (pmd_none(*pmd))
98 			break;
99 
100 		if (pmd_bad(*pmd)) {
101 			printk("(bad)");
102 			break;
103 		}
104 
105 		/* We must not map this if we have highmem enabled */
106 		if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
107 			break;
108 
109 		pte = pte_offset_map(pmd, addr);
110 		printk(", *pte=%08lx", pte_val(*pte));
111 		printk(", *ppte=%08lx", pte_val(pte[PTE_HWTABLE_PTRS]));
112 		pte_unmap(pte);
113 	} while(0);
114 
115 	printk("\n");
116 }
117 #else					/* CONFIG_MMU */
118 void show_pte(struct mm_struct *mm, unsigned long addr)
119 { }
120 #endif					/* CONFIG_MMU */
121 
122 /*
123  * Oops.  The kernel tried to access some page that wasn't present.
124  */
125 static void
126 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
127 		  struct pt_regs *regs)
128 {
129 	/*
130 	 * Are we prepared to handle this kernel fault?
131 	 */
132 	if (fixup_exception(regs))
133 		return;
134 
135 	/*
136 	 * No handler, we'll have to terminate things with extreme prejudice.
137 	 */
138 	bust_spinlocks(1);
139 	printk(KERN_ALERT
140 		"Unable to handle kernel %s at virtual address %08lx\n",
141 		(addr < PAGE_SIZE) ? "NULL pointer dereference" :
142 		"paging request", addr);
143 
144 	show_pte(mm, addr);
145 	die("Oops", regs, fsr);
146 	bust_spinlocks(0);
147 	do_exit(SIGKILL);
148 }
149 
150 /*
151  * Something tried to access memory that isn't in our memory map..
152  * User mode accesses just cause a SIGSEGV
153  */
154 static void
155 __do_user_fault(struct task_struct *tsk, unsigned long addr,
156 		unsigned int fsr, unsigned int sig, int code,
157 		struct pt_regs *regs)
158 {
159 	struct siginfo si;
160 
161 #ifdef CONFIG_DEBUG_USER
162 	if (user_debug & UDBG_SEGV) {
163 		printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
164 		       tsk->comm, sig, addr, fsr);
165 		show_pte(tsk->mm, addr);
166 		show_regs(regs);
167 	}
168 #endif
169 
170 	tsk->thread.address = addr;
171 	tsk->thread.error_code = fsr;
172 	tsk->thread.trap_no = 14;
173 	si.si_signo = sig;
174 	si.si_errno = 0;
175 	si.si_code = code;
176 	si.si_addr = (void __user *)addr;
177 	force_sig_info(sig, &si, tsk);
178 }
179 
180 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
181 {
182 	struct task_struct *tsk = current;
183 	struct mm_struct *mm = tsk->active_mm;
184 
185 	/*
186 	 * If we are in kernel mode at this point, we
187 	 * have no context to handle this fault with.
188 	 */
189 	if (user_mode(regs))
190 		__do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
191 	else
192 		__do_kernel_fault(mm, addr, fsr, regs);
193 }
194 
195 #ifdef CONFIG_MMU
196 #define VM_FAULT_BADMAP		0x010000
197 #define VM_FAULT_BADACCESS	0x020000
198 
199 /*
200  * Check that the permissions on the VMA allow for the fault which occurred.
201  * If we encountered a write fault, we must have write permission, otherwise
202  * we allow any permission.
203  */
204 static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
205 {
206 	unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
207 
208 	if (fsr & FSR_WRITE)
209 		mask = VM_WRITE;
210 	if (fsr & FSR_LNX_PF)
211 		mask = VM_EXEC;
212 
213 	return vma->vm_flags & mask ? false : true;
214 }
215 
216 static int __kprobes
217 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
218 		struct task_struct *tsk)
219 {
220 	struct vm_area_struct *vma;
221 	int fault;
222 
223 	vma = find_vma(mm, addr);
224 	fault = VM_FAULT_BADMAP;
225 	if (unlikely(!vma))
226 		goto out;
227 	if (unlikely(vma->vm_start > addr))
228 		goto check_stack;
229 
230 	/*
231 	 * Ok, we have a good vm_area for this
232 	 * memory access, so we can handle it.
233 	 */
234 good_area:
235 	if (access_error(fsr, vma)) {
236 		fault = VM_FAULT_BADACCESS;
237 		goto out;
238 	}
239 
240 	/*
241 	 * If for any reason at all we couldn't handle the fault, make
242 	 * sure we exit gracefully rather than endlessly redo the fault.
243 	 */
244 	fault = handle_mm_fault(mm, vma, addr & PAGE_MASK, (fsr & FSR_WRITE) ? FAULT_FLAG_WRITE : 0);
245 	if (unlikely(fault & VM_FAULT_ERROR))
246 		return fault;
247 	if (fault & VM_FAULT_MAJOR)
248 		tsk->maj_flt++;
249 	else
250 		tsk->min_flt++;
251 	return fault;
252 
253 check_stack:
254 	if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
255 		goto good_area;
256 out:
257 	return fault;
258 }
259 
260 static int __kprobes
261 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
262 {
263 	struct task_struct *tsk;
264 	struct mm_struct *mm;
265 	int fault, sig, code;
266 
267 	if (notify_page_fault(regs, fsr))
268 		return 0;
269 
270 	tsk = current;
271 	mm  = tsk->mm;
272 
273 	/*
274 	 * If we're in an interrupt or have no user
275 	 * context, we must not take the fault..
276 	 */
277 	if (in_atomic() || !mm)
278 		goto no_context;
279 
280 	/*
281 	 * As per x86, we may deadlock here.  However, since the kernel only
282 	 * validly references user space from well defined areas of the code,
283 	 * we can bug out early if this is from code which shouldn't.
284 	 */
285 	if (!down_read_trylock(&mm->mmap_sem)) {
286 		if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
287 			goto no_context;
288 		down_read(&mm->mmap_sem);
289 	} else {
290 		/*
291 		 * The above down_read_trylock() might have succeeded in
292 		 * which case, we'll have missed the might_sleep() from
293 		 * down_read()
294 		 */
295 		might_sleep();
296 #ifdef CONFIG_DEBUG_VM
297 		if (!user_mode(regs) &&
298 		    !search_exception_tables(regs->ARM_pc))
299 			goto no_context;
300 #endif
301 	}
302 
303 	fault = __do_page_fault(mm, addr, fsr, tsk);
304 	up_read(&mm->mmap_sem);
305 
306 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, addr);
307 	if (fault & VM_FAULT_MAJOR)
308 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0, regs, addr);
309 	else if (fault & VM_FAULT_MINOR)
310 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0, regs, addr);
311 
312 	/*
313 	 * Handle the "normal" case first - VM_FAULT_MAJOR / VM_FAULT_MINOR
314 	 */
315 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
316 		return 0;
317 
318 	if (fault & VM_FAULT_OOM) {
319 		/*
320 		 * We ran out of memory, call the OOM killer, and return to
321 		 * userspace (which will retry the fault, or kill us if we
322 		 * got oom-killed)
323 		 */
324 		pagefault_out_of_memory();
325 		return 0;
326 	}
327 
328 	/*
329 	 * If we are in kernel mode at this point, we
330 	 * have no context to handle this fault with.
331 	 */
332 	if (!user_mode(regs))
333 		goto no_context;
334 
335 	if (fault & VM_FAULT_SIGBUS) {
336 		/*
337 		 * We had some memory, but were unable to
338 		 * successfully fix up this page fault.
339 		 */
340 		sig = SIGBUS;
341 		code = BUS_ADRERR;
342 	} else {
343 		/*
344 		 * Something tried to access memory that
345 		 * isn't in our memory map..
346 		 */
347 		sig = SIGSEGV;
348 		code = fault == VM_FAULT_BADACCESS ?
349 			SEGV_ACCERR : SEGV_MAPERR;
350 	}
351 
352 	__do_user_fault(tsk, addr, fsr, sig, code, regs);
353 	return 0;
354 
355 no_context:
356 	__do_kernel_fault(mm, addr, fsr, regs);
357 	return 0;
358 }
359 #else					/* CONFIG_MMU */
360 static int
361 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
362 {
363 	return 0;
364 }
365 #endif					/* CONFIG_MMU */
366 
367 /*
368  * First Level Translation Fault Handler
369  *
370  * We enter here because the first level page table doesn't contain
371  * a valid entry for the address.
372  *
373  * If the address is in kernel space (>= TASK_SIZE), then we are
374  * probably faulting in the vmalloc() area.
375  *
376  * If the init_task's first level page tables contains the relevant
377  * entry, we copy the it to this task.  If not, we send the process
378  * a signal, fixup the exception, or oops the kernel.
379  *
380  * NOTE! We MUST NOT take any locks for this case. We may be in an
381  * interrupt or a critical region, and should only copy the information
382  * from the master page table, nothing more.
383  */
384 #ifdef CONFIG_MMU
385 static int __kprobes
386 do_translation_fault(unsigned long addr, unsigned int fsr,
387 		     struct pt_regs *regs)
388 {
389 	unsigned int index;
390 	pgd_t *pgd, *pgd_k;
391 	pmd_t *pmd, *pmd_k;
392 
393 	if (addr < TASK_SIZE)
394 		return do_page_fault(addr, fsr, regs);
395 
396 	if (user_mode(regs))
397 		goto bad_area;
398 
399 	index = pgd_index(addr);
400 
401 	/*
402 	 * FIXME: CP15 C1 is write only on ARMv3 architectures.
403 	 */
404 	pgd = cpu_get_pgd() + index;
405 	pgd_k = init_mm.pgd + index;
406 
407 	if (pgd_none(*pgd_k))
408 		goto bad_area;
409 
410 	if (!pgd_present(*pgd))
411 		set_pgd(pgd, *pgd_k);
412 
413 	pmd_k = pmd_offset(pgd_k, addr);
414 	pmd   = pmd_offset(pgd, addr);
415 
416 	/*
417 	 * On ARM one Linux PGD entry contains two hardware entries (see page
418 	 * tables layout in pgtable.h). We normally guarantee that we always
419 	 * fill both L1 entries. But create_mapping() doesn't follow the rule.
420 	 * It can create inidividual L1 entries, so here we have to call
421 	 * pmd_none() check for the entry really corresponded to address, not
422 	 * for the first of pair.
423 	 */
424 	index = (addr >> SECTION_SHIFT) & 1;
425 	if (pmd_none(pmd_k[index]))
426 		goto bad_area;
427 
428 	copy_pmd(pmd, pmd_k);
429 	return 0;
430 
431 bad_area:
432 	do_bad_area(addr, fsr, regs);
433 	return 0;
434 }
435 #else					/* CONFIG_MMU */
436 static int
437 do_translation_fault(unsigned long addr, unsigned int fsr,
438 		     struct pt_regs *regs)
439 {
440 	return 0;
441 }
442 #endif					/* CONFIG_MMU */
443 
444 /*
445  * Some section permission faults need to be handled gracefully.
446  * They can happen due to a __{get,put}_user during an oops.
447  */
448 static int
449 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
450 {
451 	do_bad_area(addr, fsr, regs);
452 	return 0;
453 }
454 
455 /*
456  * This abort handler always returns "fault".
457  */
458 static int
459 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
460 {
461 	return 1;
462 }
463 
464 static struct fsr_info {
465 	int	(*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
466 	int	sig;
467 	int	code;
468 	const char *name;
469 } fsr_info[] = {
470 	/*
471 	 * The following are the standard ARMv3 and ARMv4 aborts.  ARMv5
472 	 * defines these to be "precise" aborts.
473 	 */
474 	{ do_bad,		SIGSEGV, 0,		"vector exception"		   },
475 	{ do_bad,		SIGBUS,	 BUS_ADRALN,	"alignment exception"		   },
476 	{ do_bad,		SIGKILL, 0,		"terminal exception"		   },
477 	{ do_bad,		SIGBUS,	 BUS_ADRALN,	"alignment exception"		   },
478 	{ do_bad,		SIGBUS,	 0,		"external abort on linefetch"	   },
479 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"section translation fault"	   },
480 	{ do_bad,		SIGBUS,	 0,		"external abort on linefetch"	   },
481 	{ do_page_fault,	SIGSEGV, SEGV_MAPERR,	"page translation fault"	   },
482 	{ do_bad,		SIGBUS,	 0,		"external abort on non-linefetch"  },
483 	{ do_bad,		SIGSEGV, SEGV_ACCERR,	"section domain fault"		   },
484 	{ do_bad,		SIGBUS,	 0,		"external abort on non-linefetch"  },
485 	{ do_bad,		SIGSEGV, SEGV_ACCERR,	"page domain fault"		   },
486 	{ do_bad,		SIGBUS,	 0,		"external abort on translation"	   },
487 	{ do_sect_fault,	SIGSEGV, SEGV_ACCERR,	"section permission fault"	   },
488 	{ do_bad,		SIGBUS,	 0,		"external abort on translation"	   },
489 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"page permission fault"		   },
490 	/*
491 	 * The following are "imprecise" aborts, which are signalled by bit
492 	 * 10 of the FSR, and may not be recoverable.  These are only
493 	 * supported if the CPU abort handler supports bit 10.
494 	 */
495 	{ do_bad,		SIGBUS,  0,		"unknown 16"			   },
496 	{ do_bad,		SIGBUS,  0,		"unknown 17"			   },
497 	{ do_bad,		SIGBUS,  0,		"unknown 18"			   },
498 	{ do_bad,		SIGBUS,  0,		"unknown 19"			   },
499 	{ do_bad,		SIGBUS,  0,		"lock abort"			   }, /* xscale */
500 	{ do_bad,		SIGBUS,  0,		"unknown 21"			   },
501 	{ do_bad,		SIGBUS,  BUS_OBJERR,	"imprecise external abort"	   }, /* xscale */
502 	{ do_bad,		SIGBUS,  0,		"unknown 23"			   },
503 	{ do_bad,		SIGBUS,  0,		"dcache parity error"		   }, /* xscale */
504 	{ do_bad,		SIGBUS,  0,		"unknown 25"			   },
505 	{ do_bad,		SIGBUS,  0,		"unknown 26"			   },
506 	{ do_bad,		SIGBUS,  0,		"unknown 27"			   },
507 	{ do_bad,		SIGBUS,  0,		"unknown 28"			   },
508 	{ do_bad,		SIGBUS,  0,		"unknown 29"			   },
509 	{ do_bad,		SIGBUS,  0,		"unknown 30"			   },
510 	{ do_bad,		SIGBUS,  0,		"unknown 31"			   }
511 };
512 
513 void __init
514 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
515 		int sig, int code, const char *name)
516 {
517 	if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
518 		BUG();
519 
520 	fsr_info[nr].fn   = fn;
521 	fsr_info[nr].sig  = sig;
522 	fsr_info[nr].code = code;
523 	fsr_info[nr].name = name;
524 }
525 
526 /*
527  * Dispatch a data abort to the relevant handler.
528  */
529 asmlinkage void __exception
530 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
531 {
532 	const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
533 	struct siginfo info;
534 
535 	if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
536 		return;
537 
538 	printk(KERN_ALERT "Unhandled fault: %s (0x%03x) at 0x%08lx\n",
539 		inf->name, fsr, addr);
540 
541 	info.si_signo = inf->sig;
542 	info.si_errno = 0;
543 	info.si_code  = inf->code;
544 	info.si_addr  = (void __user *)addr;
545 	arm_notify_die("", regs, &info, fsr, 0);
546 }
547 
548 
549 static struct fsr_info ifsr_info[] = {
550 	{ do_bad,		SIGBUS,  0,		"unknown 0"			   },
551 	{ do_bad,		SIGBUS,  0,		"unknown 1"			   },
552 	{ do_bad,		SIGBUS,  0,		"debug event"			   },
553 	{ do_bad,		SIGSEGV, SEGV_ACCERR,	"section access flag fault"	   },
554 	{ do_bad,		SIGBUS,  0,		"unknown 4"			   },
555 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"section translation fault"	   },
556 	{ do_bad,		SIGSEGV, SEGV_ACCERR,	"page access flag fault"	   },
557 	{ do_page_fault,	SIGSEGV, SEGV_MAPERR,	"page translation fault"	   },
558 	{ do_bad,		SIGBUS,	 0,		"external abort on non-linefetch"  },
559 	{ do_bad,		SIGSEGV, SEGV_ACCERR,	"section domain fault"		   },
560 	{ do_bad,		SIGBUS,  0,		"unknown 10"			   },
561 	{ do_bad,		SIGSEGV, SEGV_ACCERR,	"page domain fault"		   },
562 	{ do_bad,		SIGBUS,	 0,		"external abort on translation"	   },
563 	{ do_sect_fault,	SIGSEGV, SEGV_ACCERR,	"section permission fault"	   },
564 	{ do_bad,		SIGBUS,	 0,		"external abort on translation"	   },
565 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"page permission fault"		   },
566 	{ do_bad,		SIGBUS,  0,		"unknown 16"			   },
567 	{ do_bad,		SIGBUS,  0,		"unknown 17"			   },
568 	{ do_bad,		SIGBUS,  0,		"unknown 18"			   },
569 	{ do_bad,		SIGBUS,  0,		"unknown 19"			   },
570 	{ do_bad,		SIGBUS,  0,		"unknown 20"			   },
571 	{ do_bad,		SIGBUS,  0,		"unknown 21"			   },
572 	{ do_bad,		SIGBUS,  0,		"unknown 22"			   },
573 	{ do_bad,		SIGBUS,  0,		"unknown 23"			   },
574 	{ do_bad,		SIGBUS,  0,		"unknown 24"			   },
575 	{ do_bad,		SIGBUS,  0,		"unknown 25"			   },
576 	{ do_bad,		SIGBUS,  0,		"unknown 26"			   },
577 	{ do_bad,		SIGBUS,  0,		"unknown 27"			   },
578 	{ do_bad,		SIGBUS,  0,		"unknown 28"			   },
579 	{ do_bad,		SIGBUS,  0,		"unknown 29"			   },
580 	{ do_bad,		SIGBUS,  0,		"unknown 30"			   },
581 	{ do_bad,		SIGBUS,  0,		"unknown 31"			   },
582 };
583 
584 void __init
585 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
586 		 int sig, int code, const char *name)
587 {
588 	if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
589 		BUG();
590 
591 	ifsr_info[nr].fn   = fn;
592 	ifsr_info[nr].sig  = sig;
593 	ifsr_info[nr].code = code;
594 	ifsr_info[nr].name = name;
595 }
596 
597 asmlinkage void __exception
598 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
599 {
600 	const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
601 	struct siginfo info;
602 
603 	if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
604 		return;
605 
606 	printk(KERN_ALERT "Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
607 		inf->name, ifsr, addr);
608 
609 	info.si_signo = inf->sig;
610 	info.si_errno = 0;
611 	info.si_code  = inf->code;
612 	info.si_addr  = (void __user *)addr;
613 	arm_notify_die("", regs, &info, ifsr, 0);
614 }
615 
616 static int __init exceptions_init(void)
617 {
618 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
619 		hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
620 				"I-cache maintenance fault");
621 	}
622 
623 	if (cpu_architecture() >= CPU_ARCH_ARMv7) {
624 		/*
625 		 * TODO: Access flag faults introduced in ARMv6K.
626 		 * Runtime check for 'K' extension is needed
627 		 */
628 		hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
629 				"section access flag fault");
630 		hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
631 				"section access flag fault");
632 	}
633 
634 	return 0;
635 }
636 
637 arch_initcall(exceptions_init);
638