xref: /openbmc/linux/arch/arm/mm/fault.c (revision 55fd7e02)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/fault.c
4  *
5  *  Copyright (C) 1995  Linus Torvalds
6  *  Modifications for ARM processor (c) 1995-2004 Russell King
7  */
8 #include <linux/extable.h>
9 #include <linux/signal.h>
10 #include <linux/mm.h>
11 #include <linux/hardirq.h>
12 #include <linux/init.h>
13 #include <linux/kprobes.h>
14 #include <linux/uaccess.h>
15 #include <linux/page-flags.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/debug.h>
18 #include <linux/highmem.h>
19 #include <linux/perf_event.h>
20 
21 #include <asm/system_misc.h>
22 #include <asm/system_info.h>
23 #include <asm/tlbflush.h>
24 
25 #include "fault.h"
26 
27 #ifdef CONFIG_MMU
28 
29 /*
30  * This is useful to dump out the page tables associated with
31  * 'addr' in mm 'mm'.
32  */
33 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr)
34 {
35 	pgd_t *pgd;
36 
37 	if (!mm)
38 		mm = &init_mm;
39 
40 	printk("%spgd = %p\n", lvl, mm->pgd);
41 	pgd = pgd_offset(mm, addr);
42 	printk("%s[%08lx] *pgd=%08llx", lvl, addr, (long long)pgd_val(*pgd));
43 
44 	do {
45 		p4d_t *p4d;
46 		pud_t *pud;
47 		pmd_t *pmd;
48 		pte_t *pte;
49 
50 		p4d = p4d_offset(pgd, addr);
51 		if (p4d_none(*p4d))
52 			break;
53 
54 		if (p4d_bad(*p4d)) {
55 			pr_cont("(bad)");
56 			break;
57 		}
58 
59 		pud = pud_offset(p4d, addr);
60 		if (PTRS_PER_PUD != 1)
61 			pr_cont(", *pud=%08llx", (long long)pud_val(*pud));
62 
63 		if (pud_none(*pud))
64 			break;
65 
66 		if (pud_bad(*pud)) {
67 			pr_cont("(bad)");
68 			break;
69 		}
70 
71 		pmd = pmd_offset(pud, addr);
72 		if (PTRS_PER_PMD != 1)
73 			pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd));
74 
75 		if (pmd_none(*pmd))
76 			break;
77 
78 		if (pmd_bad(*pmd)) {
79 			pr_cont("(bad)");
80 			break;
81 		}
82 
83 		/* We must not map this if we have highmem enabled */
84 		if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
85 			break;
86 
87 		pte = pte_offset_map(pmd, addr);
88 		pr_cont(", *pte=%08llx", (long long)pte_val(*pte));
89 #ifndef CONFIG_ARM_LPAE
90 		pr_cont(", *ppte=%08llx",
91 		       (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
92 #endif
93 		pte_unmap(pte);
94 	} while(0);
95 
96 	pr_cont("\n");
97 }
98 #else					/* CONFIG_MMU */
99 void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr)
100 { }
101 #endif					/* CONFIG_MMU */
102 
103 /*
104  * Oops.  The kernel tried to access some page that wasn't present.
105  */
106 static void
107 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
108 		  struct pt_regs *regs)
109 {
110 	/*
111 	 * Are we prepared to handle this kernel fault?
112 	 */
113 	if (fixup_exception(regs))
114 		return;
115 
116 	/*
117 	 * No handler, we'll have to terminate things with extreme prejudice.
118 	 */
119 	bust_spinlocks(1);
120 	pr_alert("8<--- cut here ---\n");
121 	pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
122 		 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
123 		 "paging request", addr);
124 
125 	show_pte(KERN_ALERT, mm, addr);
126 	die("Oops", regs, fsr);
127 	bust_spinlocks(0);
128 	do_exit(SIGKILL);
129 }
130 
131 /*
132  * Something tried to access memory that isn't in our memory map..
133  * User mode accesses just cause a SIGSEGV
134  */
135 static void
136 __do_user_fault(unsigned long addr, unsigned int fsr, unsigned int sig,
137 		int code, struct pt_regs *regs)
138 {
139 	struct task_struct *tsk = current;
140 
141 	if (addr > TASK_SIZE)
142 		harden_branch_predictor();
143 
144 #ifdef CONFIG_DEBUG_USER
145 	if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
146 	    ((user_debug & UDBG_BUS)  && (sig == SIGBUS))) {
147 		pr_err("8<--- cut here ---\n");
148 		pr_err("%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
149 		       tsk->comm, sig, addr, fsr);
150 		show_pte(KERN_ERR, tsk->mm, addr);
151 		show_regs(regs);
152 	}
153 #endif
154 #ifndef CONFIG_KUSER_HELPERS
155 	if ((sig == SIGSEGV) && ((addr & PAGE_MASK) == 0xffff0000))
156 		printk_ratelimited(KERN_DEBUG
157 				   "%s: CONFIG_KUSER_HELPERS disabled at 0x%08lx\n",
158 				   tsk->comm, addr);
159 #endif
160 
161 	tsk->thread.address = addr;
162 	tsk->thread.error_code = fsr;
163 	tsk->thread.trap_no = 14;
164 	force_sig_fault(sig, code, (void __user *)addr);
165 }
166 
167 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
168 {
169 	struct task_struct *tsk = current;
170 	struct mm_struct *mm = tsk->active_mm;
171 
172 	/*
173 	 * If we are in kernel mode at this point, we
174 	 * have no context to handle this fault with.
175 	 */
176 	if (user_mode(regs))
177 		__do_user_fault(addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
178 	else
179 		__do_kernel_fault(mm, addr, fsr, regs);
180 }
181 
182 #ifdef CONFIG_MMU
183 #define VM_FAULT_BADMAP		0x010000
184 #define VM_FAULT_BADACCESS	0x020000
185 
186 /*
187  * Check that the permissions on the VMA allow for the fault which occurred.
188  * If we encountered a write fault, we must have write permission, otherwise
189  * we allow any permission.
190  */
191 static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
192 {
193 	unsigned int mask = VM_ACCESS_FLAGS;
194 
195 	if ((fsr & FSR_WRITE) && !(fsr & FSR_CM))
196 		mask = VM_WRITE;
197 	if (fsr & FSR_LNX_PF)
198 		mask = VM_EXEC;
199 
200 	return vma->vm_flags & mask ? false : true;
201 }
202 
203 static vm_fault_t __kprobes
204 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
205 		unsigned int flags, struct task_struct *tsk)
206 {
207 	struct vm_area_struct *vma;
208 	vm_fault_t fault;
209 
210 	vma = find_vma(mm, addr);
211 	fault = VM_FAULT_BADMAP;
212 	if (unlikely(!vma))
213 		goto out;
214 	if (unlikely(vma->vm_start > addr))
215 		goto check_stack;
216 
217 	/*
218 	 * Ok, we have a good vm_area for this
219 	 * memory access, so we can handle it.
220 	 */
221 good_area:
222 	if (access_error(fsr, vma)) {
223 		fault = VM_FAULT_BADACCESS;
224 		goto out;
225 	}
226 
227 	return handle_mm_fault(vma, addr & PAGE_MASK, flags);
228 
229 check_stack:
230 	/* Don't allow expansion below FIRST_USER_ADDRESS */
231 	if (vma->vm_flags & VM_GROWSDOWN &&
232 	    addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr))
233 		goto good_area;
234 out:
235 	return fault;
236 }
237 
238 static int __kprobes
239 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
240 {
241 	struct task_struct *tsk;
242 	struct mm_struct *mm;
243 	int sig, code;
244 	vm_fault_t fault;
245 	unsigned int flags = FAULT_FLAG_DEFAULT;
246 
247 	if (kprobe_page_fault(regs, fsr))
248 		return 0;
249 
250 	tsk = current;
251 	mm  = tsk->mm;
252 
253 	/* Enable interrupts if they were enabled in the parent context. */
254 	if (interrupts_enabled(regs))
255 		local_irq_enable();
256 
257 	/*
258 	 * If we're in an interrupt or have no user
259 	 * context, we must not take the fault..
260 	 */
261 	if (faulthandler_disabled() || !mm)
262 		goto no_context;
263 
264 	if (user_mode(regs))
265 		flags |= FAULT_FLAG_USER;
266 	if ((fsr & FSR_WRITE) && !(fsr & FSR_CM))
267 		flags |= FAULT_FLAG_WRITE;
268 
269 	/*
270 	 * As per x86, we may deadlock here.  However, since the kernel only
271 	 * validly references user space from well defined areas of the code,
272 	 * we can bug out early if this is from code which shouldn't.
273 	 */
274 	if (!mmap_read_trylock(mm)) {
275 		if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
276 			goto no_context;
277 retry:
278 		mmap_read_lock(mm);
279 	} else {
280 		/*
281 		 * The above down_read_trylock() might have succeeded in
282 		 * which case, we'll have missed the might_sleep() from
283 		 * down_read()
284 		 */
285 		might_sleep();
286 #ifdef CONFIG_DEBUG_VM
287 		if (!user_mode(regs) &&
288 		    !search_exception_tables(regs->ARM_pc))
289 			goto no_context;
290 #endif
291 	}
292 
293 	fault = __do_page_fault(mm, addr, fsr, flags, tsk);
294 
295 	/* If we need to retry but a fatal signal is pending, handle the
296 	 * signal first. We do not need to release the mmap_lock because
297 	 * it would already be released in __lock_page_or_retry in
298 	 * mm/filemap.c. */
299 	if (fault_signal_pending(fault, regs)) {
300 		if (!user_mode(regs))
301 			goto no_context;
302 		return 0;
303 	}
304 
305 	/*
306 	 * Major/minor page fault accounting is only done on the
307 	 * initial attempt. If we go through a retry, it is extremely
308 	 * likely that the page will be found in page cache at that point.
309 	 */
310 
311 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
312 	if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) {
313 		if (fault & VM_FAULT_MAJOR) {
314 			tsk->maj_flt++;
315 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
316 					regs, addr);
317 		} else {
318 			tsk->min_flt++;
319 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
320 					regs, addr);
321 		}
322 		if (fault & VM_FAULT_RETRY) {
323 			flags |= FAULT_FLAG_TRIED;
324 			goto retry;
325 		}
326 	}
327 
328 	mmap_read_unlock(mm);
329 
330 	/*
331 	 * Handle the "normal" case first - VM_FAULT_MAJOR
332 	 */
333 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
334 		return 0;
335 
336 	/*
337 	 * If we are in kernel mode at this point, we
338 	 * have no context to handle this fault with.
339 	 */
340 	if (!user_mode(regs))
341 		goto no_context;
342 
343 	if (fault & VM_FAULT_OOM) {
344 		/*
345 		 * We ran out of memory, call the OOM killer, and return to
346 		 * userspace (which will retry the fault, or kill us if we
347 		 * got oom-killed)
348 		 */
349 		pagefault_out_of_memory();
350 		return 0;
351 	}
352 
353 	if (fault & VM_FAULT_SIGBUS) {
354 		/*
355 		 * We had some memory, but were unable to
356 		 * successfully fix up this page fault.
357 		 */
358 		sig = SIGBUS;
359 		code = BUS_ADRERR;
360 	} else {
361 		/*
362 		 * Something tried to access memory that
363 		 * isn't in our memory map..
364 		 */
365 		sig = SIGSEGV;
366 		code = fault == VM_FAULT_BADACCESS ?
367 			SEGV_ACCERR : SEGV_MAPERR;
368 	}
369 
370 	__do_user_fault(addr, fsr, sig, code, regs);
371 	return 0;
372 
373 no_context:
374 	__do_kernel_fault(mm, addr, fsr, regs);
375 	return 0;
376 }
377 #else					/* CONFIG_MMU */
378 static int
379 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
380 {
381 	return 0;
382 }
383 #endif					/* CONFIG_MMU */
384 
385 /*
386  * First Level Translation Fault Handler
387  *
388  * We enter here because the first level page table doesn't contain
389  * a valid entry for the address.
390  *
391  * If the address is in kernel space (>= TASK_SIZE), then we are
392  * probably faulting in the vmalloc() area.
393  *
394  * If the init_task's first level page tables contains the relevant
395  * entry, we copy the it to this task.  If not, we send the process
396  * a signal, fixup the exception, or oops the kernel.
397  *
398  * NOTE! We MUST NOT take any locks for this case. We may be in an
399  * interrupt or a critical region, and should only copy the information
400  * from the master page table, nothing more.
401  */
402 #ifdef CONFIG_MMU
403 static int __kprobes
404 do_translation_fault(unsigned long addr, unsigned int fsr,
405 		     struct pt_regs *regs)
406 {
407 	unsigned int index;
408 	pgd_t *pgd, *pgd_k;
409 	p4d_t *p4d, *p4d_k;
410 	pud_t *pud, *pud_k;
411 	pmd_t *pmd, *pmd_k;
412 
413 	if (addr < TASK_SIZE)
414 		return do_page_fault(addr, fsr, regs);
415 
416 	if (user_mode(regs))
417 		goto bad_area;
418 
419 	index = pgd_index(addr);
420 
421 	pgd = cpu_get_pgd() + index;
422 	pgd_k = init_mm.pgd + index;
423 
424 	p4d = p4d_offset(pgd, addr);
425 	p4d_k = p4d_offset(pgd_k, addr);
426 
427 	if (p4d_none(*p4d_k))
428 		goto bad_area;
429 	if (!p4d_present(*p4d))
430 		set_p4d(p4d, *p4d_k);
431 
432 	pud = pud_offset(p4d, addr);
433 	pud_k = pud_offset(p4d_k, addr);
434 
435 	if (pud_none(*pud_k))
436 		goto bad_area;
437 	if (!pud_present(*pud))
438 		set_pud(pud, *pud_k);
439 
440 	pmd = pmd_offset(pud, addr);
441 	pmd_k = pmd_offset(pud_k, addr);
442 
443 #ifdef CONFIG_ARM_LPAE
444 	/*
445 	 * Only one hardware entry per PMD with LPAE.
446 	 */
447 	index = 0;
448 #else
449 	/*
450 	 * On ARM one Linux PGD entry contains two hardware entries (see page
451 	 * tables layout in pgtable.h). We normally guarantee that we always
452 	 * fill both L1 entries. But create_mapping() doesn't follow the rule.
453 	 * It can create inidividual L1 entries, so here we have to call
454 	 * pmd_none() check for the entry really corresponded to address, not
455 	 * for the first of pair.
456 	 */
457 	index = (addr >> SECTION_SHIFT) & 1;
458 #endif
459 	if (pmd_none(pmd_k[index]))
460 		goto bad_area;
461 
462 	copy_pmd(pmd, pmd_k);
463 	return 0;
464 
465 bad_area:
466 	do_bad_area(addr, fsr, regs);
467 	return 0;
468 }
469 #else					/* CONFIG_MMU */
470 static int
471 do_translation_fault(unsigned long addr, unsigned int fsr,
472 		     struct pt_regs *regs)
473 {
474 	return 0;
475 }
476 #endif					/* CONFIG_MMU */
477 
478 /*
479  * Some section permission faults need to be handled gracefully.
480  * They can happen due to a __{get,put}_user during an oops.
481  */
482 #ifndef CONFIG_ARM_LPAE
483 static int
484 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
485 {
486 	do_bad_area(addr, fsr, regs);
487 	return 0;
488 }
489 #endif /* CONFIG_ARM_LPAE */
490 
491 /*
492  * This abort handler always returns "fault".
493  */
494 static int
495 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
496 {
497 	return 1;
498 }
499 
500 struct fsr_info {
501 	int	(*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
502 	int	sig;
503 	int	code;
504 	const char *name;
505 };
506 
507 /* FSR definition */
508 #ifdef CONFIG_ARM_LPAE
509 #include "fsr-3level.c"
510 #else
511 #include "fsr-2level.c"
512 #endif
513 
514 void __init
515 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
516 		int sig, int code, const char *name)
517 {
518 	if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
519 		BUG();
520 
521 	fsr_info[nr].fn   = fn;
522 	fsr_info[nr].sig  = sig;
523 	fsr_info[nr].code = code;
524 	fsr_info[nr].name = name;
525 }
526 
527 /*
528  * Dispatch a data abort to the relevant handler.
529  */
530 asmlinkage void
531 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
532 {
533 	const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
534 
535 	if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
536 		return;
537 
538 	pr_alert("8<--- cut here ---\n");
539 	pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n",
540 		inf->name, fsr, addr);
541 	show_pte(KERN_ALERT, current->mm, addr);
542 
543 	arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
544 		       fsr, 0);
545 }
546 
547 void __init
548 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
549 		 int sig, int code, const char *name)
550 {
551 	if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
552 		BUG();
553 
554 	ifsr_info[nr].fn   = fn;
555 	ifsr_info[nr].sig  = sig;
556 	ifsr_info[nr].code = code;
557 	ifsr_info[nr].name = name;
558 }
559 
560 asmlinkage void
561 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
562 {
563 	const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
564 
565 	if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
566 		return;
567 
568 	pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
569 		inf->name, ifsr, addr);
570 
571 	arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
572 		       ifsr, 0);
573 }
574 
575 /*
576  * Abort handler to be used only during first unmasking of asynchronous aborts
577  * on the boot CPU. This makes sure that the machine will not die if the
578  * firmware/bootloader left an imprecise abort pending for us to trip over.
579  */
580 static int __init early_abort_handler(unsigned long addr, unsigned int fsr,
581 				      struct pt_regs *regs)
582 {
583 	pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during "
584 		"first unmask, this is most likely caused by a "
585 		"firmware/bootloader bug.\n", fsr);
586 
587 	return 0;
588 }
589 
590 void __init early_abt_enable(void)
591 {
592 	fsr_info[FSR_FS_AEA].fn = early_abort_handler;
593 	local_abt_enable();
594 	fsr_info[FSR_FS_AEA].fn = do_bad;
595 }
596 
597 #ifndef CONFIG_ARM_LPAE
598 static int __init exceptions_init(void)
599 {
600 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
601 		hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
602 				"I-cache maintenance fault");
603 	}
604 
605 	if (cpu_architecture() >= CPU_ARCH_ARMv7) {
606 		/*
607 		 * TODO: Access flag faults introduced in ARMv6K.
608 		 * Runtime check for 'K' extension is needed
609 		 */
610 		hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
611 				"section access flag fault");
612 		hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
613 				"section access flag fault");
614 	}
615 
616 	return 0;
617 }
618 
619 arch_initcall(exceptions_init);
620 #endif
621