xref: /openbmc/linux/arch/arm/mm/fault.c (revision 3b23dc52)
1 /*
2  *  linux/arch/arm/mm/fault.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Modifications for ARM processor (c) 1995-2004 Russell King
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/extable.h>
12 #include <linux/signal.h>
13 #include <linux/mm.h>
14 #include <linux/hardirq.h>
15 #include <linux/init.h>
16 #include <linux/kprobes.h>
17 #include <linux/uaccess.h>
18 #include <linux/page-flags.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/debug.h>
21 #include <linux/highmem.h>
22 #include <linux/perf_event.h>
23 
24 #include <asm/pgtable.h>
25 #include <asm/system_misc.h>
26 #include <asm/system_info.h>
27 #include <asm/tlbflush.h>
28 
29 #include "fault.h"
30 
31 #ifdef CONFIG_MMU
32 
33 #ifdef CONFIG_KPROBES
34 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
35 {
36 	int ret = 0;
37 
38 	if (!user_mode(regs)) {
39 		/* kprobe_running() needs smp_processor_id() */
40 		preempt_disable();
41 		if (kprobe_running() && kprobe_fault_handler(regs, fsr))
42 			ret = 1;
43 		preempt_enable();
44 	}
45 
46 	return ret;
47 }
48 #else
49 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
50 {
51 	return 0;
52 }
53 #endif
54 
55 /*
56  * This is useful to dump out the page tables associated with
57  * 'addr' in mm 'mm'.
58  */
59 void show_pte(struct mm_struct *mm, unsigned long addr)
60 {
61 	pgd_t *pgd;
62 
63 	if (!mm)
64 		mm = &init_mm;
65 
66 	pr_alert("pgd = %p\n", mm->pgd);
67 	pgd = pgd_offset(mm, addr);
68 	pr_alert("[%08lx] *pgd=%08llx",
69 			addr, (long long)pgd_val(*pgd));
70 
71 	do {
72 		pud_t *pud;
73 		pmd_t *pmd;
74 		pte_t *pte;
75 
76 		if (pgd_none(*pgd))
77 			break;
78 
79 		if (pgd_bad(*pgd)) {
80 			pr_cont("(bad)");
81 			break;
82 		}
83 
84 		pud = pud_offset(pgd, addr);
85 		if (PTRS_PER_PUD != 1)
86 			pr_cont(", *pud=%08llx", (long long)pud_val(*pud));
87 
88 		if (pud_none(*pud))
89 			break;
90 
91 		if (pud_bad(*pud)) {
92 			pr_cont("(bad)");
93 			break;
94 		}
95 
96 		pmd = pmd_offset(pud, addr);
97 		if (PTRS_PER_PMD != 1)
98 			pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd));
99 
100 		if (pmd_none(*pmd))
101 			break;
102 
103 		if (pmd_bad(*pmd)) {
104 			pr_cont("(bad)");
105 			break;
106 		}
107 
108 		/* We must not map this if we have highmem enabled */
109 		if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
110 			break;
111 
112 		pte = pte_offset_map(pmd, addr);
113 		pr_cont(", *pte=%08llx", (long long)pte_val(*pte));
114 #ifndef CONFIG_ARM_LPAE
115 		pr_cont(", *ppte=%08llx",
116 		       (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
117 #endif
118 		pte_unmap(pte);
119 	} while(0);
120 
121 	pr_cont("\n");
122 }
123 #else					/* CONFIG_MMU */
124 void show_pte(struct mm_struct *mm, unsigned long addr)
125 { }
126 #endif					/* CONFIG_MMU */
127 
128 /*
129  * Oops.  The kernel tried to access some page that wasn't present.
130  */
131 static void
132 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
133 		  struct pt_regs *regs)
134 {
135 	/*
136 	 * Are we prepared to handle this kernel fault?
137 	 */
138 	if (fixup_exception(regs))
139 		return;
140 
141 	/*
142 	 * No handler, we'll have to terminate things with extreme prejudice.
143 	 */
144 	bust_spinlocks(1);
145 	pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
146 		 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
147 		 "paging request", addr);
148 
149 	show_pte(mm, addr);
150 	die("Oops", regs, fsr);
151 	bust_spinlocks(0);
152 	do_exit(SIGKILL);
153 }
154 
155 /*
156  * Something tried to access memory that isn't in our memory map..
157  * User mode accesses just cause a SIGSEGV
158  */
159 static void
160 __do_user_fault(struct task_struct *tsk, unsigned long addr,
161 		unsigned int fsr, unsigned int sig, int code,
162 		struct pt_regs *regs)
163 {
164 	struct siginfo si;
165 
166 	if (addr > TASK_SIZE)
167 		harden_branch_predictor();
168 
169 	clear_siginfo(&si);
170 
171 #ifdef CONFIG_DEBUG_USER
172 	if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
173 	    ((user_debug & UDBG_BUS)  && (sig == SIGBUS))) {
174 		printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
175 		       tsk->comm, sig, addr, fsr);
176 		show_pte(tsk->mm, addr);
177 		show_regs(regs);
178 	}
179 #endif
180 
181 	tsk->thread.address = addr;
182 	tsk->thread.error_code = fsr;
183 	tsk->thread.trap_no = 14;
184 	si.si_signo = sig;
185 	si.si_errno = 0;
186 	si.si_code = code;
187 	si.si_addr = (void __user *)addr;
188 	force_sig_info(sig, &si, tsk);
189 }
190 
191 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
192 {
193 	struct task_struct *tsk = current;
194 	struct mm_struct *mm = tsk->active_mm;
195 
196 	/*
197 	 * If we are in kernel mode at this point, we
198 	 * have no context to handle this fault with.
199 	 */
200 	if (user_mode(regs))
201 		__do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
202 	else
203 		__do_kernel_fault(mm, addr, fsr, regs);
204 }
205 
206 #ifdef CONFIG_MMU
207 #define VM_FAULT_BADMAP		0x010000
208 #define VM_FAULT_BADACCESS	0x020000
209 
210 /*
211  * Check that the permissions on the VMA allow for the fault which occurred.
212  * If we encountered a write fault, we must have write permission, otherwise
213  * we allow any permission.
214  */
215 static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
216 {
217 	unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
218 
219 	if (fsr & FSR_WRITE)
220 		mask = VM_WRITE;
221 	if (fsr & FSR_LNX_PF)
222 		mask = VM_EXEC;
223 
224 	return vma->vm_flags & mask ? false : true;
225 }
226 
227 static int __kprobes
228 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
229 		unsigned int flags, struct task_struct *tsk)
230 {
231 	struct vm_area_struct *vma;
232 	int fault;
233 
234 	vma = find_vma(mm, addr);
235 	fault = VM_FAULT_BADMAP;
236 	if (unlikely(!vma))
237 		goto out;
238 	if (unlikely(vma->vm_start > addr))
239 		goto check_stack;
240 
241 	/*
242 	 * Ok, we have a good vm_area for this
243 	 * memory access, so we can handle it.
244 	 */
245 good_area:
246 	if (access_error(fsr, vma)) {
247 		fault = VM_FAULT_BADACCESS;
248 		goto out;
249 	}
250 
251 	return handle_mm_fault(vma, addr & PAGE_MASK, flags);
252 
253 check_stack:
254 	/* Don't allow expansion below FIRST_USER_ADDRESS */
255 	if (vma->vm_flags & VM_GROWSDOWN &&
256 	    addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr))
257 		goto good_area;
258 out:
259 	return fault;
260 }
261 
262 static int __kprobes
263 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
264 {
265 	struct task_struct *tsk;
266 	struct mm_struct *mm;
267 	int fault, sig, code;
268 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
269 
270 	if (notify_page_fault(regs, fsr))
271 		return 0;
272 
273 	tsk = current;
274 	mm  = tsk->mm;
275 
276 	/* Enable interrupts if they were enabled in the parent context. */
277 	if (interrupts_enabled(regs))
278 		local_irq_enable();
279 
280 	/*
281 	 * If we're in an interrupt or have no user
282 	 * context, we must not take the fault..
283 	 */
284 	if (faulthandler_disabled() || !mm)
285 		goto no_context;
286 
287 	if (user_mode(regs))
288 		flags |= FAULT_FLAG_USER;
289 	if (fsr & FSR_WRITE)
290 		flags |= FAULT_FLAG_WRITE;
291 
292 	/*
293 	 * As per x86, we may deadlock here.  However, since the kernel only
294 	 * validly references user space from well defined areas of the code,
295 	 * we can bug out early if this is from code which shouldn't.
296 	 */
297 	if (!down_read_trylock(&mm->mmap_sem)) {
298 		if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
299 			goto no_context;
300 retry:
301 		down_read(&mm->mmap_sem);
302 	} else {
303 		/*
304 		 * The above down_read_trylock() might have succeeded in
305 		 * which case, we'll have missed the might_sleep() from
306 		 * down_read()
307 		 */
308 		might_sleep();
309 #ifdef CONFIG_DEBUG_VM
310 		if (!user_mode(regs) &&
311 		    !search_exception_tables(regs->ARM_pc))
312 			goto no_context;
313 #endif
314 	}
315 
316 	fault = __do_page_fault(mm, addr, fsr, flags, tsk);
317 
318 	/* If we need to retry but a fatal signal is pending, handle the
319 	 * signal first. We do not need to release the mmap_sem because
320 	 * it would already be released in __lock_page_or_retry in
321 	 * mm/filemap.c. */
322 	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
323 		if (!user_mode(regs))
324 			goto no_context;
325 		return 0;
326 	}
327 
328 	/*
329 	 * Major/minor page fault accounting is only done on the
330 	 * initial attempt. If we go through a retry, it is extremely
331 	 * likely that the page will be found in page cache at that point.
332 	 */
333 
334 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
335 	if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) {
336 		if (fault & VM_FAULT_MAJOR) {
337 			tsk->maj_flt++;
338 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
339 					regs, addr);
340 		} else {
341 			tsk->min_flt++;
342 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
343 					regs, addr);
344 		}
345 		if (fault & VM_FAULT_RETRY) {
346 			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
347 			* of starvation. */
348 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
349 			flags |= FAULT_FLAG_TRIED;
350 			goto retry;
351 		}
352 	}
353 
354 	up_read(&mm->mmap_sem);
355 
356 	/*
357 	 * Handle the "normal" case first - VM_FAULT_MAJOR
358 	 */
359 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
360 		return 0;
361 
362 	/*
363 	 * If we are in kernel mode at this point, we
364 	 * have no context to handle this fault with.
365 	 */
366 	if (!user_mode(regs))
367 		goto no_context;
368 
369 	if (fault & VM_FAULT_OOM) {
370 		/*
371 		 * We ran out of memory, call the OOM killer, and return to
372 		 * userspace (which will retry the fault, or kill us if we
373 		 * got oom-killed)
374 		 */
375 		pagefault_out_of_memory();
376 		return 0;
377 	}
378 
379 	if (fault & VM_FAULT_SIGBUS) {
380 		/*
381 		 * We had some memory, but were unable to
382 		 * successfully fix up this page fault.
383 		 */
384 		sig = SIGBUS;
385 		code = BUS_ADRERR;
386 	} else {
387 		/*
388 		 * Something tried to access memory that
389 		 * isn't in our memory map..
390 		 */
391 		sig = SIGSEGV;
392 		code = fault == VM_FAULT_BADACCESS ?
393 			SEGV_ACCERR : SEGV_MAPERR;
394 	}
395 
396 	__do_user_fault(tsk, addr, fsr, sig, code, regs);
397 	return 0;
398 
399 no_context:
400 	__do_kernel_fault(mm, addr, fsr, regs);
401 	return 0;
402 }
403 #else					/* CONFIG_MMU */
404 static int
405 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
406 {
407 	return 0;
408 }
409 #endif					/* CONFIG_MMU */
410 
411 /*
412  * First Level Translation Fault Handler
413  *
414  * We enter here because the first level page table doesn't contain
415  * a valid entry for the address.
416  *
417  * If the address is in kernel space (>= TASK_SIZE), then we are
418  * probably faulting in the vmalloc() area.
419  *
420  * If the init_task's first level page tables contains the relevant
421  * entry, we copy the it to this task.  If not, we send the process
422  * a signal, fixup the exception, or oops the kernel.
423  *
424  * NOTE! We MUST NOT take any locks for this case. We may be in an
425  * interrupt or a critical region, and should only copy the information
426  * from the master page table, nothing more.
427  */
428 #ifdef CONFIG_MMU
429 static int __kprobes
430 do_translation_fault(unsigned long addr, unsigned int fsr,
431 		     struct pt_regs *regs)
432 {
433 	unsigned int index;
434 	pgd_t *pgd, *pgd_k;
435 	pud_t *pud, *pud_k;
436 	pmd_t *pmd, *pmd_k;
437 
438 	if (addr < TASK_SIZE)
439 		return do_page_fault(addr, fsr, regs);
440 
441 	if (user_mode(regs))
442 		goto bad_area;
443 
444 	index = pgd_index(addr);
445 
446 	pgd = cpu_get_pgd() + index;
447 	pgd_k = init_mm.pgd + index;
448 
449 	if (pgd_none(*pgd_k))
450 		goto bad_area;
451 	if (!pgd_present(*pgd))
452 		set_pgd(pgd, *pgd_k);
453 
454 	pud = pud_offset(pgd, addr);
455 	pud_k = pud_offset(pgd_k, addr);
456 
457 	if (pud_none(*pud_k))
458 		goto bad_area;
459 	if (!pud_present(*pud))
460 		set_pud(pud, *pud_k);
461 
462 	pmd = pmd_offset(pud, addr);
463 	pmd_k = pmd_offset(pud_k, addr);
464 
465 #ifdef CONFIG_ARM_LPAE
466 	/*
467 	 * Only one hardware entry per PMD with LPAE.
468 	 */
469 	index = 0;
470 #else
471 	/*
472 	 * On ARM one Linux PGD entry contains two hardware entries (see page
473 	 * tables layout in pgtable.h). We normally guarantee that we always
474 	 * fill both L1 entries. But create_mapping() doesn't follow the rule.
475 	 * It can create inidividual L1 entries, so here we have to call
476 	 * pmd_none() check for the entry really corresponded to address, not
477 	 * for the first of pair.
478 	 */
479 	index = (addr >> SECTION_SHIFT) & 1;
480 #endif
481 	if (pmd_none(pmd_k[index]))
482 		goto bad_area;
483 
484 	copy_pmd(pmd, pmd_k);
485 	return 0;
486 
487 bad_area:
488 	do_bad_area(addr, fsr, regs);
489 	return 0;
490 }
491 #else					/* CONFIG_MMU */
492 static int
493 do_translation_fault(unsigned long addr, unsigned int fsr,
494 		     struct pt_regs *regs)
495 {
496 	return 0;
497 }
498 #endif					/* CONFIG_MMU */
499 
500 /*
501  * Some section permission faults need to be handled gracefully.
502  * They can happen due to a __{get,put}_user during an oops.
503  */
504 #ifndef CONFIG_ARM_LPAE
505 static int
506 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
507 {
508 	do_bad_area(addr, fsr, regs);
509 	return 0;
510 }
511 #endif /* CONFIG_ARM_LPAE */
512 
513 /*
514  * This abort handler always returns "fault".
515  */
516 static int
517 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
518 {
519 	return 1;
520 }
521 
522 struct fsr_info {
523 	int	(*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
524 	int	sig;
525 	int	code;
526 	const char *name;
527 };
528 
529 /* FSR definition */
530 #ifdef CONFIG_ARM_LPAE
531 #include "fsr-3level.c"
532 #else
533 #include "fsr-2level.c"
534 #endif
535 
536 void __init
537 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
538 		int sig, int code, const char *name)
539 {
540 	if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
541 		BUG();
542 
543 	fsr_info[nr].fn   = fn;
544 	fsr_info[nr].sig  = sig;
545 	fsr_info[nr].code = code;
546 	fsr_info[nr].name = name;
547 }
548 
549 /*
550  * Dispatch a data abort to the relevant handler.
551  */
552 asmlinkage void
553 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
554 {
555 	const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
556 	struct siginfo info;
557 
558 	if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
559 		return;
560 
561 	pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n",
562 		inf->name, fsr, addr);
563 	show_pte(current->mm, addr);
564 
565 	clear_siginfo(&info);
566 	info.si_signo = inf->sig;
567 	info.si_errno = 0;
568 	info.si_code  = inf->code;
569 	info.si_addr  = (void __user *)addr;
570 	arm_notify_die("", regs, &info, fsr, 0);
571 }
572 
573 void __init
574 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
575 		 int sig, int code, const char *name)
576 {
577 	if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
578 		BUG();
579 
580 	ifsr_info[nr].fn   = fn;
581 	ifsr_info[nr].sig  = sig;
582 	ifsr_info[nr].code = code;
583 	ifsr_info[nr].name = name;
584 }
585 
586 asmlinkage void
587 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
588 {
589 	const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
590 	struct siginfo info;
591 
592 	if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
593 		return;
594 
595 	pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
596 		inf->name, ifsr, addr);
597 
598 	clear_siginfo(&info);
599 	info.si_signo = inf->sig;
600 	info.si_errno = 0;
601 	info.si_code  = inf->code;
602 	info.si_addr  = (void __user *)addr;
603 	arm_notify_die("", regs, &info, ifsr, 0);
604 }
605 
606 /*
607  * Abort handler to be used only during first unmasking of asynchronous aborts
608  * on the boot CPU. This makes sure that the machine will not die if the
609  * firmware/bootloader left an imprecise abort pending for us to trip over.
610  */
611 static int __init early_abort_handler(unsigned long addr, unsigned int fsr,
612 				      struct pt_regs *regs)
613 {
614 	pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during "
615 		"first unmask, this is most likely caused by a "
616 		"firmware/bootloader bug.\n", fsr);
617 
618 	return 0;
619 }
620 
621 void __init early_abt_enable(void)
622 {
623 	fsr_info[FSR_FS_AEA].fn = early_abort_handler;
624 	local_abt_enable();
625 	fsr_info[FSR_FS_AEA].fn = do_bad;
626 }
627 
628 #ifndef CONFIG_ARM_LPAE
629 static int __init exceptions_init(void)
630 {
631 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
632 		hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
633 				"I-cache maintenance fault");
634 	}
635 
636 	if (cpu_architecture() >= CPU_ARCH_ARMv7) {
637 		/*
638 		 * TODO: Access flag faults introduced in ARMv6K.
639 		 * Runtime check for 'K' extension is needed
640 		 */
641 		hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
642 				"section access flag fault");
643 		hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
644 				"section access flag fault");
645 	}
646 
647 	return 0;
648 }
649 
650 arch_initcall(exceptions_init);
651 #endif
652