1 /* 2 * linux/arch/arm/mm/fault.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Modifications for ARM processor (c) 1995-2004 Russell King 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/extable.h> 12 #include <linux/signal.h> 13 #include <linux/mm.h> 14 #include <linux/hardirq.h> 15 #include <linux/init.h> 16 #include <linux/kprobes.h> 17 #include <linux/uaccess.h> 18 #include <linux/page-flags.h> 19 #include <linux/sched/signal.h> 20 #include <linux/sched/debug.h> 21 #include <linux/highmem.h> 22 #include <linux/perf_event.h> 23 24 #include <asm/exception.h> 25 #include <asm/pgtable.h> 26 #include <asm/system_misc.h> 27 #include <asm/system_info.h> 28 #include <asm/tlbflush.h> 29 30 #include "fault.h" 31 32 #ifdef CONFIG_MMU 33 34 #ifdef CONFIG_KPROBES 35 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr) 36 { 37 int ret = 0; 38 39 if (!user_mode(regs)) { 40 /* kprobe_running() needs smp_processor_id() */ 41 preempt_disable(); 42 if (kprobe_running() && kprobe_fault_handler(regs, fsr)) 43 ret = 1; 44 preempt_enable(); 45 } 46 47 return ret; 48 } 49 #else 50 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr) 51 { 52 return 0; 53 } 54 #endif 55 56 /* 57 * This is useful to dump out the page tables associated with 58 * 'addr' in mm 'mm'. 59 */ 60 void show_pte(struct mm_struct *mm, unsigned long addr) 61 { 62 pgd_t *pgd; 63 64 if (!mm) 65 mm = &init_mm; 66 67 pr_alert("pgd = %p\n", mm->pgd); 68 pgd = pgd_offset(mm, addr); 69 pr_alert("[%08lx] *pgd=%08llx", 70 addr, (long long)pgd_val(*pgd)); 71 72 do { 73 pud_t *pud; 74 pmd_t *pmd; 75 pte_t *pte; 76 77 if (pgd_none(*pgd)) 78 break; 79 80 if (pgd_bad(*pgd)) { 81 pr_cont("(bad)"); 82 break; 83 } 84 85 pud = pud_offset(pgd, addr); 86 if (PTRS_PER_PUD != 1) 87 pr_cont(", *pud=%08llx", (long long)pud_val(*pud)); 88 89 if (pud_none(*pud)) 90 break; 91 92 if (pud_bad(*pud)) { 93 pr_cont("(bad)"); 94 break; 95 } 96 97 pmd = pmd_offset(pud, addr); 98 if (PTRS_PER_PMD != 1) 99 pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd)); 100 101 if (pmd_none(*pmd)) 102 break; 103 104 if (pmd_bad(*pmd)) { 105 pr_cont("(bad)"); 106 break; 107 } 108 109 /* We must not map this if we have highmem enabled */ 110 if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT))) 111 break; 112 113 pte = pte_offset_map(pmd, addr); 114 pr_cont(", *pte=%08llx", (long long)pte_val(*pte)); 115 #ifndef CONFIG_ARM_LPAE 116 pr_cont(", *ppte=%08llx", 117 (long long)pte_val(pte[PTE_HWTABLE_PTRS])); 118 #endif 119 pte_unmap(pte); 120 } while(0); 121 122 pr_cont("\n"); 123 } 124 #else /* CONFIG_MMU */ 125 void show_pte(struct mm_struct *mm, unsigned long addr) 126 { } 127 #endif /* CONFIG_MMU */ 128 129 /* 130 * Oops. The kernel tried to access some page that wasn't present. 131 */ 132 static void 133 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr, 134 struct pt_regs *regs) 135 { 136 /* 137 * Are we prepared to handle this kernel fault? 138 */ 139 if (fixup_exception(regs)) 140 return; 141 142 /* 143 * No handler, we'll have to terminate things with extreme prejudice. 144 */ 145 bust_spinlocks(1); 146 pr_alert("Unable to handle kernel %s at virtual address %08lx\n", 147 (addr < PAGE_SIZE) ? "NULL pointer dereference" : 148 "paging request", addr); 149 150 show_pte(mm, addr); 151 die("Oops", regs, fsr); 152 bust_spinlocks(0); 153 do_exit(SIGKILL); 154 } 155 156 /* 157 * Something tried to access memory that isn't in our memory map.. 158 * User mode accesses just cause a SIGSEGV 159 */ 160 static void 161 __do_user_fault(struct task_struct *tsk, unsigned long addr, 162 unsigned int fsr, unsigned int sig, int code, 163 struct pt_regs *regs) 164 { 165 struct siginfo si; 166 167 #ifdef CONFIG_DEBUG_USER 168 if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) || 169 ((user_debug & UDBG_BUS) && (sig == SIGBUS))) { 170 printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n", 171 tsk->comm, sig, addr, fsr); 172 show_pte(tsk->mm, addr); 173 show_regs(regs); 174 } 175 #endif 176 177 tsk->thread.address = addr; 178 tsk->thread.error_code = fsr; 179 tsk->thread.trap_no = 14; 180 si.si_signo = sig; 181 si.si_errno = 0; 182 si.si_code = code; 183 si.si_addr = (void __user *)addr; 184 force_sig_info(sig, &si, tsk); 185 } 186 187 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 188 { 189 struct task_struct *tsk = current; 190 struct mm_struct *mm = tsk->active_mm; 191 192 /* 193 * If we are in kernel mode at this point, we 194 * have no context to handle this fault with. 195 */ 196 if (user_mode(regs)) 197 __do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs); 198 else 199 __do_kernel_fault(mm, addr, fsr, regs); 200 } 201 202 #ifdef CONFIG_MMU 203 #define VM_FAULT_BADMAP 0x010000 204 #define VM_FAULT_BADACCESS 0x020000 205 206 /* 207 * Check that the permissions on the VMA allow for the fault which occurred. 208 * If we encountered a write fault, we must have write permission, otherwise 209 * we allow any permission. 210 */ 211 static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma) 212 { 213 unsigned int mask = VM_READ | VM_WRITE | VM_EXEC; 214 215 if (fsr & FSR_WRITE) 216 mask = VM_WRITE; 217 if (fsr & FSR_LNX_PF) 218 mask = VM_EXEC; 219 220 return vma->vm_flags & mask ? false : true; 221 } 222 223 static int __kprobes 224 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr, 225 unsigned int flags, struct task_struct *tsk) 226 { 227 struct vm_area_struct *vma; 228 int fault; 229 230 vma = find_vma(mm, addr); 231 fault = VM_FAULT_BADMAP; 232 if (unlikely(!vma)) 233 goto out; 234 if (unlikely(vma->vm_start > addr)) 235 goto check_stack; 236 237 /* 238 * Ok, we have a good vm_area for this 239 * memory access, so we can handle it. 240 */ 241 good_area: 242 if (access_error(fsr, vma)) { 243 fault = VM_FAULT_BADACCESS; 244 goto out; 245 } 246 247 return handle_mm_fault(vma, addr & PAGE_MASK, flags); 248 249 check_stack: 250 /* Don't allow expansion below FIRST_USER_ADDRESS */ 251 if (vma->vm_flags & VM_GROWSDOWN && 252 addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr)) 253 goto good_area; 254 out: 255 return fault; 256 } 257 258 static int __kprobes 259 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 260 { 261 struct task_struct *tsk; 262 struct mm_struct *mm; 263 int fault, sig, code; 264 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 265 266 if (notify_page_fault(regs, fsr)) 267 return 0; 268 269 tsk = current; 270 mm = tsk->mm; 271 272 /* Enable interrupts if they were enabled in the parent context. */ 273 if (interrupts_enabled(regs)) 274 local_irq_enable(); 275 276 /* 277 * If we're in an interrupt or have no user 278 * context, we must not take the fault.. 279 */ 280 if (faulthandler_disabled() || !mm) 281 goto no_context; 282 283 if (user_mode(regs)) 284 flags |= FAULT_FLAG_USER; 285 if (fsr & FSR_WRITE) 286 flags |= FAULT_FLAG_WRITE; 287 288 /* 289 * As per x86, we may deadlock here. However, since the kernel only 290 * validly references user space from well defined areas of the code, 291 * we can bug out early if this is from code which shouldn't. 292 */ 293 if (!down_read_trylock(&mm->mmap_sem)) { 294 if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc)) 295 goto no_context; 296 retry: 297 down_read(&mm->mmap_sem); 298 } else { 299 /* 300 * The above down_read_trylock() might have succeeded in 301 * which case, we'll have missed the might_sleep() from 302 * down_read() 303 */ 304 might_sleep(); 305 #ifdef CONFIG_DEBUG_VM 306 if (!user_mode(regs) && 307 !search_exception_tables(regs->ARM_pc)) 308 goto no_context; 309 #endif 310 } 311 312 fault = __do_page_fault(mm, addr, fsr, flags, tsk); 313 314 /* If we need to retry but a fatal signal is pending, handle the 315 * signal first. We do not need to release the mmap_sem because 316 * it would already be released in __lock_page_or_retry in 317 * mm/filemap.c. */ 318 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) 319 return 0; 320 321 /* 322 * Major/minor page fault accounting is only done on the 323 * initial attempt. If we go through a retry, it is extremely 324 * likely that the page will be found in page cache at that point. 325 */ 326 327 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); 328 if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) { 329 if (fault & VM_FAULT_MAJOR) { 330 tsk->maj_flt++; 331 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 332 regs, addr); 333 } else { 334 tsk->min_flt++; 335 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 336 regs, addr); 337 } 338 if (fault & VM_FAULT_RETRY) { 339 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk 340 * of starvation. */ 341 flags &= ~FAULT_FLAG_ALLOW_RETRY; 342 flags |= FAULT_FLAG_TRIED; 343 goto retry; 344 } 345 } 346 347 up_read(&mm->mmap_sem); 348 349 /* 350 * Handle the "normal" case first - VM_FAULT_MAJOR 351 */ 352 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS)))) 353 return 0; 354 355 /* 356 * If we are in kernel mode at this point, we 357 * have no context to handle this fault with. 358 */ 359 if (!user_mode(regs)) 360 goto no_context; 361 362 if (fault & VM_FAULT_OOM) { 363 /* 364 * We ran out of memory, call the OOM killer, and return to 365 * userspace (which will retry the fault, or kill us if we 366 * got oom-killed) 367 */ 368 pagefault_out_of_memory(); 369 return 0; 370 } 371 372 if (fault & VM_FAULT_SIGBUS) { 373 /* 374 * We had some memory, but were unable to 375 * successfully fix up this page fault. 376 */ 377 sig = SIGBUS; 378 code = BUS_ADRERR; 379 } else { 380 /* 381 * Something tried to access memory that 382 * isn't in our memory map.. 383 */ 384 sig = SIGSEGV; 385 code = fault == VM_FAULT_BADACCESS ? 386 SEGV_ACCERR : SEGV_MAPERR; 387 } 388 389 __do_user_fault(tsk, addr, fsr, sig, code, regs); 390 return 0; 391 392 no_context: 393 __do_kernel_fault(mm, addr, fsr, regs); 394 return 0; 395 } 396 #else /* CONFIG_MMU */ 397 static int 398 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 399 { 400 return 0; 401 } 402 #endif /* CONFIG_MMU */ 403 404 /* 405 * First Level Translation Fault Handler 406 * 407 * We enter here because the first level page table doesn't contain 408 * a valid entry for the address. 409 * 410 * If the address is in kernel space (>= TASK_SIZE), then we are 411 * probably faulting in the vmalloc() area. 412 * 413 * If the init_task's first level page tables contains the relevant 414 * entry, we copy the it to this task. If not, we send the process 415 * a signal, fixup the exception, or oops the kernel. 416 * 417 * NOTE! We MUST NOT take any locks for this case. We may be in an 418 * interrupt or a critical region, and should only copy the information 419 * from the master page table, nothing more. 420 */ 421 #ifdef CONFIG_MMU 422 static int __kprobes 423 do_translation_fault(unsigned long addr, unsigned int fsr, 424 struct pt_regs *regs) 425 { 426 unsigned int index; 427 pgd_t *pgd, *pgd_k; 428 pud_t *pud, *pud_k; 429 pmd_t *pmd, *pmd_k; 430 431 if (addr < TASK_SIZE) 432 return do_page_fault(addr, fsr, regs); 433 434 if (user_mode(regs)) 435 goto bad_area; 436 437 index = pgd_index(addr); 438 439 pgd = cpu_get_pgd() + index; 440 pgd_k = init_mm.pgd + index; 441 442 if (pgd_none(*pgd_k)) 443 goto bad_area; 444 if (!pgd_present(*pgd)) 445 set_pgd(pgd, *pgd_k); 446 447 pud = pud_offset(pgd, addr); 448 pud_k = pud_offset(pgd_k, addr); 449 450 if (pud_none(*pud_k)) 451 goto bad_area; 452 if (!pud_present(*pud)) 453 set_pud(pud, *pud_k); 454 455 pmd = pmd_offset(pud, addr); 456 pmd_k = pmd_offset(pud_k, addr); 457 458 #ifdef CONFIG_ARM_LPAE 459 /* 460 * Only one hardware entry per PMD with LPAE. 461 */ 462 index = 0; 463 #else 464 /* 465 * On ARM one Linux PGD entry contains two hardware entries (see page 466 * tables layout in pgtable.h). We normally guarantee that we always 467 * fill both L1 entries. But create_mapping() doesn't follow the rule. 468 * It can create inidividual L1 entries, so here we have to call 469 * pmd_none() check for the entry really corresponded to address, not 470 * for the first of pair. 471 */ 472 index = (addr >> SECTION_SHIFT) & 1; 473 #endif 474 if (pmd_none(pmd_k[index])) 475 goto bad_area; 476 477 copy_pmd(pmd, pmd_k); 478 return 0; 479 480 bad_area: 481 do_bad_area(addr, fsr, regs); 482 return 0; 483 } 484 #else /* CONFIG_MMU */ 485 static int 486 do_translation_fault(unsigned long addr, unsigned int fsr, 487 struct pt_regs *regs) 488 { 489 return 0; 490 } 491 #endif /* CONFIG_MMU */ 492 493 /* 494 * Some section permission faults need to be handled gracefully. 495 * They can happen due to a __{get,put}_user during an oops. 496 */ 497 #ifndef CONFIG_ARM_LPAE 498 static int 499 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 500 { 501 do_bad_area(addr, fsr, regs); 502 return 0; 503 } 504 #endif /* CONFIG_ARM_LPAE */ 505 506 /* 507 * This abort handler always returns "fault". 508 */ 509 static int 510 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 511 { 512 return 1; 513 } 514 515 struct fsr_info { 516 int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs); 517 int sig; 518 int code; 519 const char *name; 520 }; 521 522 /* FSR definition */ 523 #ifdef CONFIG_ARM_LPAE 524 #include "fsr-3level.c" 525 #else 526 #include "fsr-2level.c" 527 #endif 528 529 void __init 530 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), 531 int sig, int code, const char *name) 532 { 533 if (nr < 0 || nr >= ARRAY_SIZE(fsr_info)) 534 BUG(); 535 536 fsr_info[nr].fn = fn; 537 fsr_info[nr].sig = sig; 538 fsr_info[nr].code = code; 539 fsr_info[nr].name = name; 540 } 541 542 /* 543 * Dispatch a data abort to the relevant handler. 544 */ 545 asmlinkage void __exception 546 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 547 { 548 const struct fsr_info *inf = fsr_info + fsr_fs(fsr); 549 struct siginfo info; 550 551 if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs)) 552 return; 553 554 pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n", 555 inf->name, fsr, addr); 556 show_pte(current->mm, addr); 557 558 info.si_signo = inf->sig; 559 info.si_errno = 0; 560 info.si_code = inf->code; 561 info.si_addr = (void __user *)addr; 562 arm_notify_die("", regs, &info, fsr, 0); 563 } 564 565 void __init 566 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), 567 int sig, int code, const char *name) 568 { 569 if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info)) 570 BUG(); 571 572 ifsr_info[nr].fn = fn; 573 ifsr_info[nr].sig = sig; 574 ifsr_info[nr].code = code; 575 ifsr_info[nr].name = name; 576 } 577 578 asmlinkage void __exception 579 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs) 580 { 581 const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr); 582 struct siginfo info; 583 584 if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs)) 585 return; 586 587 pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n", 588 inf->name, ifsr, addr); 589 590 info.si_signo = inf->sig; 591 info.si_errno = 0; 592 info.si_code = inf->code; 593 info.si_addr = (void __user *)addr; 594 arm_notify_die("", regs, &info, ifsr, 0); 595 } 596 597 /* 598 * Abort handler to be used only during first unmasking of asynchronous aborts 599 * on the boot CPU. This makes sure that the machine will not die if the 600 * firmware/bootloader left an imprecise abort pending for us to trip over. 601 */ 602 static int __init early_abort_handler(unsigned long addr, unsigned int fsr, 603 struct pt_regs *regs) 604 { 605 pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during " 606 "first unmask, this is most likely caused by a " 607 "firmware/bootloader bug.\n", fsr); 608 609 return 0; 610 } 611 612 void __init early_abt_enable(void) 613 { 614 fsr_info[FSR_FS_AEA].fn = early_abort_handler; 615 local_abt_enable(); 616 fsr_info[FSR_FS_AEA].fn = do_bad; 617 } 618 619 #ifndef CONFIG_ARM_LPAE 620 static int __init exceptions_init(void) 621 { 622 if (cpu_architecture() >= CPU_ARCH_ARMv6) { 623 hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR, 624 "I-cache maintenance fault"); 625 } 626 627 if (cpu_architecture() >= CPU_ARCH_ARMv7) { 628 /* 629 * TODO: Access flag faults introduced in ARMv6K. 630 * Runtime check for 'K' extension is needed 631 */ 632 hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR, 633 "section access flag fault"); 634 hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR, 635 "section access flag fault"); 636 } 637 638 return 0; 639 } 640 641 arch_initcall(exceptions_init); 642 #endif 643