1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/mm/fault.c 4 * 5 * Copyright (C) 1995 Linus Torvalds 6 * Modifications for ARM processor (c) 1995-2004 Russell King 7 */ 8 #include <linux/extable.h> 9 #include <linux/signal.h> 10 #include <linux/mm.h> 11 #include <linux/hardirq.h> 12 #include <linux/init.h> 13 #include <linux/kprobes.h> 14 #include <linux/uaccess.h> 15 #include <linux/page-flags.h> 16 #include <linux/sched/signal.h> 17 #include <linux/sched/debug.h> 18 #include <linux/highmem.h> 19 #include <linux/perf_event.h> 20 21 #include <asm/pgtable.h> 22 #include <asm/system_misc.h> 23 #include <asm/system_info.h> 24 #include <asm/tlbflush.h> 25 26 #include "fault.h" 27 28 #ifdef CONFIG_MMU 29 30 #ifdef CONFIG_KPROBES 31 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr) 32 { 33 int ret = 0; 34 35 if (!user_mode(regs)) { 36 /* kprobe_running() needs smp_processor_id() */ 37 preempt_disable(); 38 if (kprobe_running() && kprobe_fault_handler(regs, fsr)) 39 ret = 1; 40 preempt_enable(); 41 } 42 43 return ret; 44 } 45 #else 46 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr) 47 { 48 return 0; 49 } 50 #endif 51 52 /* 53 * This is useful to dump out the page tables associated with 54 * 'addr' in mm 'mm'. 55 */ 56 void show_pte(struct mm_struct *mm, unsigned long addr) 57 { 58 pgd_t *pgd; 59 60 if (!mm) 61 mm = &init_mm; 62 63 pr_alert("pgd = %p\n", mm->pgd); 64 pgd = pgd_offset(mm, addr); 65 pr_alert("[%08lx] *pgd=%08llx", 66 addr, (long long)pgd_val(*pgd)); 67 68 do { 69 pud_t *pud; 70 pmd_t *pmd; 71 pte_t *pte; 72 73 if (pgd_none(*pgd)) 74 break; 75 76 if (pgd_bad(*pgd)) { 77 pr_cont("(bad)"); 78 break; 79 } 80 81 pud = pud_offset(pgd, addr); 82 if (PTRS_PER_PUD != 1) 83 pr_cont(", *pud=%08llx", (long long)pud_val(*pud)); 84 85 if (pud_none(*pud)) 86 break; 87 88 if (pud_bad(*pud)) { 89 pr_cont("(bad)"); 90 break; 91 } 92 93 pmd = pmd_offset(pud, addr); 94 if (PTRS_PER_PMD != 1) 95 pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd)); 96 97 if (pmd_none(*pmd)) 98 break; 99 100 if (pmd_bad(*pmd)) { 101 pr_cont("(bad)"); 102 break; 103 } 104 105 /* We must not map this if we have highmem enabled */ 106 if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT))) 107 break; 108 109 pte = pte_offset_map(pmd, addr); 110 pr_cont(", *pte=%08llx", (long long)pte_val(*pte)); 111 #ifndef CONFIG_ARM_LPAE 112 pr_cont(", *ppte=%08llx", 113 (long long)pte_val(pte[PTE_HWTABLE_PTRS])); 114 #endif 115 pte_unmap(pte); 116 } while(0); 117 118 pr_cont("\n"); 119 } 120 #else /* CONFIG_MMU */ 121 void show_pte(struct mm_struct *mm, unsigned long addr) 122 { } 123 #endif /* CONFIG_MMU */ 124 125 /* 126 * Oops. The kernel tried to access some page that wasn't present. 127 */ 128 static void 129 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr, 130 struct pt_regs *regs) 131 { 132 /* 133 * Are we prepared to handle this kernel fault? 134 */ 135 if (fixup_exception(regs)) 136 return; 137 138 /* 139 * No handler, we'll have to terminate things with extreme prejudice. 140 */ 141 bust_spinlocks(1); 142 pr_alert("Unable to handle kernel %s at virtual address %08lx\n", 143 (addr < PAGE_SIZE) ? "NULL pointer dereference" : 144 "paging request", addr); 145 146 show_pte(mm, addr); 147 die("Oops", regs, fsr); 148 bust_spinlocks(0); 149 do_exit(SIGKILL); 150 } 151 152 /* 153 * Something tried to access memory that isn't in our memory map.. 154 * User mode accesses just cause a SIGSEGV 155 */ 156 static void 157 __do_user_fault(struct task_struct *tsk, unsigned long addr, 158 unsigned int fsr, unsigned int sig, int code, 159 struct pt_regs *regs) 160 { 161 if (addr > TASK_SIZE) 162 harden_branch_predictor(); 163 164 #ifdef CONFIG_DEBUG_USER 165 if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) || 166 ((user_debug & UDBG_BUS) && (sig == SIGBUS))) { 167 printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n", 168 tsk->comm, sig, addr, fsr); 169 show_pte(tsk->mm, addr); 170 show_regs(regs); 171 } 172 #endif 173 #ifndef CONFIG_KUSER_HELPERS 174 if ((sig == SIGSEGV) && ((addr & PAGE_MASK) == 0xffff0000)) 175 printk_ratelimited(KERN_DEBUG 176 "%s: CONFIG_KUSER_HELPERS disabled at 0x%08lx\n", 177 tsk->comm, addr); 178 #endif 179 180 tsk->thread.address = addr; 181 tsk->thread.error_code = fsr; 182 tsk->thread.trap_no = 14; 183 force_sig_fault(sig, code, (void __user *)addr, tsk); 184 } 185 186 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 187 { 188 struct task_struct *tsk = current; 189 struct mm_struct *mm = tsk->active_mm; 190 191 /* 192 * If we are in kernel mode at this point, we 193 * have no context to handle this fault with. 194 */ 195 if (user_mode(regs)) 196 __do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs); 197 else 198 __do_kernel_fault(mm, addr, fsr, regs); 199 } 200 201 #ifdef CONFIG_MMU 202 #define VM_FAULT_BADMAP 0x010000 203 #define VM_FAULT_BADACCESS 0x020000 204 205 /* 206 * Check that the permissions on the VMA allow for the fault which occurred. 207 * If we encountered a write fault, we must have write permission, otherwise 208 * we allow any permission. 209 */ 210 static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma) 211 { 212 unsigned int mask = VM_READ | VM_WRITE | VM_EXEC; 213 214 if (fsr & FSR_WRITE) 215 mask = VM_WRITE; 216 if (fsr & FSR_LNX_PF) 217 mask = VM_EXEC; 218 219 return vma->vm_flags & mask ? false : true; 220 } 221 222 static vm_fault_t __kprobes 223 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr, 224 unsigned int flags, struct task_struct *tsk) 225 { 226 struct vm_area_struct *vma; 227 vm_fault_t fault; 228 229 vma = find_vma(mm, addr); 230 fault = VM_FAULT_BADMAP; 231 if (unlikely(!vma)) 232 goto out; 233 if (unlikely(vma->vm_start > addr)) 234 goto check_stack; 235 236 /* 237 * Ok, we have a good vm_area for this 238 * memory access, so we can handle it. 239 */ 240 good_area: 241 if (access_error(fsr, vma)) { 242 fault = VM_FAULT_BADACCESS; 243 goto out; 244 } 245 246 return handle_mm_fault(vma, addr & PAGE_MASK, flags); 247 248 check_stack: 249 /* Don't allow expansion below FIRST_USER_ADDRESS */ 250 if (vma->vm_flags & VM_GROWSDOWN && 251 addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr)) 252 goto good_area; 253 out: 254 return fault; 255 } 256 257 static int __kprobes 258 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 259 { 260 struct task_struct *tsk; 261 struct mm_struct *mm; 262 int sig, code; 263 vm_fault_t fault; 264 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 265 266 if (notify_page_fault(regs, fsr)) 267 return 0; 268 269 tsk = current; 270 mm = tsk->mm; 271 272 /* Enable interrupts if they were enabled in the parent context. */ 273 if (interrupts_enabled(regs)) 274 local_irq_enable(); 275 276 /* 277 * If we're in an interrupt or have no user 278 * context, we must not take the fault.. 279 */ 280 if (faulthandler_disabled() || !mm) 281 goto no_context; 282 283 if (user_mode(regs)) 284 flags |= FAULT_FLAG_USER; 285 if (fsr & FSR_WRITE) 286 flags |= FAULT_FLAG_WRITE; 287 288 /* 289 * As per x86, we may deadlock here. However, since the kernel only 290 * validly references user space from well defined areas of the code, 291 * we can bug out early if this is from code which shouldn't. 292 */ 293 if (!down_read_trylock(&mm->mmap_sem)) { 294 if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc)) 295 goto no_context; 296 retry: 297 down_read(&mm->mmap_sem); 298 } else { 299 /* 300 * The above down_read_trylock() might have succeeded in 301 * which case, we'll have missed the might_sleep() from 302 * down_read() 303 */ 304 might_sleep(); 305 #ifdef CONFIG_DEBUG_VM 306 if (!user_mode(regs) && 307 !search_exception_tables(regs->ARM_pc)) 308 goto no_context; 309 #endif 310 } 311 312 fault = __do_page_fault(mm, addr, fsr, flags, tsk); 313 314 /* If we need to retry but a fatal signal is pending, handle the 315 * signal first. We do not need to release the mmap_sem because 316 * it would already be released in __lock_page_or_retry in 317 * mm/filemap.c. */ 318 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) { 319 if (!user_mode(regs)) 320 goto no_context; 321 return 0; 322 } 323 324 /* 325 * Major/minor page fault accounting is only done on the 326 * initial attempt. If we go through a retry, it is extremely 327 * likely that the page will be found in page cache at that point. 328 */ 329 330 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); 331 if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) { 332 if (fault & VM_FAULT_MAJOR) { 333 tsk->maj_flt++; 334 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 335 regs, addr); 336 } else { 337 tsk->min_flt++; 338 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 339 regs, addr); 340 } 341 if (fault & VM_FAULT_RETRY) { 342 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk 343 * of starvation. */ 344 flags &= ~FAULT_FLAG_ALLOW_RETRY; 345 flags |= FAULT_FLAG_TRIED; 346 goto retry; 347 } 348 } 349 350 up_read(&mm->mmap_sem); 351 352 /* 353 * Handle the "normal" case first - VM_FAULT_MAJOR 354 */ 355 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS)))) 356 return 0; 357 358 /* 359 * If we are in kernel mode at this point, we 360 * have no context to handle this fault with. 361 */ 362 if (!user_mode(regs)) 363 goto no_context; 364 365 if (fault & VM_FAULT_OOM) { 366 /* 367 * We ran out of memory, call the OOM killer, and return to 368 * userspace (which will retry the fault, or kill us if we 369 * got oom-killed) 370 */ 371 pagefault_out_of_memory(); 372 return 0; 373 } 374 375 if (fault & VM_FAULT_SIGBUS) { 376 /* 377 * We had some memory, but were unable to 378 * successfully fix up this page fault. 379 */ 380 sig = SIGBUS; 381 code = BUS_ADRERR; 382 } else { 383 /* 384 * Something tried to access memory that 385 * isn't in our memory map.. 386 */ 387 sig = SIGSEGV; 388 code = fault == VM_FAULT_BADACCESS ? 389 SEGV_ACCERR : SEGV_MAPERR; 390 } 391 392 __do_user_fault(tsk, addr, fsr, sig, code, regs); 393 return 0; 394 395 no_context: 396 __do_kernel_fault(mm, addr, fsr, regs); 397 return 0; 398 } 399 #else /* CONFIG_MMU */ 400 static int 401 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 402 { 403 return 0; 404 } 405 #endif /* CONFIG_MMU */ 406 407 /* 408 * First Level Translation Fault Handler 409 * 410 * We enter here because the first level page table doesn't contain 411 * a valid entry for the address. 412 * 413 * If the address is in kernel space (>= TASK_SIZE), then we are 414 * probably faulting in the vmalloc() area. 415 * 416 * If the init_task's first level page tables contains the relevant 417 * entry, we copy the it to this task. If not, we send the process 418 * a signal, fixup the exception, or oops the kernel. 419 * 420 * NOTE! We MUST NOT take any locks for this case. We may be in an 421 * interrupt or a critical region, and should only copy the information 422 * from the master page table, nothing more. 423 */ 424 #ifdef CONFIG_MMU 425 static int __kprobes 426 do_translation_fault(unsigned long addr, unsigned int fsr, 427 struct pt_regs *regs) 428 { 429 unsigned int index; 430 pgd_t *pgd, *pgd_k; 431 pud_t *pud, *pud_k; 432 pmd_t *pmd, *pmd_k; 433 434 if (addr < TASK_SIZE) 435 return do_page_fault(addr, fsr, regs); 436 437 if (user_mode(regs)) 438 goto bad_area; 439 440 index = pgd_index(addr); 441 442 pgd = cpu_get_pgd() + index; 443 pgd_k = init_mm.pgd + index; 444 445 if (pgd_none(*pgd_k)) 446 goto bad_area; 447 if (!pgd_present(*pgd)) 448 set_pgd(pgd, *pgd_k); 449 450 pud = pud_offset(pgd, addr); 451 pud_k = pud_offset(pgd_k, addr); 452 453 if (pud_none(*pud_k)) 454 goto bad_area; 455 if (!pud_present(*pud)) 456 set_pud(pud, *pud_k); 457 458 pmd = pmd_offset(pud, addr); 459 pmd_k = pmd_offset(pud_k, addr); 460 461 #ifdef CONFIG_ARM_LPAE 462 /* 463 * Only one hardware entry per PMD with LPAE. 464 */ 465 index = 0; 466 #else 467 /* 468 * On ARM one Linux PGD entry contains two hardware entries (see page 469 * tables layout in pgtable.h). We normally guarantee that we always 470 * fill both L1 entries. But create_mapping() doesn't follow the rule. 471 * It can create inidividual L1 entries, so here we have to call 472 * pmd_none() check for the entry really corresponded to address, not 473 * for the first of pair. 474 */ 475 index = (addr >> SECTION_SHIFT) & 1; 476 #endif 477 if (pmd_none(pmd_k[index])) 478 goto bad_area; 479 480 copy_pmd(pmd, pmd_k); 481 return 0; 482 483 bad_area: 484 do_bad_area(addr, fsr, regs); 485 return 0; 486 } 487 #else /* CONFIG_MMU */ 488 static int 489 do_translation_fault(unsigned long addr, unsigned int fsr, 490 struct pt_regs *regs) 491 { 492 return 0; 493 } 494 #endif /* CONFIG_MMU */ 495 496 /* 497 * Some section permission faults need to be handled gracefully. 498 * They can happen due to a __{get,put}_user during an oops. 499 */ 500 #ifndef CONFIG_ARM_LPAE 501 static int 502 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 503 { 504 do_bad_area(addr, fsr, regs); 505 return 0; 506 } 507 #endif /* CONFIG_ARM_LPAE */ 508 509 /* 510 * This abort handler always returns "fault". 511 */ 512 static int 513 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 514 { 515 return 1; 516 } 517 518 struct fsr_info { 519 int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs); 520 int sig; 521 int code; 522 const char *name; 523 }; 524 525 /* FSR definition */ 526 #ifdef CONFIG_ARM_LPAE 527 #include "fsr-3level.c" 528 #else 529 #include "fsr-2level.c" 530 #endif 531 532 void __init 533 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), 534 int sig, int code, const char *name) 535 { 536 if (nr < 0 || nr >= ARRAY_SIZE(fsr_info)) 537 BUG(); 538 539 fsr_info[nr].fn = fn; 540 fsr_info[nr].sig = sig; 541 fsr_info[nr].code = code; 542 fsr_info[nr].name = name; 543 } 544 545 /* 546 * Dispatch a data abort to the relevant handler. 547 */ 548 asmlinkage void 549 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 550 { 551 const struct fsr_info *inf = fsr_info + fsr_fs(fsr); 552 553 if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs)) 554 return; 555 556 pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n", 557 inf->name, fsr, addr); 558 show_pte(current->mm, addr); 559 560 arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr, 561 fsr, 0); 562 } 563 564 void __init 565 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), 566 int sig, int code, const char *name) 567 { 568 if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info)) 569 BUG(); 570 571 ifsr_info[nr].fn = fn; 572 ifsr_info[nr].sig = sig; 573 ifsr_info[nr].code = code; 574 ifsr_info[nr].name = name; 575 } 576 577 asmlinkage void 578 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs) 579 { 580 const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr); 581 582 if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs)) 583 return; 584 585 pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n", 586 inf->name, ifsr, addr); 587 588 arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr, 589 ifsr, 0); 590 } 591 592 /* 593 * Abort handler to be used only during first unmasking of asynchronous aborts 594 * on the boot CPU. This makes sure that the machine will not die if the 595 * firmware/bootloader left an imprecise abort pending for us to trip over. 596 */ 597 static int __init early_abort_handler(unsigned long addr, unsigned int fsr, 598 struct pt_regs *regs) 599 { 600 pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during " 601 "first unmask, this is most likely caused by a " 602 "firmware/bootloader bug.\n", fsr); 603 604 return 0; 605 } 606 607 void __init early_abt_enable(void) 608 { 609 fsr_info[FSR_FS_AEA].fn = early_abort_handler; 610 local_abt_enable(); 611 fsr_info[FSR_FS_AEA].fn = do_bad; 612 } 613 614 #ifndef CONFIG_ARM_LPAE 615 static int __init exceptions_init(void) 616 { 617 if (cpu_architecture() >= CPU_ARCH_ARMv6) { 618 hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR, 619 "I-cache maintenance fault"); 620 } 621 622 if (cpu_architecture() >= CPU_ARCH_ARMv7) { 623 /* 624 * TODO: Access flag faults introduced in ARMv6K. 625 * Runtime check for 'K' extension is needed 626 */ 627 hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR, 628 "section access flag fault"); 629 hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR, 630 "section access flag fault"); 631 } 632 633 return 0; 634 } 635 636 arch_initcall(exceptions_init); 637 #endif 638