xref: /openbmc/linux/arch/arm/mm/fault.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  *  linux/arch/arm/mm/fault.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Modifications for ARM processor (c) 1995-2004 Russell King
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/extable.h>
12 #include <linux/signal.h>
13 #include <linux/mm.h>
14 #include <linux/hardirq.h>
15 #include <linux/init.h>
16 #include <linux/kprobes.h>
17 #include <linux/uaccess.h>
18 #include <linux/page-flags.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/debug.h>
21 #include <linux/highmem.h>
22 #include <linux/perf_event.h>
23 
24 #include <asm/pgtable.h>
25 #include <asm/system_misc.h>
26 #include <asm/system_info.h>
27 #include <asm/tlbflush.h>
28 
29 #include "fault.h"
30 
31 #ifdef CONFIG_MMU
32 
33 #ifdef CONFIG_KPROBES
34 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
35 {
36 	int ret = 0;
37 
38 	if (!user_mode(regs)) {
39 		/* kprobe_running() needs smp_processor_id() */
40 		preempt_disable();
41 		if (kprobe_running() && kprobe_fault_handler(regs, fsr))
42 			ret = 1;
43 		preempt_enable();
44 	}
45 
46 	return ret;
47 }
48 #else
49 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
50 {
51 	return 0;
52 }
53 #endif
54 
55 /*
56  * This is useful to dump out the page tables associated with
57  * 'addr' in mm 'mm'.
58  */
59 void show_pte(struct mm_struct *mm, unsigned long addr)
60 {
61 	pgd_t *pgd;
62 
63 	if (!mm)
64 		mm = &init_mm;
65 
66 	pr_alert("pgd = %p\n", mm->pgd);
67 	pgd = pgd_offset(mm, addr);
68 	pr_alert("[%08lx] *pgd=%08llx",
69 			addr, (long long)pgd_val(*pgd));
70 
71 	do {
72 		pud_t *pud;
73 		pmd_t *pmd;
74 		pte_t *pte;
75 
76 		if (pgd_none(*pgd))
77 			break;
78 
79 		if (pgd_bad(*pgd)) {
80 			pr_cont("(bad)");
81 			break;
82 		}
83 
84 		pud = pud_offset(pgd, addr);
85 		if (PTRS_PER_PUD != 1)
86 			pr_cont(", *pud=%08llx", (long long)pud_val(*pud));
87 
88 		if (pud_none(*pud))
89 			break;
90 
91 		if (pud_bad(*pud)) {
92 			pr_cont("(bad)");
93 			break;
94 		}
95 
96 		pmd = pmd_offset(pud, addr);
97 		if (PTRS_PER_PMD != 1)
98 			pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd));
99 
100 		if (pmd_none(*pmd))
101 			break;
102 
103 		if (pmd_bad(*pmd)) {
104 			pr_cont("(bad)");
105 			break;
106 		}
107 
108 		/* We must not map this if we have highmem enabled */
109 		if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
110 			break;
111 
112 		pte = pte_offset_map(pmd, addr);
113 		pr_cont(", *pte=%08llx", (long long)pte_val(*pte));
114 #ifndef CONFIG_ARM_LPAE
115 		pr_cont(", *ppte=%08llx",
116 		       (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
117 #endif
118 		pte_unmap(pte);
119 	} while(0);
120 
121 	pr_cont("\n");
122 }
123 #else					/* CONFIG_MMU */
124 void show_pte(struct mm_struct *mm, unsigned long addr)
125 { }
126 #endif					/* CONFIG_MMU */
127 
128 /*
129  * Oops.  The kernel tried to access some page that wasn't present.
130  */
131 static void
132 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
133 		  struct pt_regs *regs)
134 {
135 	/*
136 	 * Are we prepared to handle this kernel fault?
137 	 */
138 	if (fixup_exception(regs))
139 		return;
140 
141 	/*
142 	 * No handler, we'll have to terminate things with extreme prejudice.
143 	 */
144 	bust_spinlocks(1);
145 	pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
146 		 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
147 		 "paging request", addr);
148 
149 	show_pte(mm, addr);
150 	die("Oops", regs, fsr);
151 	bust_spinlocks(0);
152 	do_exit(SIGKILL);
153 }
154 
155 /*
156  * Something tried to access memory that isn't in our memory map..
157  * User mode accesses just cause a SIGSEGV
158  */
159 static void
160 __do_user_fault(struct task_struct *tsk, unsigned long addr,
161 		unsigned int fsr, unsigned int sig, int code,
162 		struct pt_regs *regs)
163 {
164 	if (addr > TASK_SIZE)
165 		harden_branch_predictor();
166 
167 #ifdef CONFIG_DEBUG_USER
168 	if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
169 	    ((user_debug & UDBG_BUS)  && (sig == SIGBUS))) {
170 		printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
171 		       tsk->comm, sig, addr, fsr);
172 		show_pte(tsk->mm, addr);
173 		show_regs(regs);
174 	}
175 #endif
176 #ifndef CONFIG_KUSER_HELPERS
177 	if ((sig == SIGSEGV) && ((addr & PAGE_MASK) == 0xffff0000))
178 		printk_ratelimited(KERN_DEBUG
179 				   "%s: CONFIG_KUSER_HELPERS disabled at 0x%08lx\n",
180 				   tsk->comm, addr);
181 #endif
182 
183 	tsk->thread.address = addr;
184 	tsk->thread.error_code = fsr;
185 	tsk->thread.trap_no = 14;
186 	force_sig_fault(sig, code, (void __user *)addr, tsk);
187 }
188 
189 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
190 {
191 	struct task_struct *tsk = current;
192 	struct mm_struct *mm = tsk->active_mm;
193 
194 	/*
195 	 * If we are in kernel mode at this point, we
196 	 * have no context to handle this fault with.
197 	 */
198 	if (user_mode(regs))
199 		__do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
200 	else
201 		__do_kernel_fault(mm, addr, fsr, regs);
202 }
203 
204 #ifdef CONFIG_MMU
205 #define VM_FAULT_BADMAP		0x010000
206 #define VM_FAULT_BADACCESS	0x020000
207 
208 /*
209  * Check that the permissions on the VMA allow for the fault which occurred.
210  * If we encountered a write fault, we must have write permission, otherwise
211  * we allow any permission.
212  */
213 static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
214 {
215 	unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
216 
217 	if (fsr & FSR_WRITE)
218 		mask = VM_WRITE;
219 	if (fsr & FSR_LNX_PF)
220 		mask = VM_EXEC;
221 
222 	return vma->vm_flags & mask ? false : true;
223 }
224 
225 static vm_fault_t __kprobes
226 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
227 		unsigned int flags, struct task_struct *tsk)
228 {
229 	struct vm_area_struct *vma;
230 	vm_fault_t fault;
231 
232 	vma = find_vma(mm, addr);
233 	fault = VM_FAULT_BADMAP;
234 	if (unlikely(!vma))
235 		goto out;
236 	if (unlikely(vma->vm_start > addr))
237 		goto check_stack;
238 
239 	/*
240 	 * Ok, we have a good vm_area for this
241 	 * memory access, so we can handle it.
242 	 */
243 good_area:
244 	if (access_error(fsr, vma)) {
245 		fault = VM_FAULT_BADACCESS;
246 		goto out;
247 	}
248 
249 	return handle_mm_fault(vma, addr & PAGE_MASK, flags);
250 
251 check_stack:
252 	/* Don't allow expansion below FIRST_USER_ADDRESS */
253 	if (vma->vm_flags & VM_GROWSDOWN &&
254 	    addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr))
255 		goto good_area;
256 out:
257 	return fault;
258 }
259 
260 static int __kprobes
261 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
262 {
263 	struct task_struct *tsk;
264 	struct mm_struct *mm;
265 	int sig, code;
266 	vm_fault_t fault;
267 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
268 
269 	if (notify_page_fault(regs, fsr))
270 		return 0;
271 
272 	tsk = current;
273 	mm  = tsk->mm;
274 
275 	/* Enable interrupts if they were enabled in the parent context. */
276 	if (interrupts_enabled(regs))
277 		local_irq_enable();
278 
279 	/*
280 	 * If we're in an interrupt or have no user
281 	 * context, we must not take the fault..
282 	 */
283 	if (faulthandler_disabled() || !mm)
284 		goto no_context;
285 
286 	if (user_mode(regs))
287 		flags |= FAULT_FLAG_USER;
288 	if (fsr & FSR_WRITE)
289 		flags |= FAULT_FLAG_WRITE;
290 
291 	/*
292 	 * As per x86, we may deadlock here.  However, since the kernel only
293 	 * validly references user space from well defined areas of the code,
294 	 * we can bug out early if this is from code which shouldn't.
295 	 */
296 	if (!down_read_trylock(&mm->mmap_sem)) {
297 		if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
298 			goto no_context;
299 retry:
300 		down_read(&mm->mmap_sem);
301 	} else {
302 		/*
303 		 * The above down_read_trylock() might have succeeded in
304 		 * which case, we'll have missed the might_sleep() from
305 		 * down_read()
306 		 */
307 		might_sleep();
308 #ifdef CONFIG_DEBUG_VM
309 		if (!user_mode(regs) &&
310 		    !search_exception_tables(regs->ARM_pc))
311 			goto no_context;
312 #endif
313 	}
314 
315 	fault = __do_page_fault(mm, addr, fsr, flags, tsk);
316 
317 	/* If we need to retry but a fatal signal is pending, handle the
318 	 * signal first. We do not need to release the mmap_sem because
319 	 * it would already be released in __lock_page_or_retry in
320 	 * mm/filemap.c. */
321 	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
322 		if (!user_mode(regs))
323 			goto no_context;
324 		return 0;
325 	}
326 
327 	/*
328 	 * Major/minor page fault accounting is only done on the
329 	 * initial attempt. If we go through a retry, it is extremely
330 	 * likely that the page will be found in page cache at that point.
331 	 */
332 
333 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
334 	if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) {
335 		if (fault & VM_FAULT_MAJOR) {
336 			tsk->maj_flt++;
337 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
338 					regs, addr);
339 		} else {
340 			tsk->min_flt++;
341 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
342 					regs, addr);
343 		}
344 		if (fault & VM_FAULT_RETRY) {
345 			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
346 			* of starvation. */
347 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
348 			flags |= FAULT_FLAG_TRIED;
349 			goto retry;
350 		}
351 	}
352 
353 	up_read(&mm->mmap_sem);
354 
355 	/*
356 	 * Handle the "normal" case first - VM_FAULT_MAJOR
357 	 */
358 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
359 		return 0;
360 
361 	/*
362 	 * If we are in kernel mode at this point, we
363 	 * have no context to handle this fault with.
364 	 */
365 	if (!user_mode(regs))
366 		goto no_context;
367 
368 	if (fault & VM_FAULT_OOM) {
369 		/*
370 		 * We ran out of memory, call the OOM killer, and return to
371 		 * userspace (which will retry the fault, or kill us if we
372 		 * got oom-killed)
373 		 */
374 		pagefault_out_of_memory();
375 		return 0;
376 	}
377 
378 	if (fault & VM_FAULT_SIGBUS) {
379 		/*
380 		 * We had some memory, but were unable to
381 		 * successfully fix up this page fault.
382 		 */
383 		sig = SIGBUS;
384 		code = BUS_ADRERR;
385 	} else {
386 		/*
387 		 * Something tried to access memory that
388 		 * isn't in our memory map..
389 		 */
390 		sig = SIGSEGV;
391 		code = fault == VM_FAULT_BADACCESS ?
392 			SEGV_ACCERR : SEGV_MAPERR;
393 	}
394 
395 	__do_user_fault(tsk, addr, fsr, sig, code, regs);
396 	return 0;
397 
398 no_context:
399 	__do_kernel_fault(mm, addr, fsr, regs);
400 	return 0;
401 }
402 #else					/* CONFIG_MMU */
403 static int
404 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
405 {
406 	return 0;
407 }
408 #endif					/* CONFIG_MMU */
409 
410 /*
411  * First Level Translation Fault Handler
412  *
413  * We enter here because the first level page table doesn't contain
414  * a valid entry for the address.
415  *
416  * If the address is in kernel space (>= TASK_SIZE), then we are
417  * probably faulting in the vmalloc() area.
418  *
419  * If the init_task's first level page tables contains the relevant
420  * entry, we copy the it to this task.  If not, we send the process
421  * a signal, fixup the exception, or oops the kernel.
422  *
423  * NOTE! We MUST NOT take any locks for this case. We may be in an
424  * interrupt or a critical region, and should only copy the information
425  * from the master page table, nothing more.
426  */
427 #ifdef CONFIG_MMU
428 static int __kprobes
429 do_translation_fault(unsigned long addr, unsigned int fsr,
430 		     struct pt_regs *regs)
431 {
432 	unsigned int index;
433 	pgd_t *pgd, *pgd_k;
434 	pud_t *pud, *pud_k;
435 	pmd_t *pmd, *pmd_k;
436 
437 	if (addr < TASK_SIZE)
438 		return do_page_fault(addr, fsr, regs);
439 
440 	if (user_mode(regs))
441 		goto bad_area;
442 
443 	index = pgd_index(addr);
444 
445 	pgd = cpu_get_pgd() + index;
446 	pgd_k = init_mm.pgd + index;
447 
448 	if (pgd_none(*pgd_k))
449 		goto bad_area;
450 	if (!pgd_present(*pgd))
451 		set_pgd(pgd, *pgd_k);
452 
453 	pud = pud_offset(pgd, addr);
454 	pud_k = pud_offset(pgd_k, addr);
455 
456 	if (pud_none(*pud_k))
457 		goto bad_area;
458 	if (!pud_present(*pud))
459 		set_pud(pud, *pud_k);
460 
461 	pmd = pmd_offset(pud, addr);
462 	pmd_k = pmd_offset(pud_k, addr);
463 
464 #ifdef CONFIG_ARM_LPAE
465 	/*
466 	 * Only one hardware entry per PMD with LPAE.
467 	 */
468 	index = 0;
469 #else
470 	/*
471 	 * On ARM one Linux PGD entry contains two hardware entries (see page
472 	 * tables layout in pgtable.h). We normally guarantee that we always
473 	 * fill both L1 entries. But create_mapping() doesn't follow the rule.
474 	 * It can create inidividual L1 entries, so here we have to call
475 	 * pmd_none() check for the entry really corresponded to address, not
476 	 * for the first of pair.
477 	 */
478 	index = (addr >> SECTION_SHIFT) & 1;
479 #endif
480 	if (pmd_none(pmd_k[index]))
481 		goto bad_area;
482 
483 	copy_pmd(pmd, pmd_k);
484 	return 0;
485 
486 bad_area:
487 	do_bad_area(addr, fsr, regs);
488 	return 0;
489 }
490 #else					/* CONFIG_MMU */
491 static int
492 do_translation_fault(unsigned long addr, unsigned int fsr,
493 		     struct pt_regs *regs)
494 {
495 	return 0;
496 }
497 #endif					/* CONFIG_MMU */
498 
499 /*
500  * Some section permission faults need to be handled gracefully.
501  * They can happen due to a __{get,put}_user during an oops.
502  */
503 #ifndef CONFIG_ARM_LPAE
504 static int
505 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
506 {
507 	do_bad_area(addr, fsr, regs);
508 	return 0;
509 }
510 #endif /* CONFIG_ARM_LPAE */
511 
512 /*
513  * This abort handler always returns "fault".
514  */
515 static int
516 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
517 {
518 	return 1;
519 }
520 
521 struct fsr_info {
522 	int	(*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
523 	int	sig;
524 	int	code;
525 	const char *name;
526 };
527 
528 /* FSR definition */
529 #ifdef CONFIG_ARM_LPAE
530 #include "fsr-3level.c"
531 #else
532 #include "fsr-2level.c"
533 #endif
534 
535 void __init
536 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
537 		int sig, int code, const char *name)
538 {
539 	if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
540 		BUG();
541 
542 	fsr_info[nr].fn   = fn;
543 	fsr_info[nr].sig  = sig;
544 	fsr_info[nr].code = code;
545 	fsr_info[nr].name = name;
546 }
547 
548 /*
549  * Dispatch a data abort to the relevant handler.
550  */
551 asmlinkage void
552 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
553 {
554 	const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
555 
556 	if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
557 		return;
558 
559 	pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n",
560 		inf->name, fsr, addr);
561 	show_pte(current->mm, addr);
562 
563 	arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
564 		       fsr, 0);
565 }
566 
567 void __init
568 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
569 		 int sig, int code, const char *name)
570 {
571 	if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
572 		BUG();
573 
574 	ifsr_info[nr].fn   = fn;
575 	ifsr_info[nr].sig  = sig;
576 	ifsr_info[nr].code = code;
577 	ifsr_info[nr].name = name;
578 }
579 
580 asmlinkage void
581 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
582 {
583 	const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
584 
585 	if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
586 		return;
587 
588 	pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
589 		inf->name, ifsr, addr);
590 
591 	arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
592 		       ifsr, 0);
593 }
594 
595 /*
596  * Abort handler to be used only during first unmasking of asynchronous aborts
597  * on the boot CPU. This makes sure that the machine will not die if the
598  * firmware/bootloader left an imprecise abort pending for us to trip over.
599  */
600 static int __init early_abort_handler(unsigned long addr, unsigned int fsr,
601 				      struct pt_regs *regs)
602 {
603 	pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during "
604 		"first unmask, this is most likely caused by a "
605 		"firmware/bootloader bug.\n", fsr);
606 
607 	return 0;
608 }
609 
610 void __init early_abt_enable(void)
611 {
612 	fsr_info[FSR_FS_AEA].fn = early_abort_handler;
613 	local_abt_enable();
614 	fsr_info[FSR_FS_AEA].fn = do_bad;
615 }
616 
617 #ifndef CONFIG_ARM_LPAE
618 static int __init exceptions_init(void)
619 {
620 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
621 		hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
622 				"I-cache maintenance fault");
623 	}
624 
625 	if (cpu_architecture() >= CPU_ARCH_ARMv7) {
626 		/*
627 		 * TODO: Access flag faults introduced in ARMv6K.
628 		 * Runtime check for 'K' extension is needed
629 		 */
630 		hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
631 				"section access flag fault");
632 		hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
633 				"section access flag fault");
634 	}
635 
636 	return 0;
637 }
638 
639 arch_initcall(exceptions_init);
640 #endif
641