xref: /openbmc/linux/arch/arm/mm/fault-armv.c (revision fd589a8f)
1 /*
2  *  linux/arch/arm/mm/fault-armv.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Modifications for ARM processor (c) 1995-2002 Russell King
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/bitops.h>
16 #include <linux/vmalloc.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 
20 #include <asm/bugs.h>
21 #include <asm/cacheflush.h>
22 #include <asm/cachetype.h>
23 #include <asm/pgtable.h>
24 #include <asm/tlbflush.h>
25 
26 static unsigned long shared_pte_mask = L_PTE_MT_BUFFERABLE;
27 
28 /*
29  * We take the easy way out of this problem - we make the
30  * PTE uncacheable.  However, we leave the write buffer on.
31  *
32  * Note that the pte lock held when calling update_mmu_cache must also
33  * guard the pte (somewhere else in the same mm) that we modify here.
34  * Therefore those configurations which might call adjust_pte (those
35  * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
36  */
37 static int adjust_pte(struct vm_area_struct *vma, unsigned long address)
38 {
39 	pgd_t *pgd;
40 	pmd_t *pmd;
41 	pte_t *pte, entry;
42 	int ret;
43 
44 	pgd = pgd_offset(vma->vm_mm, address);
45 	if (pgd_none(*pgd))
46 		goto no_pgd;
47 	if (pgd_bad(*pgd))
48 		goto bad_pgd;
49 
50 	pmd = pmd_offset(pgd, address);
51 	if (pmd_none(*pmd))
52 		goto no_pmd;
53 	if (pmd_bad(*pmd))
54 		goto bad_pmd;
55 
56 	pte = pte_offset_map(pmd, address);
57 	entry = *pte;
58 
59 	/*
60 	 * If this page is present, it's actually being shared.
61 	 */
62 	ret = pte_present(entry);
63 
64 	/*
65 	 * If this page isn't present, or is already setup to
66 	 * fault (ie, is old), we can safely ignore any issues.
67 	 */
68 	if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) {
69 		unsigned long pfn = pte_pfn(entry);
70 		flush_cache_page(vma, address, pfn);
71 		outer_flush_range((pfn << PAGE_SHIFT),
72 				  (pfn << PAGE_SHIFT) + PAGE_SIZE);
73 		pte_val(entry) &= ~L_PTE_MT_MASK;
74 		pte_val(entry) |= shared_pte_mask;
75 		set_pte_at(vma->vm_mm, address, pte, entry);
76 		flush_tlb_page(vma, address);
77 	}
78 	pte_unmap(pte);
79 	return ret;
80 
81 bad_pgd:
82 	pgd_ERROR(*pgd);
83 	pgd_clear(pgd);
84 no_pgd:
85 	return 0;
86 
87 bad_pmd:
88 	pmd_ERROR(*pmd);
89 	pmd_clear(pmd);
90 no_pmd:
91 	return 0;
92 }
93 
94 static void
95 make_coherent(struct address_space *mapping, struct vm_area_struct *vma, unsigned long addr, unsigned long pfn)
96 {
97 	struct mm_struct *mm = vma->vm_mm;
98 	struct vm_area_struct *mpnt;
99 	struct prio_tree_iter iter;
100 	unsigned long offset;
101 	pgoff_t pgoff;
102 	int aliases = 0;
103 
104 	pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
105 
106 	/*
107 	 * If we have any shared mappings that are in the same mm
108 	 * space, then we need to handle them specially to maintain
109 	 * cache coherency.
110 	 */
111 	flush_dcache_mmap_lock(mapping);
112 	vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) {
113 		/*
114 		 * If this VMA is not in our MM, we can ignore it.
115 		 * Note that we intentionally mask out the VMA
116 		 * that we are fixing up.
117 		 */
118 		if (mpnt->vm_mm != mm || mpnt == vma)
119 			continue;
120 		if (!(mpnt->vm_flags & VM_MAYSHARE))
121 			continue;
122 		offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
123 		aliases += adjust_pte(mpnt, mpnt->vm_start + offset);
124 	}
125 	flush_dcache_mmap_unlock(mapping);
126 	if (aliases)
127 		adjust_pte(vma, addr);
128 	else
129 		flush_cache_page(vma, addr, pfn);
130 }
131 
132 /*
133  * Take care of architecture specific things when placing a new PTE into
134  * a page table, or changing an existing PTE.  Basically, there are two
135  * things that we need to take care of:
136  *
137  *  1. If PG_dcache_dirty is set for the page, we need to ensure
138  *     that any cache entries for the kernels virtual memory
139  *     range are written back to the page.
140  *  2. If we have multiple shared mappings of the same space in
141  *     an object, we need to deal with the cache aliasing issues.
142  *
143  * Note that the pte lock will be held.
144  */
145 void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
146 {
147 	unsigned long pfn = pte_pfn(pte);
148 	struct address_space *mapping;
149 	struct page *page;
150 
151 	if (!pfn_valid(pfn))
152 		return;
153 
154 	page = pfn_to_page(pfn);
155 	mapping = page_mapping(page);
156 	if (mapping) {
157 #ifndef CONFIG_SMP
158 		int dirty = test_and_clear_bit(PG_dcache_dirty, &page->flags);
159 
160 		if (dirty)
161 			__flush_dcache_page(mapping, page);
162 #endif
163 
164 		if (cache_is_vivt())
165 			make_coherent(mapping, vma, addr, pfn);
166 		else if (vma->vm_flags & VM_EXEC)
167 			__flush_icache_all();
168 	}
169 }
170 
171 /*
172  * Check whether the write buffer has physical address aliasing
173  * issues.  If it has, we need to avoid them for the case where
174  * we have several shared mappings of the same object in user
175  * space.
176  */
177 static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
178 {
179 	register unsigned long zero = 0, one = 1, val;
180 
181 	local_irq_disable();
182 	mb();
183 	*p1 = one;
184 	mb();
185 	*p2 = zero;
186 	mb();
187 	val = *p1;
188 	mb();
189 	local_irq_enable();
190 	return val != zero;
191 }
192 
193 void __init check_writebuffer_bugs(void)
194 {
195 	struct page *page;
196 	const char *reason;
197 	unsigned long v = 1;
198 
199 	printk(KERN_INFO "CPU: Testing write buffer coherency: ");
200 
201 	page = alloc_page(GFP_KERNEL);
202 	if (page) {
203 		unsigned long *p1, *p2;
204 		pgprot_t prot = __pgprot(L_PTE_PRESENT|L_PTE_YOUNG|
205 					 L_PTE_DIRTY|L_PTE_WRITE|
206 					 L_PTE_MT_BUFFERABLE);
207 
208 		p1 = vmap(&page, 1, VM_IOREMAP, prot);
209 		p2 = vmap(&page, 1, VM_IOREMAP, prot);
210 
211 		if (p1 && p2) {
212 			v = check_writebuffer(p1, p2);
213 			reason = "enabling work-around";
214 		} else {
215 			reason = "unable to map memory\n";
216 		}
217 
218 		vunmap(p1);
219 		vunmap(p2);
220 		put_page(page);
221 	} else {
222 		reason = "unable to grab page\n";
223 	}
224 
225 	if (v) {
226 		printk("failed, %s\n", reason);
227 		shared_pte_mask = L_PTE_MT_UNCACHED;
228 	} else {
229 		printk("ok\n");
230 	}
231 }
232