1 /* 2 * linux/arch/arm/mm/fault-armv.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Modifications for ARM processor (c) 1995-2002 Russell King 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/module.h> 12 #include <linux/sched.h> 13 #include <linux/kernel.h> 14 #include <linux/mm.h> 15 #include <linux/bitops.h> 16 #include <linux/vmalloc.h> 17 #include <linux/init.h> 18 #include <linux/pagemap.h> 19 20 #include <asm/bugs.h> 21 #include <asm/cacheflush.h> 22 #include <asm/cachetype.h> 23 #include <asm/pgtable.h> 24 #include <asm/tlbflush.h> 25 26 #include "mm.h" 27 28 static unsigned long shared_pte_mask = L_PTE_MT_BUFFERABLE; 29 30 /* 31 * We take the easy way out of this problem - we make the 32 * PTE uncacheable. However, we leave the write buffer on. 33 * 34 * Note that the pte lock held when calling update_mmu_cache must also 35 * guard the pte (somewhere else in the same mm) that we modify here. 36 * Therefore those configurations which might call adjust_pte (those 37 * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock. 38 */ 39 static int adjust_pte(struct vm_area_struct *vma, unsigned long address) 40 { 41 pgd_t *pgd; 42 pmd_t *pmd; 43 pte_t *pte, entry; 44 int ret; 45 46 pgd = pgd_offset(vma->vm_mm, address); 47 if (pgd_none(*pgd)) 48 goto no_pgd; 49 if (pgd_bad(*pgd)) 50 goto bad_pgd; 51 52 pmd = pmd_offset(pgd, address); 53 if (pmd_none(*pmd)) 54 goto no_pmd; 55 if (pmd_bad(*pmd)) 56 goto bad_pmd; 57 58 pte = pte_offset_map(pmd, address); 59 entry = *pte; 60 61 /* 62 * If this page is present, it's actually being shared. 63 */ 64 ret = pte_present(entry); 65 66 /* 67 * If this page isn't present, or is already setup to 68 * fault (ie, is old), we can safely ignore any issues. 69 */ 70 if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) { 71 unsigned long pfn = pte_pfn(entry); 72 flush_cache_page(vma, address, pfn); 73 outer_flush_range((pfn << PAGE_SHIFT), 74 (pfn << PAGE_SHIFT) + PAGE_SIZE); 75 pte_val(entry) &= ~L_PTE_MT_MASK; 76 pte_val(entry) |= shared_pte_mask; 77 set_pte_at(vma->vm_mm, address, pte, entry); 78 flush_tlb_page(vma, address); 79 } 80 pte_unmap(pte); 81 return ret; 82 83 bad_pgd: 84 pgd_ERROR(*pgd); 85 pgd_clear(pgd); 86 no_pgd: 87 return 0; 88 89 bad_pmd: 90 pmd_ERROR(*pmd); 91 pmd_clear(pmd); 92 no_pmd: 93 return 0; 94 } 95 96 static void 97 make_coherent(struct address_space *mapping, struct vm_area_struct *vma, unsigned long addr, unsigned long pfn) 98 { 99 struct mm_struct *mm = vma->vm_mm; 100 struct vm_area_struct *mpnt; 101 struct prio_tree_iter iter; 102 unsigned long offset; 103 pgoff_t pgoff; 104 int aliases = 0; 105 106 pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT); 107 108 /* 109 * If we have any shared mappings that are in the same mm 110 * space, then we need to handle them specially to maintain 111 * cache coherency. 112 */ 113 flush_dcache_mmap_lock(mapping); 114 vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) { 115 /* 116 * If this VMA is not in our MM, we can ignore it. 117 * Note that we intentionally mask out the VMA 118 * that we are fixing up. 119 */ 120 if (mpnt->vm_mm != mm || mpnt == vma) 121 continue; 122 if (!(mpnt->vm_flags & VM_MAYSHARE)) 123 continue; 124 offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT; 125 aliases += adjust_pte(mpnt, mpnt->vm_start + offset); 126 } 127 flush_dcache_mmap_unlock(mapping); 128 if (aliases) 129 adjust_pte(vma, addr); 130 else 131 flush_cache_page(vma, addr, pfn); 132 } 133 134 /* 135 * Take care of architecture specific things when placing a new PTE into 136 * a page table, or changing an existing PTE. Basically, there are two 137 * things that we need to take care of: 138 * 139 * 1. If PG_dcache_dirty is set for the page, we need to ensure 140 * that any cache entries for the kernels virtual memory 141 * range are written back to the page. 142 * 2. If we have multiple shared mappings of the same space in 143 * an object, we need to deal with the cache aliasing issues. 144 * 145 * Note that the pte lock will be held. 146 */ 147 void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, pte_t pte) 148 { 149 unsigned long pfn = pte_pfn(pte); 150 struct address_space *mapping; 151 struct page *page; 152 153 if (!pfn_valid(pfn)) 154 return; 155 156 /* 157 * The zero page is never written to, so never has any dirty 158 * cache lines, and therefore never needs to be flushed. 159 */ 160 page = pfn_to_page(pfn); 161 if (page == ZERO_PAGE(0)) 162 return; 163 164 mapping = page_mapping(page); 165 #ifndef CONFIG_SMP 166 if (test_and_clear_bit(PG_dcache_dirty, &page->flags)) 167 __flush_dcache_page(mapping, page); 168 #endif 169 if (mapping) { 170 if (cache_is_vivt()) 171 make_coherent(mapping, vma, addr, pfn); 172 else if (vma->vm_flags & VM_EXEC) 173 __flush_icache_all(); 174 } 175 } 176 177 /* 178 * Check whether the write buffer has physical address aliasing 179 * issues. If it has, we need to avoid them for the case where 180 * we have several shared mappings of the same object in user 181 * space. 182 */ 183 static int __init check_writebuffer(unsigned long *p1, unsigned long *p2) 184 { 185 register unsigned long zero = 0, one = 1, val; 186 187 local_irq_disable(); 188 mb(); 189 *p1 = one; 190 mb(); 191 *p2 = zero; 192 mb(); 193 val = *p1; 194 mb(); 195 local_irq_enable(); 196 return val != zero; 197 } 198 199 void __init check_writebuffer_bugs(void) 200 { 201 struct page *page; 202 const char *reason; 203 unsigned long v = 1; 204 205 printk(KERN_INFO "CPU: Testing write buffer coherency: "); 206 207 page = alloc_page(GFP_KERNEL); 208 if (page) { 209 unsigned long *p1, *p2; 210 pgprot_t prot = __pgprot_modify(PAGE_KERNEL, 211 L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE); 212 213 p1 = vmap(&page, 1, VM_IOREMAP, prot); 214 p2 = vmap(&page, 1, VM_IOREMAP, prot); 215 216 if (p1 && p2) { 217 v = check_writebuffer(p1, p2); 218 reason = "enabling work-around"; 219 } else { 220 reason = "unable to map memory\n"; 221 } 222 223 vunmap(p1); 224 vunmap(p2); 225 put_page(page); 226 } else { 227 reason = "unable to grab page\n"; 228 } 229 230 if (v) { 231 printk("failed, %s\n", reason); 232 shared_pte_mask = L_PTE_MT_UNCACHED; 233 } else { 234 printk("ok\n"); 235 } 236 } 237