xref: /openbmc/linux/arch/arm/mm/fault-armv.c (revision 7dd65feb)
1 /*
2  *  linux/arch/arm/mm/fault-armv.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Modifications for ARM processor (c) 1995-2002 Russell King
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/bitops.h>
16 #include <linux/vmalloc.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 
20 #include <asm/bugs.h>
21 #include <asm/cacheflush.h>
22 #include <asm/cachetype.h>
23 #include <asm/pgtable.h>
24 #include <asm/tlbflush.h>
25 
26 #include "mm.h"
27 
28 static unsigned long shared_pte_mask = L_PTE_MT_BUFFERABLE;
29 
30 /*
31  * We take the easy way out of this problem - we make the
32  * PTE uncacheable.  However, we leave the write buffer on.
33  *
34  * Note that the pte lock held when calling update_mmu_cache must also
35  * guard the pte (somewhere else in the same mm) that we modify here.
36  * Therefore those configurations which might call adjust_pte (those
37  * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
38  */
39 static int adjust_pte(struct vm_area_struct *vma, unsigned long address)
40 {
41 	pgd_t *pgd;
42 	pmd_t *pmd;
43 	pte_t *pte, entry;
44 	int ret;
45 
46 	pgd = pgd_offset(vma->vm_mm, address);
47 	if (pgd_none(*pgd))
48 		goto no_pgd;
49 	if (pgd_bad(*pgd))
50 		goto bad_pgd;
51 
52 	pmd = pmd_offset(pgd, address);
53 	if (pmd_none(*pmd))
54 		goto no_pmd;
55 	if (pmd_bad(*pmd))
56 		goto bad_pmd;
57 
58 	pte = pte_offset_map(pmd, address);
59 	entry = *pte;
60 
61 	/*
62 	 * If this page is present, it's actually being shared.
63 	 */
64 	ret = pte_present(entry);
65 
66 	/*
67 	 * If this page isn't present, or is already setup to
68 	 * fault (ie, is old), we can safely ignore any issues.
69 	 */
70 	if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) {
71 		unsigned long pfn = pte_pfn(entry);
72 		flush_cache_page(vma, address, pfn);
73 		outer_flush_range((pfn << PAGE_SHIFT),
74 				  (pfn << PAGE_SHIFT) + PAGE_SIZE);
75 		pte_val(entry) &= ~L_PTE_MT_MASK;
76 		pte_val(entry) |= shared_pte_mask;
77 		set_pte_at(vma->vm_mm, address, pte, entry);
78 		flush_tlb_page(vma, address);
79 	}
80 	pte_unmap(pte);
81 	return ret;
82 
83 bad_pgd:
84 	pgd_ERROR(*pgd);
85 	pgd_clear(pgd);
86 no_pgd:
87 	return 0;
88 
89 bad_pmd:
90 	pmd_ERROR(*pmd);
91 	pmd_clear(pmd);
92 no_pmd:
93 	return 0;
94 }
95 
96 static void
97 make_coherent(struct address_space *mapping, struct vm_area_struct *vma, unsigned long addr, unsigned long pfn)
98 {
99 	struct mm_struct *mm = vma->vm_mm;
100 	struct vm_area_struct *mpnt;
101 	struct prio_tree_iter iter;
102 	unsigned long offset;
103 	pgoff_t pgoff;
104 	int aliases = 0;
105 
106 	pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
107 
108 	/*
109 	 * If we have any shared mappings that are in the same mm
110 	 * space, then we need to handle them specially to maintain
111 	 * cache coherency.
112 	 */
113 	flush_dcache_mmap_lock(mapping);
114 	vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) {
115 		/*
116 		 * If this VMA is not in our MM, we can ignore it.
117 		 * Note that we intentionally mask out the VMA
118 		 * that we are fixing up.
119 		 */
120 		if (mpnt->vm_mm != mm || mpnt == vma)
121 			continue;
122 		if (!(mpnt->vm_flags & VM_MAYSHARE))
123 			continue;
124 		offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
125 		aliases += adjust_pte(mpnt, mpnt->vm_start + offset);
126 	}
127 	flush_dcache_mmap_unlock(mapping);
128 	if (aliases)
129 		adjust_pte(vma, addr);
130 	else
131 		flush_cache_page(vma, addr, pfn);
132 }
133 
134 /*
135  * Take care of architecture specific things when placing a new PTE into
136  * a page table, or changing an existing PTE.  Basically, there are two
137  * things that we need to take care of:
138  *
139  *  1. If PG_dcache_dirty is set for the page, we need to ensure
140  *     that any cache entries for the kernels virtual memory
141  *     range are written back to the page.
142  *  2. If we have multiple shared mappings of the same space in
143  *     an object, we need to deal with the cache aliasing issues.
144  *
145  * Note that the pte lock will be held.
146  */
147 void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
148 {
149 	unsigned long pfn = pte_pfn(pte);
150 	struct address_space *mapping;
151 	struct page *page;
152 
153 	if (!pfn_valid(pfn))
154 		return;
155 
156 	/*
157 	 * The zero page is never written to, so never has any dirty
158 	 * cache lines, and therefore never needs to be flushed.
159 	 */
160 	page = pfn_to_page(pfn);
161 	if (page == ZERO_PAGE(0))
162 		return;
163 
164 	mapping = page_mapping(page);
165 #ifndef CONFIG_SMP
166 	if (test_and_clear_bit(PG_dcache_dirty, &page->flags))
167 		__flush_dcache_page(mapping, page);
168 #endif
169 	if (mapping) {
170 		if (cache_is_vivt())
171 			make_coherent(mapping, vma, addr, pfn);
172 		else if (vma->vm_flags & VM_EXEC)
173 			__flush_icache_all();
174 	}
175 }
176 
177 /*
178  * Check whether the write buffer has physical address aliasing
179  * issues.  If it has, we need to avoid them for the case where
180  * we have several shared mappings of the same object in user
181  * space.
182  */
183 static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
184 {
185 	register unsigned long zero = 0, one = 1, val;
186 
187 	local_irq_disable();
188 	mb();
189 	*p1 = one;
190 	mb();
191 	*p2 = zero;
192 	mb();
193 	val = *p1;
194 	mb();
195 	local_irq_enable();
196 	return val != zero;
197 }
198 
199 void __init check_writebuffer_bugs(void)
200 {
201 	struct page *page;
202 	const char *reason;
203 	unsigned long v = 1;
204 
205 	printk(KERN_INFO "CPU: Testing write buffer coherency: ");
206 
207 	page = alloc_page(GFP_KERNEL);
208 	if (page) {
209 		unsigned long *p1, *p2;
210 		pgprot_t prot = __pgprot_modify(PAGE_KERNEL,
211 					L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE);
212 
213 		p1 = vmap(&page, 1, VM_IOREMAP, prot);
214 		p2 = vmap(&page, 1, VM_IOREMAP, prot);
215 
216 		if (p1 && p2) {
217 			v = check_writebuffer(p1, p2);
218 			reason = "enabling work-around";
219 		} else {
220 			reason = "unable to map memory\n";
221 		}
222 
223 		vunmap(p1);
224 		vunmap(p2);
225 		put_page(page);
226 	} else {
227 		reason = "unable to grab page\n";
228 	}
229 
230 	if (v) {
231 		printk("failed, %s\n", reason);
232 		shared_pte_mask = L_PTE_MT_UNCACHED;
233 	} else {
234 		printk("ok\n");
235 	}
236 }
237