1 /* 2 * linux/arch/arm/mm/fault-armv.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Modifications for ARM processor (c) 1995-2002 Russell King 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/module.h> 12 #include <linux/sched.h> 13 #include <linux/kernel.h> 14 #include <linux/mm.h> 15 #include <linux/bitops.h> 16 #include <linux/vmalloc.h> 17 #include <linux/init.h> 18 #include <linux/pagemap.h> 19 20 #include <asm/cacheflush.h> 21 #include <asm/pgtable.h> 22 #include <asm/tlbflush.h> 23 24 static unsigned long shared_pte_mask = L_PTE_CACHEABLE; 25 26 /* 27 * We take the easy way out of this problem - we make the 28 * PTE uncacheable. However, we leave the write buffer on. 29 * 30 * Note that the pte lock held when calling update_mmu_cache must also 31 * guard the pte (somewhere else in the same mm) that we modify here. 32 * Therefore those configurations which might call adjust_pte (those 33 * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock. 34 */ 35 static int adjust_pte(struct vm_area_struct *vma, unsigned long address) 36 { 37 pgd_t *pgd; 38 pmd_t *pmd; 39 pte_t *pte, entry; 40 int ret = 0; 41 42 pgd = pgd_offset(vma->vm_mm, address); 43 if (pgd_none(*pgd)) 44 goto no_pgd; 45 if (pgd_bad(*pgd)) 46 goto bad_pgd; 47 48 pmd = pmd_offset(pgd, address); 49 if (pmd_none(*pmd)) 50 goto no_pmd; 51 if (pmd_bad(*pmd)) 52 goto bad_pmd; 53 54 pte = pte_offset_map(pmd, address); 55 entry = *pte; 56 57 /* 58 * If this page isn't present, or is already setup to 59 * fault (ie, is old), we can safely ignore any issues. 60 */ 61 if (pte_present(entry) && pte_val(entry) & shared_pte_mask) { 62 flush_cache_page(vma, address, pte_pfn(entry)); 63 pte_val(entry) &= ~shared_pte_mask; 64 set_pte_at(vma->vm_mm, address, pte, entry); 65 flush_tlb_page(vma, address); 66 ret = 1; 67 } 68 pte_unmap(pte); 69 return ret; 70 71 bad_pgd: 72 pgd_ERROR(*pgd); 73 pgd_clear(pgd); 74 no_pgd: 75 return 0; 76 77 bad_pmd: 78 pmd_ERROR(*pmd); 79 pmd_clear(pmd); 80 no_pmd: 81 return 0; 82 } 83 84 static void 85 make_coherent(struct address_space *mapping, struct vm_area_struct *vma, unsigned long addr, unsigned long pfn) 86 { 87 struct mm_struct *mm = vma->vm_mm; 88 struct vm_area_struct *mpnt; 89 struct prio_tree_iter iter; 90 unsigned long offset; 91 pgoff_t pgoff; 92 int aliases = 0; 93 94 pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT); 95 96 /* 97 * If we have any shared mappings that are in the same mm 98 * space, then we need to handle them specially to maintain 99 * cache coherency. 100 */ 101 flush_dcache_mmap_lock(mapping); 102 vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) { 103 /* 104 * If this VMA is not in our MM, we can ignore it. 105 * Note that we intentionally mask out the VMA 106 * that we are fixing up. 107 */ 108 if (mpnt->vm_mm != mm || mpnt == vma) 109 continue; 110 if (!(mpnt->vm_flags & VM_MAYSHARE)) 111 continue; 112 offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT; 113 aliases += adjust_pte(mpnt, mpnt->vm_start + offset); 114 } 115 flush_dcache_mmap_unlock(mapping); 116 if (aliases) 117 adjust_pte(vma, addr); 118 else 119 flush_cache_page(vma, addr, pfn); 120 } 121 122 /* 123 * Take care of architecture specific things when placing a new PTE into 124 * a page table, or changing an existing PTE. Basically, there are two 125 * things that we need to take care of: 126 * 127 * 1. If PG_dcache_dirty is set for the page, we need to ensure 128 * that any cache entries for the kernels virtual memory 129 * range are written back to the page. 130 * 2. If we have multiple shared mappings of the same space in 131 * an object, we need to deal with the cache aliasing issues. 132 * 133 * Note that the pte lock will be held. 134 */ 135 void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, pte_t pte) 136 { 137 unsigned long pfn = pte_pfn(pte); 138 struct address_space *mapping; 139 struct page *page; 140 141 if (!pfn_valid(pfn)) 142 return; 143 144 page = pfn_to_page(pfn); 145 mapping = page_mapping(page); 146 if (mapping) { 147 int dirty = test_and_clear_bit(PG_dcache_dirty, &page->flags); 148 149 if (dirty) 150 __flush_dcache_page(mapping, page); 151 152 if (cache_is_vivt()) 153 make_coherent(mapping, vma, addr, pfn); 154 } 155 } 156 157 /* 158 * Check whether the write buffer has physical address aliasing 159 * issues. If it has, we need to avoid them for the case where 160 * we have several shared mappings of the same object in user 161 * space. 162 */ 163 static int __init check_writebuffer(unsigned long *p1, unsigned long *p2) 164 { 165 register unsigned long zero = 0, one = 1, val; 166 167 local_irq_disable(); 168 mb(); 169 *p1 = one; 170 mb(); 171 *p2 = zero; 172 mb(); 173 val = *p1; 174 mb(); 175 local_irq_enable(); 176 return val != zero; 177 } 178 179 void __init check_writebuffer_bugs(void) 180 { 181 struct page *page; 182 const char *reason; 183 unsigned long v = 1; 184 185 printk(KERN_INFO "CPU: Testing write buffer coherency: "); 186 187 page = alloc_page(GFP_KERNEL); 188 if (page) { 189 unsigned long *p1, *p2; 190 pgprot_t prot = __pgprot(L_PTE_PRESENT|L_PTE_YOUNG| 191 L_PTE_DIRTY|L_PTE_WRITE| 192 L_PTE_BUFFERABLE); 193 194 p1 = vmap(&page, 1, VM_IOREMAP, prot); 195 p2 = vmap(&page, 1, VM_IOREMAP, prot); 196 197 if (p1 && p2) { 198 v = check_writebuffer(p1, p2); 199 reason = "enabling work-around"; 200 } else { 201 reason = "unable to map memory\n"; 202 } 203 204 vunmap(p1); 205 vunmap(p2); 206 put_page(page); 207 } else { 208 reason = "unable to grab page\n"; 209 } 210 211 if (v) { 212 printk("failed, %s\n", reason); 213 shared_pte_mask |= L_PTE_BUFFERABLE; 214 } else { 215 printk("ok\n"); 216 } 217 } 218