xref: /openbmc/linux/arch/arm/mm/fault-armv.c (revision 64c70b1c)
1 /*
2  *  linux/arch/arm/mm/fault-armv.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Modifications for ARM processor (c) 1995-2002 Russell King
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/bitops.h>
16 #include <linux/vmalloc.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 
20 #include <asm/cacheflush.h>
21 #include <asm/pgtable.h>
22 #include <asm/tlbflush.h>
23 
24 static unsigned long shared_pte_mask = L_PTE_CACHEABLE;
25 
26 /*
27  * We take the easy way out of this problem - we make the
28  * PTE uncacheable.  However, we leave the write buffer on.
29  *
30  * Note that the pte lock held when calling update_mmu_cache must also
31  * guard the pte (somewhere else in the same mm) that we modify here.
32  * Therefore those configurations which might call adjust_pte (those
33  * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
34  */
35 static int adjust_pte(struct vm_area_struct *vma, unsigned long address)
36 {
37 	pgd_t *pgd;
38 	pmd_t *pmd;
39 	pte_t *pte, entry;
40 	int ret = 0;
41 
42 	pgd = pgd_offset(vma->vm_mm, address);
43 	if (pgd_none(*pgd))
44 		goto no_pgd;
45 	if (pgd_bad(*pgd))
46 		goto bad_pgd;
47 
48 	pmd = pmd_offset(pgd, address);
49 	if (pmd_none(*pmd))
50 		goto no_pmd;
51 	if (pmd_bad(*pmd))
52 		goto bad_pmd;
53 
54 	pte = pte_offset_map(pmd, address);
55 	entry = *pte;
56 
57 	/*
58 	 * If this page isn't present, or is already setup to
59 	 * fault (ie, is old), we can safely ignore any issues.
60 	 */
61 	if (pte_present(entry) && pte_val(entry) & shared_pte_mask) {
62 		flush_cache_page(vma, address, pte_pfn(entry));
63 		pte_val(entry) &= ~shared_pte_mask;
64 		set_pte_at(vma->vm_mm, address, pte, entry);
65 		flush_tlb_page(vma, address);
66 		ret = 1;
67 	}
68 	pte_unmap(pte);
69 	return ret;
70 
71 bad_pgd:
72 	pgd_ERROR(*pgd);
73 	pgd_clear(pgd);
74 no_pgd:
75 	return 0;
76 
77 bad_pmd:
78 	pmd_ERROR(*pmd);
79 	pmd_clear(pmd);
80 no_pmd:
81 	return 0;
82 }
83 
84 static void
85 make_coherent(struct address_space *mapping, struct vm_area_struct *vma, unsigned long addr, unsigned long pfn)
86 {
87 	struct mm_struct *mm = vma->vm_mm;
88 	struct vm_area_struct *mpnt;
89 	struct prio_tree_iter iter;
90 	unsigned long offset;
91 	pgoff_t pgoff;
92 	int aliases = 0;
93 
94 	pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
95 
96 	/*
97 	 * If we have any shared mappings that are in the same mm
98 	 * space, then we need to handle them specially to maintain
99 	 * cache coherency.
100 	 */
101 	flush_dcache_mmap_lock(mapping);
102 	vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) {
103 		/*
104 		 * If this VMA is not in our MM, we can ignore it.
105 		 * Note that we intentionally mask out the VMA
106 		 * that we are fixing up.
107 		 */
108 		if (mpnt->vm_mm != mm || mpnt == vma)
109 			continue;
110 		if (!(mpnt->vm_flags & VM_MAYSHARE))
111 			continue;
112 		offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
113 		aliases += adjust_pte(mpnt, mpnt->vm_start + offset);
114 	}
115 	flush_dcache_mmap_unlock(mapping);
116 	if (aliases)
117 		adjust_pte(vma, addr);
118 	else
119 		flush_cache_page(vma, addr, pfn);
120 }
121 
122 /*
123  * Take care of architecture specific things when placing a new PTE into
124  * a page table, or changing an existing PTE.  Basically, there are two
125  * things that we need to take care of:
126  *
127  *  1. If PG_dcache_dirty is set for the page, we need to ensure
128  *     that any cache entries for the kernels virtual memory
129  *     range are written back to the page.
130  *  2. If we have multiple shared mappings of the same space in
131  *     an object, we need to deal with the cache aliasing issues.
132  *
133  * Note that the pte lock will be held.
134  */
135 void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
136 {
137 	unsigned long pfn = pte_pfn(pte);
138 	struct address_space *mapping;
139 	struct page *page;
140 
141 	if (!pfn_valid(pfn))
142 		return;
143 
144 	page = pfn_to_page(pfn);
145 	mapping = page_mapping(page);
146 	if (mapping) {
147 		int dirty = test_and_clear_bit(PG_dcache_dirty, &page->flags);
148 
149 		if (dirty)
150 			__flush_dcache_page(mapping, page);
151 
152 		if (cache_is_vivt())
153 			make_coherent(mapping, vma, addr, pfn);
154 	}
155 }
156 
157 /*
158  * Check whether the write buffer has physical address aliasing
159  * issues.  If it has, we need to avoid them for the case where
160  * we have several shared mappings of the same object in user
161  * space.
162  */
163 static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
164 {
165 	register unsigned long zero = 0, one = 1, val;
166 
167 	local_irq_disable();
168 	mb();
169 	*p1 = one;
170 	mb();
171 	*p2 = zero;
172 	mb();
173 	val = *p1;
174 	mb();
175 	local_irq_enable();
176 	return val != zero;
177 }
178 
179 void __init check_writebuffer_bugs(void)
180 {
181 	struct page *page;
182 	const char *reason;
183 	unsigned long v = 1;
184 
185 	printk(KERN_INFO "CPU: Testing write buffer coherency: ");
186 
187 	page = alloc_page(GFP_KERNEL);
188 	if (page) {
189 		unsigned long *p1, *p2;
190 		pgprot_t prot = __pgprot(L_PTE_PRESENT|L_PTE_YOUNG|
191 					 L_PTE_DIRTY|L_PTE_WRITE|
192 					 L_PTE_BUFFERABLE);
193 
194 		p1 = vmap(&page, 1, VM_IOREMAP, prot);
195 		p2 = vmap(&page, 1, VM_IOREMAP, prot);
196 
197 		if (p1 && p2) {
198 			v = check_writebuffer(p1, p2);
199 			reason = "enabling work-around";
200 		} else {
201 			reason = "unable to map memory\n";
202 		}
203 
204 		vunmap(p1);
205 		vunmap(p2);
206 		put_page(page);
207 	} else {
208 		reason = "unable to grab page\n";
209 	}
210 
211 	if (v) {
212 		printk("failed, %s\n", reason);
213 		shared_pte_mask |= L_PTE_BUFFERABLE;
214 	} else {
215 		printk("ok\n");
216 	}
217 }
218