xref: /openbmc/linux/arch/arm/mm/fault-armv.c (revision 63dc02bd)
1 /*
2  *  linux/arch/arm/mm/fault-armv.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Modifications for ARM processor (c) 1995-2002 Russell King
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/sched.h>
12 #include <linux/kernel.h>
13 #include <linux/mm.h>
14 #include <linux/bitops.h>
15 #include <linux/vmalloc.h>
16 #include <linux/init.h>
17 #include <linux/pagemap.h>
18 #include <linux/gfp.h>
19 
20 #include <asm/bugs.h>
21 #include <asm/cacheflush.h>
22 #include <asm/cachetype.h>
23 #include <asm/pgtable.h>
24 #include <asm/tlbflush.h>
25 
26 #include "mm.h"
27 
28 static pteval_t shared_pte_mask = L_PTE_MT_BUFFERABLE;
29 
30 #if __LINUX_ARM_ARCH__ < 6
31 /*
32  * We take the easy way out of this problem - we make the
33  * PTE uncacheable.  However, we leave the write buffer on.
34  *
35  * Note that the pte lock held when calling update_mmu_cache must also
36  * guard the pte (somewhere else in the same mm) that we modify here.
37  * Therefore those configurations which might call adjust_pte (those
38  * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
39  */
40 static int do_adjust_pte(struct vm_area_struct *vma, unsigned long address,
41 	unsigned long pfn, pte_t *ptep)
42 {
43 	pte_t entry = *ptep;
44 	int ret;
45 
46 	/*
47 	 * If this page is present, it's actually being shared.
48 	 */
49 	ret = pte_present(entry);
50 
51 	/*
52 	 * If this page isn't present, or is already setup to
53 	 * fault (ie, is old), we can safely ignore any issues.
54 	 */
55 	if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) {
56 		flush_cache_page(vma, address, pfn);
57 		outer_flush_range((pfn << PAGE_SHIFT),
58 				  (pfn << PAGE_SHIFT) + PAGE_SIZE);
59 		pte_val(entry) &= ~L_PTE_MT_MASK;
60 		pte_val(entry) |= shared_pte_mask;
61 		set_pte_at(vma->vm_mm, address, ptep, entry);
62 		flush_tlb_page(vma, address);
63 	}
64 
65 	return ret;
66 }
67 
68 #if USE_SPLIT_PTLOCKS
69 /*
70  * If we are using split PTE locks, then we need to take the page
71  * lock here.  Otherwise we are using shared mm->page_table_lock
72  * which is already locked, thus cannot take it.
73  */
74 static inline void do_pte_lock(spinlock_t *ptl)
75 {
76 	/*
77 	 * Use nested version here to indicate that we are already
78 	 * holding one similar spinlock.
79 	 */
80 	spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
81 }
82 
83 static inline void do_pte_unlock(spinlock_t *ptl)
84 {
85 	spin_unlock(ptl);
86 }
87 #else /* !USE_SPLIT_PTLOCKS */
88 static inline void do_pte_lock(spinlock_t *ptl) {}
89 static inline void do_pte_unlock(spinlock_t *ptl) {}
90 #endif /* USE_SPLIT_PTLOCKS */
91 
92 static int adjust_pte(struct vm_area_struct *vma, unsigned long address,
93 	unsigned long pfn)
94 {
95 	spinlock_t *ptl;
96 	pgd_t *pgd;
97 	pud_t *pud;
98 	pmd_t *pmd;
99 	pte_t *pte;
100 	int ret;
101 
102 	pgd = pgd_offset(vma->vm_mm, address);
103 	if (pgd_none_or_clear_bad(pgd))
104 		return 0;
105 
106 	pud = pud_offset(pgd, address);
107 	if (pud_none_or_clear_bad(pud))
108 		return 0;
109 
110 	pmd = pmd_offset(pud, address);
111 	if (pmd_none_or_clear_bad(pmd))
112 		return 0;
113 
114 	/*
115 	 * This is called while another page table is mapped, so we
116 	 * must use the nested version.  This also means we need to
117 	 * open-code the spin-locking.
118 	 */
119 	ptl = pte_lockptr(vma->vm_mm, pmd);
120 	pte = pte_offset_map(pmd, address);
121 	do_pte_lock(ptl);
122 
123 	ret = do_adjust_pte(vma, address, pfn, pte);
124 
125 	do_pte_unlock(ptl);
126 	pte_unmap(pte);
127 
128 	return ret;
129 }
130 
131 static void
132 make_coherent(struct address_space *mapping, struct vm_area_struct *vma,
133 	unsigned long addr, pte_t *ptep, unsigned long pfn)
134 {
135 	struct mm_struct *mm = vma->vm_mm;
136 	struct vm_area_struct *mpnt;
137 	struct prio_tree_iter iter;
138 	unsigned long offset;
139 	pgoff_t pgoff;
140 	int aliases = 0;
141 
142 	pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
143 
144 	/*
145 	 * If we have any shared mappings that are in the same mm
146 	 * space, then we need to handle them specially to maintain
147 	 * cache coherency.
148 	 */
149 	flush_dcache_mmap_lock(mapping);
150 	vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) {
151 		/*
152 		 * If this VMA is not in our MM, we can ignore it.
153 		 * Note that we intentionally mask out the VMA
154 		 * that we are fixing up.
155 		 */
156 		if (mpnt->vm_mm != mm || mpnt == vma)
157 			continue;
158 		if (!(mpnt->vm_flags & VM_MAYSHARE))
159 			continue;
160 		offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
161 		aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn);
162 	}
163 	flush_dcache_mmap_unlock(mapping);
164 	if (aliases)
165 		do_adjust_pte(vma, addr, pfn, ptep);
166 }
167 
168 /*
169  * Take care of architecture specific things when placing a new PTE into
170  * a page table, or changing an existing PTE.  Basically, there are two
171  * things that we need to take care of:
172  *
173  *  1. If PG_dcache_clean is not set for the page, we need to ensure
174  *     that any cache entries for the kernels virtual memory
175  *     range are written back to the page.
176  *  2. If we have multiple shared mappings of the same space in
177  *     an object, we need to deal with the cache aliasing issues.
178  *
179  * Note that the pte lock will be held.
180  */
181 void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr,
182 	pte_t *ptep)
183 {
184 	unsigned long pfn = pte_pfn(*ptep);
185 	struct address_space *mapping;
186 	struct page *page;
187 
188 	if (!pfn_valid(pfn))
189 		return;
190 
191 	/*
192 	 * The zero page is never written to, so never has any dirty
193 	 * cache lines, and therefore never needs to be flushed.
194 	 */
195 	page = pfn_to_page(pfn);
196 	if (page == ZERO_PAGE(0))
197 		return;
198 
199 	mapping = page_mapping(page);
200 	if (!test_and_set_bit(PG_dcache_clean, &page->flags))
201 		__flush_dcache_page(mapping, page);
202 	if (mapping) {
203 		if (cache_is_vivt())
204 			make_coherent(mapping, vma, addr, ptep, pfn);
205 		else if (vma->vm_flags & VM_EXEC)
206 			__flush_icache_all();
207 	}
208 }
209 #endif	/* __LINUX_ARM_ARCH__ < 6 */
210 
211 /*
212  * Check whether the write buffer has physical address aliasing
213  * issues.  If it has, we need to avoid them for the case where
214  * we have several shared mappings of the same object in user
215  * space.
216  */
217 static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
218 {
219 	register unsigned long zero = 0, one = 1, val;
220 
221 	local_irq_disable();
222 	mb();
223 	*p1 = one;
224 	mb();
225 	*p2 = zero;
226 	mb();
227 	val = *p1;
228 	mb();
229 	local_irq_enable();
230 	return val != zero;
231 }
232 
233 void __init check_writebuffer_bugs(void)
234 {
235 	struct page *page;
236 	const char *reason;
237 	unsigned long v = 1;
238 
239 	printk(KERN_INFO "CPU: Testing write buffer coherency: ");
240 
241 	page = alloc_page(GFP_KERNEL);
242 	if (page) {
243 		unsigned long *p1, *p2;
244 		pgprot_t prot = __pgprot_modify(PAGE_KERNEL,
245 					L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE);
246 
247 		p1 = vmap(&page, 1, VM_IOREMAP, prot);
248 		p2 = vmap(&page, 1, VM_IOREMAP, prot);
249 
250 		if (p1 && p2) {
251 			v = check_writebuffer(p1, p2);
252 			reason = "enabling work-around";
253 		} else {
254 			reason = "unable to map memory\n";
255 		}
256 
257 		vunmap(p1);
258 		vunmap(p2);
259 		put_page(page);
260 	} else {
261 		reason = "unable to grab page\n";
262 	}
263 
264 	if (v) {
265 		printk("failed, %s\n", reason);
266 		shared_pte_mask = L_PTE_MT_UNCACHED;
267 	} else {
268 		printk("ok\n");
269 	}
270 }
271