xref: /openbmc/linux/arch/arm/mm/fault-armv.c (revision 12eb4683)
1 /*
2  *  linux/arch/arm/mm/fault-armv.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Modifications for ARM processor (c) 1995-2002 Russell King
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/sched.h>
12 #include <linux/kernel.h>
13 #include <linux/mm.h>
14 #include <linux/bitops.h>
15 #include <linux/vmalloc.h>
16 #include <linux/init.h>
17 #include <linux/pagemap.h>
18 #include <linux/gfp.h>
19 
20 #include <asm/bugs.h>
21 #include <asm/cacheflush.h>
22 #include <asm/cachetype.h>
23 #include <asm/pgtable.h>
24 #include <asm/tlbflush.h>
25 
26 #include "mm.h"
27 
28 static pteval_t shared_pte_mask = L_PTE_MT_BUFFERABLE;
29 
30 #if __LINUX_ARM_ARCH__ < 6
31 /*
32  * We take the easy way out of this problem - we make the
33  * PTE uncacheable.  However, we leave the write buffer on.
34  *
35  * Note that the pte lock held when calling update_mmu_cache must also
36  * guard the pte (somewhere else in the same mm) that we modify here.
37  * Therefore those configurations which might call adjust_pte (those
38  * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
39  */
40 static int do_adjust_pte(struct vm_area_struct *vma, unsigned long address,
41 	unsigned long pfn, pte_t *ptep)
42 {
43 	pte_t entry = *ptep;
44 	int ret;
45 
46 	/*
47 	 * If this page is present, it's actually being shared.
48 	 */
49 	ret = pte_present(entry);
50 
51 	/*
52 	 * If this page isn't present, or is already setup to
53 	 * fault (ie, is old), we can safely ignore any issues.
54 	 */
55 	if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) {
56 		flush_cache_page(vma, address, pfn);
57 		outer_flush_range((pfn << PAGE_SHIFT),
58 				  (pfn << PAGE_SHIFT) + PAGE_SIZE);
59 		pte_val(entry) &= ~L_PTE_MT_MASK;
60 		pte_val(entry) |= shared_pte_mask;
61 		set_pte_at(vma->vm_mm, address, ptep, entry);
62 		flush_tlb_page(vma, address);
63 	}
64 
65 	return ret;
66 }
67 
68 #if USE_SPLIT_PTE_PTLOCKS
69 /*
70  * If we are using split PTE locks, then we need to take the page
71  * lock here.  Otherwise we are using shared mm->page_table_lock
72  * which is already locked, thus cannot take it.
73  */
74 static inline void do_pte_lock(spinlock_t *ptl)
75 {
76 	/*
77 	 * Use nested version here to indicate that we are already
78 	 * holding one similar spinlock.
79 	 */
80 	spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
81 }
82 
83 static inline void do_pte_unlock(spinlock_t *ptl)
84 {
85 	spin_unlock(ptl);
86 }
87 #else /* !USE_SPLIT_PTE_PTLOCKS */
88 static inline void do_pte_lock(spinlock_t *ptl) {}
89 static inline void do_pte_unlock(spinlock_t *ptl) {}
90 #endif /* USE_SPLIT_PTE_PTLOCKS */
91 
92 static int adjust_pte(struct vm_area_struct *vma, unsigned long address,
93 	unsigned long pfn)
94 {
95 	spinlock_t *ptl;
96 	pgd_t *pgd;
97 	pud_t *pud;
98 	pmd_t *pmd;
99 	pte_t *pte;
100 	int ret;
101 
102 	pgd = pgd_offset(vma->vm_mm, address);
103 	if (pgd_none_or_clear_bad(pgd))
104 		return 0;
105 
106 	pud = pud_offset(pgd, address);
107 	if (pud_none_or_clear_bad(pud))
108 		return 0;
109 
110 	pmd = pmd_offset(pud, address);
111 	if (pmd_none_or_clear_bad(pmd))
112 		return 0;
113 
114 	/*
115 	 * This is called while another page table is mapped, so we
116 	 * must use the nested version.  This also means we need to
117 	 * open-code the spin-locking.
118 	 */
119 	ptl = pte_lockptr(vma->vm_mm, pmd);
120 	pte = pte_offset_map(pmd, address);
121 	do_pte_lock(ptl);
122 
123 	ret = do_adjust_pte(vma, address, pfn, pte);
124 
125 	do_pte_unlock(ptl);
126 	pte_unmap(pte);
127 
128 	return ret;
129 }
130 
131 static void
132 make_coherent(struct address_space *mapping, struct vm_area_struct *vma,
133 	unsigned long addr, pte_t *ptep, unsigned long pfn)
134 {
135 	struct mm_struct *mm = vma->vm_mm;
136 	struct vm_area_struct *mpnt;
137 	unsigned long offset;
138 	pgoff_t pgoff;
139 	int aliases = 0;
140 
141 	pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
142 
143 	/*
144 	 * If we have any shared mappings that are in the same mm
145 	 * space, then we need to handle them specially to maintain
146 	 * cache coherency.
147 	 */
148 	flush_dcache_mmap_lock(mapping);
149 	vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) {
150 		/*
151 		 * If this VMA is not in our MM, we can ignore it.
152 		 * Note that we intentionally mask out the VMA
153 		 * that we are fixing up.
154 		 */
155 		if (mpnt->vm_mm != mm || mpnt == vma)
156 			continue;
157 		if (!(mpnt->vm_flags & VM_MAYSHARE))
158 			continue;
159 		offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
160 		aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn);
161 	}
162 	flush_dcache_mmap_unlock(mapping);
163 	if (aliases)
164 		do_adjust_pte(vma, addr, pfn, ptep);
165 }
166 
167 /*
168  * Take care of architecture specific things when placing a new PTE into
169  * a page table, or changing an existing PTE.  Basically, there are two
170  * things that we need to take care of:
171  *
172  *  1. If PG_dcache_clean is not set for the page, we need to ensure
173  *     that any cache entries for the kernels virtual memory
174  *     range are written back to the page.
175  *  2. If we have multiple shared mappings of the same space in
176  *     an object, we need to deal with the cache aliasing issues.
177  *
178  * Note that the pte lock will be held.
179  */
180 void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr,
181 	pte_t *ptep)
182 {
183 	unsigned long pfn = pte_pfn(*ptep);
184 	struct address_space *mapping;
185 	struct page *page;
186 
187 	if (!pfn_valid(pfn))
188 		return;
189 
190 	/*
191 	 * The zero page is never written to, so never has any dirty
192 	 * cache lines, and therefore never needs to be flushed.
193 	 */
194 	page = pfn_to_page(pfn);
195 	if (page == ZERO_PAGE(0))
196 		return;
197 
198 	mapping = page_mapping(page);
199 	if (!test_and_set_bit(PG_dcache_clean, &page->flags))
200 		__flush_dcache_page(mapping, page);
201 	if (mapping) {
202 		if (cache_is_vivt())
203 			make_coherent(mapping, vma, addr, ptep, pfn);
204 		else if (vma->vm_flags & VM_EXEC)
205 			__flush_icache_all();
206 	}
207 }
208 #endif	/* __LINUX_ARM_ARCH__ < 6 */
209 
210 /*
211  * Check whether the write buffer has physical address aliasing
212  * issues.  If it has, we need to avoid them for the case where
213  * we have several shared mappings of the same object in user
214  * space.
215  */
216 static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
217 {
218 	register unsigned long zero = 0, one = 1, val;
219 
220 	local_irq_disable();
221 	mb();
222 	*p1 = one;
223 	mb();
224 	*p2 = zero;
225 	mb();
226 	val = *p1;
227 	mb();
228 	local_irq_enable();
229 	return val != zero;
230 }
231 
232 void __init check_writebuffer_bugs(void)
233 {
234 	struct page *page;
235 	const char *reason;
236 	unsigned long v = 1;
237 
238 	printk(KERN_INFO "CPU: Testing write buffer coherency: ");
239 
240 	page = alloc_page(GFP_KERNEL);
241 	if (page) {
242 		unsigned long *p1, *p2;
243 		pgprot_t prot = __pgprot_modify(PAGE_KERNEL,
244 					L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE);
245 
246 		p1 = vmap(&page, 1, VM_IOREMAP, prot);
247 		p2 = vmap(&page, 1, VM_IOREMAP, prot);
248 
249 		if (p1 && p2) {
250 			v = check_writebuffer(p1, p2);
251 			reason = "enabling work-around";
252 		} else {
253 			reason = "unable to map memory\n";
254 		}
255 
256 		vunmap(p1);
257 		vunmap(p2);
258 		put_page(page);
259 	} else {
260 		reason = "unable to grab page\n";
261 	}
262 
263 	if (v) {
264 		printk("failed, %s\n", reason);
265 		shared_pte_mask = L_PTE_MT_UNCACHED;
266 	} else {
267 		printk("ok\n");
268 	}
269 }
270