xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision fea88a0c)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/highmem.h>
21 #include <linux/slab.h>
22 
23 #include <asm/memory.h>
24 #include <asm/highmem.h>
25 #include <asm/cacheflush.h>
26 #include <asm/tlbflush.h>
27 #include <asm/sizes.h>
28 #include <asm/mach/arch.h>
29 
30 #include "mm.h"
31 
32 static u64 get_coherent_dma_mask(struct device *dev)
33 {
34 	u64 mask = (u64)arm_dma_limit;
35 
36 	if (dev) {
37 		mask = dev->coherent_dma_mask;
38 
39 		/*
40 		 * Sanity check the DMA mask - it must be non-zero, and
41 		 * must be able to be satisfied by a DMA allocation.
42 		 */
43 		if (mask == 0) {
44 			dev_warn(dev, "coherent DMA mask is unset\n");
45 			return 0;
46 		}
47 
48 		if ((~mask) & (u64)arm_dma_limit) {
49 			dev_warn(dev, "coherent DMA mask %#llx is smaller "
50 				 "than system GFP_DMA mask %#llx\n",
51 				 mask, (u64)arm_dma_limit);
52 			return 0;
53 		}
54 	}
55 
56 	return mask;
57 }
58 
59 /*
60  * Allocate a DMA buffer for 'dev' of size 'size' using the
61  * specified gfp mask.  Note that 'size' must be page aligned.
62  */
63 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
64 {
65 	unsigned long order = get_order(size);
66 	struct page *page, *p, *e;
67 	void *ptr;
68 	u64 mask = get_coherent_dma_mask(dev);
69 
70 #ifdef CONFIG_DMA_API_DEBUG
71 	u64 limit = (mask + 1) & ~mask;
72 	if (limit && size >= limit) {
73 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
74 			size, mask);
75 		return NULL;
76 	}
77 #endif
78 
79 	if (!mask)
80 		return NULL;
81 
82 	if (mask < 0xffffffffULL)
83 		gfp |= GFP_DMA;
84 
85 	page = alloc_pages(gfp, order);
86 	if (!page)
87 		return NULL;
88 
89 	/*
90 	 * Now split the huge page and free the excess pages
91 	 */
92 	split_page(page, order);
93 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
94 		__free_page(p);
95 
96 	/*
97 	 * Ensure that the allocated pages are zeroed, and that any data
98 	 * lurking in the kernel direct-mapped region is invalidated.
99 	 */
100 	ptr = page_address(page);
101 	memset(ptr, 0, size);
102 	dmac_flush_range(ptr, ptr + size);
103 	outer_flush_range(__pa(ptr), __pa(ptr) + size);
104 
105 	return page;
106 }
107 
108 /*
109  * Free a DMA buffer.  'size' must be page aligned.
110  */
111 static void __dma_free_buffer(struct page *page, size_t size)
112 {
113 	struct page *e = page + (size >> PAGE_SHIFT);
114 
115 	while (page < e) {
116 		__free_page(page);
117 		page++;
118 	}
119 }
120 
121 #ifdef CONFIG_MMU
122 
123 #define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - consistent_base) >> PAGE_SHIFT)
124 #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - consistent_base) >> PMD_SHIFT)
125 
126 /*
127  * These are the page tables (2MB each) covering uncached, DMA consistent allocations
128  */
129 static pte_t **consistent_pte;
130 
131 #define DEFAULT_CONSISTENT_DMA_SIZE SZ_2M
132 
133 unsigned long consistent_base = CONSISTENT_END - DEFAULT_CONSISTENT_DMA_SIZE;
134 
135 void __init init_consistent_dma_size(unsigned long size)
136 {
137 	unsigned long base = CONSISTENT_END - ALIGN(size, SZ_2M);
138 
139 	BUG_ON(consistent_pte); /* Check we're called before DMA region init */
140 	BUG_ON(base < VMALLOC_END);
141 
142 	/* Grow region to accommodate specified size  */
143 	if (base < consistent_base)
144 		consistent_base = base;
145 }
146 
147 #include "vmregion.h"
148 
149 static struct arm_vmregion_head consistent_head = {
150 	.vm_lock	= __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
151 	.vm_list	= LIST_HEAD_INIT(consistent_head.vm_list),
152 	.vm_end		= CONSISTENT_END,
153 };
154 
155 #ifdef CONFIG_HUGETLB_PAGE
156 #error ARM Coherent DMA allocator does not (yet) support huge TLB
157 #endif
158 
159 /*
160  * Initialise the consistent memory allocation.
161  */
162 static int __init consistent_init(void)
163 {
164 	int ret = 0;
165 	pgd_t *pgd;
166 	pud_t *pud;
167 	pmd_t *pmd;
168 	pte_t *pte;
169 	int i = 0;
170 	unsigned long base = consistent_base;
171 	unsigned long num_ptes = (CONSISTENT_END - base) >> PMD_SHIFT;
172 
173 	consistent_pte = kmalloc(num_ptes * sizeof(pte_t), GFP_KERNEL);
174 	if (!consistent_pte) {
175 		pr_err("%s: no memory\n", __func__);
176 		return -ENOMEM;
177 	}
178 
179 	pr_debug("DMA memory: 0x%08lx - 0x%08lx:\n", base, CONSISTENT_END);
180 	consistent_head.vm_start = base;
181 
182 	do {
183 		pgd = pgd_offset(&init_mm, base);
184 
185 		pud = pud_alloc(&init_mm, pgd, base);
186 		if (!pud) {
187 			printk(KERN_ERR "%s: no pud tables\n", __func__);
188 			ret = -ENOMEM;
189 			break;
190 		}
191 
192 		pmd = pmd_alloc(&init_mm, pud, base);
193 		if (!pmd) {
194 			printk(KERN_ERR "%s: no pmd tables\n", __func__);
195 			ret = -ENOMEM;
196 			break;
197 		}
198 		WARN_ON(!pmd_none(*pmd));
199 
200 		pte = pte_alloc_kernel(pmd, base);
201 		if (!pte) {
202 			printk(KERN_ERR "%s: no pte tables\n", __func__);
203 			ret = -ENOMEM;
204 			break;
205 		}
206 
207 		consistent_pte[i++] = pte;
208 		base += PMD_SIZE;
209 	} while (base < CONSISTENT_END);
210 
211 	return ret;
212 }
213 
214 core_initcall(consistent_init);
215 
216 static void *
217 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
218 	const void *caller)
219 {
220 	struct arm_vmregion *c;
221 	size_t align;
222 	int bit;
223 
224 	if (!consistent_pte) {
225 		printk(KERN_ERR "%s: not initialised\n", __func__);
226 		dump_stack();
227 		return NULL;
228 	}
229 
230 	/*
231 	 * Align the virtual region allocation - maximum alignment is
232 	 * a section size, minimum is a page size.  This helps reduce
233 	 * fragmentation of the DMA space, and also prevents allocations
234 	 * smaller than a section from crossing a section boundary.
235 	 */
236 	bit = fls(size - 1);
237 	if (bit > SECTION_SHIFT)
238 		bit = SECTION_SHIFT;
239 	align = 1 << bit;
240 
241 	/*
242 	 * Allocate a virtual address in the consistent mapping region.
243 	 */
244 	c = arm_vmregion_alloc(&consistent_head, align, size,
245 			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM), caller);
246 	if (c) {
247 		pte_t *pte;
248 		int idx = CONSISTENT_PTE_INDEX(c->vm_start);
249 		u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
250 
251 		pte = consistent_pte[idx] + off;
252 		c->vm_pages = page;
253 
254 		do {
255 			BUG_ON(!pte_none(*pte));
256 
257 			set_pte_ext(pte, mk_pte(page, prot), 0);
258 			page++;
259 			pte++;
260 			off++;
261 			if (off >= PTRS_PER_PTE) {
262 				off = 0;
263 				pte = consistent_pte[++idx];
264 			}
265 		} while (size -= PAGE_SIZE);
266 
267 		dsb();
268 
269 		return (void *)c->vm_start;
270 	}
271 	return NULL;
272 }
273 
274 static void __dma_free_remap(void *cpu_addr, size_t size)
275 {
276 	struct arm_vmregion *c;
277 	unsigned long addr;
278 	pte_t *ptep;
279 	int idx;
280 	u32 off;
281 
282 	c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
283 	if (!c) {
284 		printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
285 		       __func__, cpu_addr);
286 		dump_stack();
287 		return;
288 	}
289 
290 	if ((c->vm_end - c->vm_start) != size) {
291 		printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
292 		       __func__, c->vm_end - c->vm_start, size);
293 		dump_stack();
294 		size = c->vm_end - c->vm_start;
295 	}
296 
297 	idx = CONSISTENT_PTE_INDEX(c->vm_start);
298 	off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
299 	ptep = consistent_pte[idx] + off;
300 	addr = c->vm_start;
301 	do {
302 		pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
303 
304 		ptep++;
305 		addr += PAGE_SIZE;
306 		off++;
307 		if (off >= PTRS_PER_PTE) {
308 			off = 0;
309 			ptep = consistent_pte[++idx];
310 		}
311 
312 		if (pte_none(pte) || !pte_present(pte))
313 			printk(KERN_CRIT "%s: bad page in kernel page table\n",
314 			       __func__);
315 	} while (size -= PAGE_SIZE);
316 
317 	flush_tlb_kernel_range(c->vm_start, c->vm_end);
318 
319 	arm_vmregion_free(&consistent_head, c);
320 }
321 
322 #else	/* !CONFIG_MMU */
323 
324 #define __dma_alloc_remap(page, size, gfp, prot, c)	page_address(page)
325 #define __dma_free_remap(addr, size)			do { } while (0)
326 
327 #endif	/* CONFIG_MMU */
328 
329 static void *
330 __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
331 	    pgprot_t prot, const void *caller)
332 {
333 	struct page *page;
334 	void *addr;
335 
336 	/*
337 	 * Following is a work-around (a.k.a. hack) to prevent pages
338 	 * with __GFP_COMP being passed to split_page() which cannot
339 	 * handle them.  The real problem is that this flag probably
340 	 * should be 0 on ARM as it is not supported on this
341 	 * platform; see CONFIG_HUGETLBFS.
342 	 */
343 	gfp &= ~(__GFP_COMP);
344 
345 	*handle = ~0;
346 	size = PAGE_ALIGN(size);
347 
348 	page = __dma_alloc_buffer(dev, size, gfp);
349 	if (!page)
350 		return NULL;
351 
352 	if (!arch_is_coherent())
353 		addr = __dma_alloc_remap(page, size, gfp, prot, caller);
354 	else
355 		addr = page_address(page);
356 
357 	if (addr)
358 		*handle = pfn_to_dma(dev, page_to_pfn(page));
359 	else
360 		__dma_free_buffer(page, size);
361 
362 	return addr;
363 }
364 
365 /*
366  * Allocate DMA-coherent memory space and return both the kernel remapped
367  * virtual and bus address for that space.
368  */
369 void *
370 dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
371 {
372 	void *memory;
373 
374 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
375 		return memory;
376 
377 	return __dma_alloc(dev, size, handle, gfp,
378 			   pgprot_dmacoherent(pgprot_kernel),
379 			   __builtin_return_address(0));
380 }
381 EXPORT_SYMBOL(dma_alloc_coherent);
382 
383 /*
384  * Allocate a writecombining region, in much the same way as
385  * dma_alloc_coherent above.
386  */
387 void *
388 dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
389 {
390 	return __dma_alloc(dev, size, handle, gfp,
391 			   pgprot_writecombine(pgprot_kernel),
392 			   __builtin_return_address(0));
393 }
394 EXPORT_SYMBOL(dma_alloc_writecombine);
395 
396 static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
397 		    void *cpu_addr, dma_addr_t dma_addr, size_t size)
398 {
399 	int ret = -ENXIO;
400 #ifdef CONFIG_MMU
401 	unsigned long user_size, kern_size;
402 	struct arm_vmregion *c;
403 
404 	user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
405 
406 	c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
407 	if (c) {
408 		unsigned long off = vma->vm_pgoff;
409 
410 		kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
411 
412 		if (off < kern_size &&
413 		    user_size <= (kern_size - off)) {
414 			ret = remap_pfn_range(vma, vma->vm_start,
415 					      page_to_pfn(c->vm_pages) + off,
416 					      user_size << PAGE_SHIFT,
417 					      vma->vm_page_prot);
418 		}
419 	}
420 #endif	/* CONFIG_MMU */
421 
422 	return ret;
423 }
424 
425 int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
426 		      void *cpu_addr, dma_addr_t dma_addr, size_t size)
427 {
428 	vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
429 	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
430 }
431 EXPORT_SYMBOL(dma_mmap_coherent);
432 
433 int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
434 			  void *cpu_addr, dma_addr_t dma_addr, size_t size)
435 {
436 	vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
437 	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
438 }
439 EXPORT_SYMBOL(dma_mmap_writecombine);
440 
441 /*
442  * free a page as defined by the above mapping.
443  * Must not be called with IRQs disabled.
444  */
445 void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
446 {
447 	WARN_ON(irqs_disabled());
448 
449 	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
450 		return;
451 
452 	size = PAGE_ALIGN(size);
453 
454 	if (!arch_is_coherent())
455 		__dma_free_remap(cpu_addr, size);
456 
457 	__dma_free_buffer(pfn_to_page(dma_to_pfn(dev, handle)), size);
458 }
459 EXPORT_SYMBOL(dma_free_coherent);
460 
461 /*
462  * Make an area consistent for devices.
463  * Note: Drivers should NOT use this function directly, as it will break
464  * platforms with CONFIG_DMABOUNCE.
465  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
466  */
467 void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
468 	enum dma_data_direction dir)
469 {
470 	unsigned long paddr;
471 
472 	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
473 
474 	dmac_map_area(kaddr, size, dir);
475 
476 	paddr = __pa(kaddr);
477 	if (dir == DMA_FROM_DEVICE) {
478 		outer_inv_range(paddr, paddr + size);
479 	} else {
480 		outer_clean_range(paddr, paddr + size);
481 	}
482 	/* FIXME: non-speculating: flush on bidirectional mappings? */
483 }
484 EXPORT_SYMBOL(___dma_single_cpu_to_dev);
485 
486 void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
487 	enum dma_data_direction dir)
488 {
489 	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
490 
491 	/* FIXME: non-speculating: not required */
492 	/* don't bother invalidating if DMA to device */
493 	if (dir != DMA_TO_DEVICE) {
494 		unsigned long paddr = __pa(kaddr);
495 		outer_inv_range(paddr, paddr + size);
496 	}
497 
498 	dmac_unmap_area(kaddr, size, dir);
499 }
500 EXPORT_SYMBOL(___dma_single_dev_to_cpu);
501 
502 static void dma_cache_maint_page(struct page *page, unsigned long offset,
503 	size_t size, enum dma_data_direction dir,
504 	void (*op)(const void *, size_t, int))
505 {
506 	/*
507 	 * A single sg entry may refer to multiple physically contiguous
508 	 * pages.  But we still need to process highmem pages individually.
509 	 * If highmem is not configured then the bulk of this loop gets
510 	 * optimized out.
511 	 */
512 	size_t left = size;
513 	do {
514 		size_t len = left;
515 		void *vaddr;
516 
517 		if (PageHighMem(page)) {
518 			if (len + offset > PAGE_SIZE) {
519 				if (offset >= PAGE_SIZE) {
520 					page += offset / PAGE_SIZE;
521 					offset %= PAGE_SIZE;
522 				}
523 				len = PAGE_SIZE - offset;
524 			}
525 			vaddr = kmap_high_get(page);
526 			if (vaddr) {
527 				vaddr += offset;
528 				op(vaddr, len, dir);
529 				kunmap_high(page);
530 			} else if (cache_is_vipt()) {
531 				/* unmapped pages might still be cached */
532 				vaddr = kmap_atomic(page);
533 				op(vaddr + offset, len, dir);
534 				kunmap_atomic(vaddr);
535 			}
536 		} else {
537 			vaddr = page_address(page) + offset;
538 			op(vaddr, len, dir);
539 		}
540 		offset = 0;
541 		page++;
542 		left -= len;
543 	} while (left);
544 }
545 
546 void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
547 	size_t size, enum dma_data_direction dir)
548 {
549 	unsigned long paddr;
550 
551 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
552 
553 	paddr = page_to_phys(page) + off;
554 	if (dir == DMA_FROM_DEVICE) {
555 		outer_inv_range(paddr, paddr + size);
556 	} else {
557 		outer_clean_range(paddr, paddr + size);
558 	}
559 	/* FIXME: non-speculating: flush on bidirectional mappings? */
560 }
561 EXPORT_SYMBOL(___dma_page_cpu_to_dev);
562 
563 void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
564 	size_t size, enum dma_data_direction dir)
565 {
566 	unsigned long paddr = page_to_phys(page) + off;
567 
568 	/* FIXME: non-speculating: not required */
569 	/* don't bother invalidating if DMA to device */
570 	if (dir != DMA_TO_DEVICE)
571 		outer_inv_range(paddr, paddr + size);
572 
573 	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
574 
575 	/*
576 	 * Mark the D-cache clean for this page to avoid extra flushing.
577 	 */
578 	if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
579 		set_bit(PG_dcache_clean, &page->flags);
580 }
581 EXPORT_SYMBOL(___dma_page_dev_to_cpu);
582 
583 /**
584  * dma_map_sg - map a set of SG buffers for streaming mode DMA
585  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
586  * @sg: list of buffers
587  * @nents: number of buffers to map
588  * @dir: DMA transfer direction
589  *
590  * Map a set of buffers described by scatterlist in streaming mode for DMA.
591  * This is the scatter-gather version of the dma_map_single interface.
592  * Here the scatter gather list elements are each tagged with the
593  * appropriate dma address and length.  They are obtained via
594  * sg_dma_{address,length}.
595  *
596  * Device ownership issues as mentioned for dma_map_single are the same
597  * here.
598  */
599 int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
600 		enum dma_data_direction dir)
601 {
602 	struct scatterlist *s;
603 	int i, j;
604 
605 	BUG_ON(!valid_dma_direction(dir));
606 
607 	for_each_sg(sg, s, nents, i) {
608 		s->dma_address = __dma_map_page(dev, sg_page(s), s->offset,
609 						s->length, dir);
610 		if (dma_mapping_error(dev, s->dma_address))
611 			goto bad_mapping;
612 	}
613 	debug_dma_map_sg(dev, sg, nents, nents, dir);
614 	return nents;
615 
616  bad_mapping:
617 	for_each_sg(sg, s, i, j)
618 		__dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
619 	return 0;
620 }
621 EXPORT_SYMBOL(dma_map_sg);
622 
623 /**
624  * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
625  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
626  * @sg: list of buffers
627  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
628  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
629  *
630  * Unmap a set of streaming mode DMA translations.  Again, CPU access
631  * rules concerning calls here are the same as for dma_unmap_single().
632  */
633 void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
634 		enum dma_data_direction dir)
635 {
636 	struct scatterlist *s;
637 	int i;
638 
639 	debug_dma_unmap_sg(dev, sg, nents, dir);
640 
641 	for_each_sg(sg, s, nents, i)
642 		__dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
643 }
644 EXPORT_SYMBOL(dma_unmap_sg);
645 
646 /**
647  * dma_sync_sg_for_cpu
648  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
649  * @sg: list of buffers
650  * @nents: number of buffers to map (returned from dma_map_sg)
651  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
652  */
653 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
654 			int nents, enum dma_data_direction dir)
655 {
656 	struct scatterlist *s;
657 	int i;
658 
659 	for_each_sg(sg, s, nents, i) {
660 		if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
661 					    sg_dma_len(s), dir))
662 			continue;
663 
664 		__dma_page_dev_to_cpu(sg_page(s), s->offset,
665 				      s->length, dir);
666 	}
667 
668 	debug_dma_sync_sg_for_cpu(dev, sg, nents, dir);
669 }
670 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
671 
672 /**
673  * dma_sync_sg_for_device
674  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
675  * @sg: list of buffers
676  * @nents: number of buffers to map (returned from dma_map_sg)
677  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
678  */
679 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
680 			int nents, enum dma_data_direction dir)
681 {
682 	struct scatterlist *s;
683 	int i;
684 
685 	for_each_sg(sg, s, nents, i) {
686 		if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
687 					sg_dma_len(s), dir))
688 			continue;
689 
690 		__dma_page_cpu_to_dev(sg_page(s), s->offset,
691 				      s->length, dir);
692 	}
693 
694 	debug_dma_sync_sg_for_device(dev, sg, nents, dir);
695 }
696 EXPORT_SYMBOL(dma_sync_sg_for_device);
697 
698 /*
699  * Return whether the given device DMA address mask can be supported
700  * properly.  For example, if your device can only drive the low 24-bits
701  * during bus mastering, then you would pass 0x00ffffff as the mask
702  * to this function.
703  */
704 int dma_supported(struct device *dev, u64 mask)
705 {
706 	if (mask < (u64)arm_dma_limit)
707 		return 0;
708 	return 1;
709 }
710 EXPORT_SYMBOL(dma_supported);
711 
712 int dma_set_mask(struct device *dev, u64 dma_mask)
713 {
714 	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
715 		return -EIO;
716 
717 #ifndef CONFIG_DMABOUNCE
718 	*dev->dma_mask = dma_mask;
719 #endif
720 
721 	return 0;
722 }
723 EXPORT_SYMBOL(dma_set_mask);
724 
725 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
726 
727 static int __init dma_debug_do_init(void)
728 {
729 #ifdef CONFIG_MMU
730 	arm_vmregion_create_proc("dma-mappings", &consistent_head);
731 #endif
732 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
733 	return 0;
734 }
735 fs_initcall(dma_debug_do_init);
736