1 /* 2 * linux/arch/arm/mm/dma-mapping.c 3 * 4 * Copyright (C) 2000-2004 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * DMA uncached mapping support. 11 */ 12 #include <linux/module.h> 13 #include <linux/mm.h> 14 #include <linux/gfp.h> 15 #include <linux/errno.h> 16 #include <linux/list.h> 17 #include <linux/init.h> 18 #include <linux/device.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/dma-contiguous.h> 21 #include <linux/highmem.h> 22 #include <linux/memblock.h> 23 #include <linux/slab.h> 24 #include <linux/iommu.h> 25 #include <linux/io.h> 26 #include <linux/vmalloc.h> 27 #include <linux/sizes.h> 28 29 #include <asm/memory.h> 30 #include <asm/highmem.h> 31 #include <asm/cacheflush.h> 32 #include <asm/tlbflush.h> 33 #include <asm/mach/arch.h> 34 #include <asm/dma-iommu.h> 35 #include <asm/mach/map.h> 36 #include <asm/system_info.h> 37 #include <asm/dma-contiguous.h> 38 39 #include "mm.h" 40 41 /* 42 * The DMA API is built upon the notion of "buffer ownership". A buffer 43 * is either exclusively owned by the CPU (and therefore may be accessed 44 * by it) or exclusively owned by the DMA device. These helper functions 45 * represent the transitions between these two ownership states. 46 * 47 * Note, however, that on later ARMs, this notion does not work due to 48 * speculative prefetches. We model our approach on the assumption that 49 * the CPU does do speculative prefetches, which means we clean caches 50 * before transfers and delay cache invalidation until transfer completion. 51 * 52 */ 53 static void __dma_page_cpu_to_dev(struct page *, unsigned long, 54 size_t, enum dma_data_direction); 55 static void __dma_page_dev_to_cpu(struct page *, unsigned long, 56 size_t, enum dma_data_direction); 57 58 /** 59 * arm_dma_map_page - map a portion of a page for streaming DMA 60 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 61 * @page: page that buffer resides in 62 * @offset: offset into page for start of buffer 63 * @size: size of buffer to map 64 * @dir: DMA transfer direction 65 * 66 * Ensure that any data held in the cache is appropriately discarded 67 * or written back. 68 * 69 * The device owns this memory once this call has completed. The CPU 70 * can regain ownership by calling dma_unmap_page(). 71 */ 72 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page, 73 unsigned long offset, size_t size, enum dma_data_direction dir, 74 struct dma_attrs *attrs) 75 { 76 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 77 __dma_page_cpu_to_dev(page, offset, size, dir); 78 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 79 } 80 81 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page, 82 unsigned long offset, size_t size, enum dma_data_direction dir, 83 struct dma_attrs *attrs) 84 { 85 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 86 } 87 88 /** 89 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page() 90 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 91 * @handle: DMA address of buffer 92 * @size: size of buffer (same as passed to dma_map_page) 93 * @dir: DMA transfer direction (same as passed to dma_map_page) 94 * 95 * Unmap a page streaming mode DMA translation. The handle and size 96 * must match what was provided in the previous dma_map_page() call. 97 * All other usages are undefined. 98 * 99 * After this call, reads by the CPU to the buffer are guaranteed to see 100 * whatever the device wrote there. 101 */ 102 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle, 103 size_t size, enum dma_data_direction dir, 104 struct dma_attrs *attrs) 105 { 106 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 107 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)), 108 handle & ~PAGE_MASK, size, dir); 109 } 110 111 static void arm_dma_sync_single_for_cpu(struct device *dev, 112 dma_addr_t handle, size_t size, enum dma_data_direction dir) 113 { 114 unsigned int offset = handle & (PAGE_SIZE - 1); 115 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 116 __dma_page_dev_to_cpu(page, offset, size, dir); 117 } 118 119 static void arm_dma_sync_single_for_device(struct device *dev, 120 dma_addr_t handle, size_t size, enum dma_data_direction dir) 121 { 122 unsigned int offset = handle & (PAGE_SIZE - 1); 123 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 124 __dma_page_cpu_to_dev(page, offset, size, dir); 125 } 126 127 struct dma_map_ops arm_dma_ops = { 128 .alloc = arm_dma_alloc, 129 .free = arm_dma_free, 130 .mmap = arm_dma_mmap, 131 .get_sgtable = arm_dma_get_sgtable, 132 .map_page = arm_dma_map_page, 133 .unmap_page = arm_dma_unmap_page, 134 .map_sg = arm_dma_map_sg, 135 .unmap_sg = arm_dma_unmap_sg, 136 .sync_single_for_cpu = arm_dma_sync_single_for_cpu, 137 .sync_single_for_device = arm_dma_sync_single_for_device, 138 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu, 139 .sync_sg_for_device = arm_dma_sync_sg_for_device, 140 .set_dma_mask = arm_dma_set_mask, 141 }; 142 EXPORT_SYMBOL(arm_dma_ops); 143 144 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 145 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs); 146 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 147 dma_addr_t handle, struct dma_attrs *attrs); 148 149 struct dma_map_ops arm_coherent_dma_ops = { 150 .alloc = arm_coherent_dma_alloc, 151 .free = arm_coherent_dma_free, 152 .mmap = arm_dma_mmap, 153 .get_sgtable = arm_dma_get_sgtable, 154 .map_page = arm_coherent_dma_map_page, 155 .map_sg = arm_dma_map_sg, 156 .set_dma_mask = arm_dma_set_mask, 157 }; 158 EXPORT_SYMBOL(arm_coherent_dma_ops); 159 160 static u64 get_coherent_dma_mask(struct device *dev) 161 { 162 u64 mask = (u64)arm_dma_limit; 163 164 if (dev) { 165 mask = dev->coherent_dma_mask; 166 167 /* 168 * Sanity check the DMA mask - it must be non-zero, and 169 * must be able to be satisfied by a DMA allocation. 170 */ 171 if (mask == 0) { 172 dev_warn(dev, "coherent DMA mask is unset\n"); 173 return 0; 174 } 175 176 if ((~mask) & (u64)arm_dma_limit) { 177 dev_warn(dev, "coherent DMA mask %#llx is smaller " 178 "than system GFP_DMA mask %#llx\n", 179 mask, (u64)arm_dma_limit); 180 return 0; 181 } 182 } 183 184 return mask; 185 } 186 187 static void __dma_clear_buffer(struct page *page, size_t size) 188 { 189 /* 190 * Ensure that the allocated pages are zeroed, and that any data 191 * lurking in the kernel direct-mapped region is invalidated. 192 */ 193 if (PageHighMem(page)) { 194 phys_addr_t base = __pfn_to_phys(page_to_pfn(page)); 195 phys_addr_t end = base + size; 196 while (size > 0) { 197 void *ptr = kmap_atomic(page); 198 memset(ptr, 0, PAGE_SIZE); 199 dmac_flush_range(ptr, ptr + PAGE_SIZE); 200 kunmap_atomic(ptr); 201 page++; 202 size -= PAGE_SIZE; 203 } 204 outer_flush_range(base, end); 205 } else { 206 void *ptr = page_address(page); 207 memset(ptr, 0, size); 208 dmac_flush_range(ptr, ptr + size); 209 outer_flush_range(__pa(ptr), __pa(ptr) + size); 210 } 211 } 212 213 /* 214 * Allocate a DMA buffer for 'dev' of size 'size' using the 215 * specified gfp mask. Note that 'size' must be page aligned. 216 */ 217 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp) 218 { 219 unsigned long order = get_order(size); 220 struct page *page, *p, *e; 221 222 page = alloc_pages(gfp, order); 223 if (!page) 224 return NULL; 225 226 /* 227 * Now split the huge page and free the excess pages 228 */ 229 split_page(page, order); 230 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) 231 __free_page(p); 232 233 __dma_clear_buffer(page, size); 234 235 return page; 236 } 237 238 /* 239 * Free a DMA buffer. 'size' must be page aligned. 240 */ 241 static void __dma_free_buffer(struct page *page, size_t size) 242 { 243 struct page *e = page + (size >> PAGE_SHIFT); 244 245 while (page < e) { 246 __free_page(page); 247 page++; 248 } 249 } 250 251 #ifdef CONFIG_MMU 252 #ifdef CONFIG_HUGETLB_PAGE 253 #warning ARM Coherent DMA allocator does not (yet) support huge TLB 254 #endif 255 256 static void *__alloc_from_contiguous(struct device *dev, size_t size, 257 pgprot_t prot, struct page **ret_page, 258 const void *caller); 259 260 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 261 pgprot_t prot, struct page **ret_page, 262 const void *caller); 263 264 static void * 265 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot, 266 const void *caller) 267 { 268 struct vm_struct *area; 269 unsigned long addr; 270 271 /* 272 * DMA allocation can be mapped to user space, so lets 273 * set VM_USERMAP flags too. 274 */ 275 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP, 276 caller); 277 if (!area) 278 return NULL; 279 addr = (unsigned long)area->addr; 280 area->phys_addr = __pfn_to_phys(page_to_pfn(page)); 281 282 if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) { 283 vunmap((void *)addr); 284 return NULL; 285 } 286 return (void *)addr; 287 } 288 289 static void __dma_free_remap(void *cpu_addr, size_t size) 290 { 291 unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP; 292 struct vm_struct *area = find_vm_area(cpu_addr); 293 if (!area || (area->flags & flags) != flags) { 294 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 295 return; 296 } 297 unmap_kernel_range((unsigned long)cpu_addr, size); 298 vunmap(cpu_addr); 299 } 300 301 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K 302 303 struct dma_pool { 304 size_t size; 305 spinlock_t lock; 306 unsigned long *bitmap; 307 unsigned long nr_pages; 308 void *vaddr; 309 struct page **pages; 310 }; 311 312 static struct dma_pool atomic_pool = { 313 .size = DEFAULT_DMA_COHERENT_POOL_SIZE, 314 }; 315 316 static int __init early_coherent_pool(char *p) 317 { 318 atomic_pool.size = memparse(p, &p); 319 return 0; 320 } 321 early_param("coherent_pool", early_coherent_pool); 322 323 void __init init_dma_coherent_pool_size(unsigned long size) 324 { 325 /* 326 * Catch any attempt to set the pool size too late. 327 */ 328 BUG_ON(atomic_pool.vaddr); 329 330 /* 331 * Set architecture specific coherent pool size only if 332 * it has not been changed by kernel command line parameter. 333 */ 334 if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE) 335 atomic_pool.size = size; 336 } 337 338 /* 339 * Initialise the coherent pool for atomic allocations. 340 */ 341 static int __init atomic_pool_init(void) 342 { 343 struct dma_pool *pool = &atomic_pool; 344 pgprot_t prot = pgprot_dmacoherent(pgprot_kernel); 345 gfp_t gfp = GFP_KERNEL | GFP_DMA; 346 unsigned long nr_pages = pool->size >> PAGE_SHIFT; 347 unsigned long *bitmap; 348 struct page *page; 349 struct page **pages; 350 void *ptr; 351 int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long); 352 353 bitmap = kzalloc(bitmap_size, GFP_KERNEL); 354 if (!bitmap) 355 goto no_bitmap; 356 357 pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL); 358 if (!pages) 359 goto no_pages; 360 361 if (IS_ENABLED(CONFIG_DMA_CMA)) 362 ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page, 363 atomic_pool_init); 364 else 365 ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page, 366 atomic_pool_init); 367 if (ptr) { 368 int i; 369 370 for (i = 0; i < nr_pages; i++) 371 pages[i] = page + i; 372 373 spin_lock_init(&pool->lock); 374 pool->vaddr = ptr; 375 pool->pages = pages; 376 pool->bitmap = bitmap; 377 pool->nr_pages = nr_pages; 378 pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n", 379 (unsigned)pool->size / 1024); 380 return 0; 381 } 382 383 kfree(pages); 384 no_pages: 385 kfree(bitmap); 386 no_bitmap: 387 pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n", 388 (unsigned)pool->size / 1024); 389 return -ENOMEM; 390 } 391 /* 392 * CMA is activated by core_initcall, so we must be called after it. 393 */ 394 postcore_initcall(atomic_pool_init); 395 396 struct dma_contig_early_reserve { 397 phys_addr_t base; 398 unsigned long size; 399 }; 400 401 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata; 402 403 static int dma_mmu_remap_num __initdata; 404 405 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) 406 { 407 dma_mmu_remap[dma_mmu_remap_num].base = base; 408 dma_mmu_remap[dma_mmu_remap_num].size = size; 409 dma_mmu_remap_num++; 410 } 411 412 void __init dma_contiguous_remap(void) 413 { 414 int i; 415 for (i = 0; i < dma_mmu_remap_num; i++) { 416 phys_addr_t start = dma_mmu_remap[i].base; 417 phys_addr_t end = start + dma_mmu_remap[i].size; 418 struct map_desc map; 419 unsigned long addr; 420 421 if (end > arm_lowmem_limit) 422 end = arm_lowmem_limit; 423 if (start >= end) 424 continue; 425 426 map.pfn = __phys_to_pfn(start); 427 map.virtual = __phys_to_virt(start); 428 map.length = end - start; 429 map.type = MT_MEMORY_DMA_READY; 430 431 /* 432 * Clear previous low-memory mapping 433 */ 434 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end); 435 addr += PMD_SIZE) 436 pmd_clear(pmd_off_k(addr)); 437 438 iotable_init(&map, 1); 439 } 440 } 441 442 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr, 443 void *data) 444 { 445 struct page *page = virt_to_page(addr); 446 pgprot_t prot = *(pgprot_t *)data; 447 448 set_pte_ext(pte, mk_pte(page, prot), 0); 449 return 0; 450 } 451 452 static void __dma_remap(struct page *page, size_t size, pgprot_t prot) 453 { 454 unsigned long start = (unsigned long) page_address(page); 455 unsigned end = start + size; 456 457 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot); 458 flush_tlb_kernel_range(start, end); 459 } 460 461 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 462 pgprot_t prot, struct page **ret_page, 463 const void *caller) 464 { 465 struct page *page; 466 void *ptr; 467 page = __dma_alloc_buffer(dev, size, gfp); 468 if (!page) 469 return NULL; 470 471 ptr = __dma_alloc_remap(page, size, gfp, prot, caller); 472 if (!ptr) { 473 __dma_free_buffer(page, size); 474 return NULL; 475 } 476 477 *ret_page = page; 478 return ptr; 479 } 480 481 static void *__alloc_from_pool(size_t size, struct page **ret_page) 482 { 483 struct dma_pool *pool = &atomic_pool; 484 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 485 unsigned int pageno; 486 unsigned long flags; 487 void *ptr = NULL; 488 unsigned long align_mask; 489 490 if (!pool->vaddr) { 491 WARN(1, "coherent pool not initialised!\n"); 492 return NULL; 493 } 494 495 /* 496 * Align the region allocation - allocations from pool are rather 497 * small, so align them to their order in pages, minimum is a page 498 * size. This helps reduce fragmentation of the DMA space. 499 */ 500 align_mask = (1 << get_order(size)) - 1; 501 502 spin_lock_irqsave(&pool->lock, flags); 503 pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages, 504 0, count, align_mask); 505 if (pageno < pool->nr_pages) { 506 bitmap_set(pool->bitmap, pageno, count); 507 ptr = pool->vaddr + PAGE_SIZE * pageno; 508 *ret_page = pool->pages[pageno]; 509 } else { 510 pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n" 511 "Please increase it with coherent_pool= kernel parameter!\n", 512 (unsigned)pool->size / 1024); 513 } 514 spin_unlock_irqrestore(&pool->lock, flags); 515 516 return ptr; 517 } 518 519 static bool __in_atomic_pool(void *start, size_t size) 520 { 521 struct dma_pool *pool = &atomic_pool; 522 void *end = start + size; 523 void *pool_start = pool->vaddr; 524 void *pool_end = pool->vaddr + pool->size; 525 526 if (start < pool_start || start >= pool_end) 527 return false; 528 529 if (end <= pool_end) 530 return true; 531 532 WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n", 533 start, end - 1, pool_start, pool_end - 1); 534 535 return false; 536 } 537 538 static int __free_from_pool(void *start, size_t size) 539 { 540 struct dma_pool *pool = &atomic_pool; 541 unsigned long pageno, count; 542 unsigned long flags; 543 544 if (!__in_atomic_pool(start, size)) 545 return 0; 546 547 pageno = (start - pool->vaddr) >> PAGE_SHIFT; 548 count = size >> PAGE_SHIFT; 549 550 spin_lock_irqsave(&pool->lock, flags); 551 bitmap_clear(pool->bitmap, pageno, count); 552 spin_unlock_irqrestore(&pool->lock, flags); 553 554 return 1; 555 } 556 557 static void *__alloc_from_contiguous(struct device *dev, size_t size, 558 pgprot_t prot, struct page **ret_page, 559 const void *caller) 560 { 561 unsigned long order = get_order(size); 562 size_t count = size >> PAGE_SHIFT; 563 struct page *page; 564 void *ptr; 565 566 page = dma_alloc_from_contiguous(dev, count, order); 567 if (!page) 568 return NULL; 569 570 __dma_clear_buffer(page, size); 571 572 if (PageHighMem(page)) { 573 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller); 574 if (!ptr) { 575 dma_release_from_contiguous(dev, page, count); 576 return NULL; 577 } 578 } else { 579 __dma_remap(page, size, prot); 580 ptr = page_address(page); 581 } 582 *ret_page = page; 583 return ptr; 584 } 585 586 static void __free_from_contiguous(struct device *dev, struct page *page, 587 void *cpu_addr, size_t size) 588 { 589 if (PageHighMem(page)) 590 __dma_free_remap(cpu_addr, size); 591 else 592 __dma_remap(page, size, pgprot_kernel); 593 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); 594 } 595 596 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot) 597 { 598 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ? 599 pgprot_writecombine(prot) : 600 pgprot_dmacoherent(prot); 601 return prot; 602 } 603 604 #define nommu() 0 605 606 #else /* !CONFIG_MMU */ 607 608 #define nommu() 1 609 610 #define __get_dma_pgprot(attrs, prot) __pgprot(0) 611 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL 612 #define __alloc_from_pool(size, ret_page) NULL 613 #define __alloc_from_contiguous(dev, size, prot, ret, c) NULL 614 #define __free_from_pool(cpu_addr, size) 0 615 #define __free_from_contiguous(dev, page, cpu_addr, size) do { } while (0) 616 #define __dma_free_remap(cpu_addr, size) do { } while (0) 617 618 #endif /* CONFIG_MMU */ 619 620 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp, 621 struct page **ret_page) 622 { 623 struct page *page; 624 page = __dma_alloc_buffer(dev, size, gfp); 625 if (!page) 626 return NULL; 627 628 *ret_page = page; 629 return page_address(page); 630 } 631 632 633 634 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 635 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller) 636 { 637 u64 mask = get_coherent_dma_mask(dev); 638 struct page *page = NULL; 639 void *addr; 640 641 #ifdef CONFIG_DMA_API_DEBUG 642 u64 limit = (mask + 1) & ~mask; 643 if (limit && size >= limit) { 644 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", 645 size, mask); 646 return NULL; 647 } 648 #endif 649 650 if (!mask) 651 return NULL; 652 653 if (mask < 0xffffffffULL) 654 gfp |= GFP_DMA; 655 656 /* 657 * Following is a work-around (a.k.a. hack) to prevent pages 658 * with __GFP_COMP being passed to split_page() which cannot 659 * handle them. The real problem is that this flag probably 660 * should be 0 on ARM as it is not supported on this 661 * platform; see CONFIG_HUGETLBFS. 662 */ 663 gfp &= ~(__GFP_COMP); 664 665 *handle = DMA_ERROR_CODE; 666 size = PAGE_ALIGN(size); 667 668 if (is_coherent || nommu()) 669 addr = __alloc_simple_buffer(dev, size, gfp, &page); 670 else if (!(gfp & __GFP_WAIT)) 671 addr = __alloc_from_pool(size, &page); 672 else if (!IS_ENABLED(CONFIG_DMA_CMA)) 673 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller); 674 else 675 addr = __alloc_from_contiguous(dev, size, prot, &page, caller); 676 677 if (addr) 678 *handle = pfn_to_dma(dev, page_to_pfn(page)); 679 680 return addr; 681 } 682 683 /* 684 * Allocate DMA-coherent memory space and return both the kernel remapped 685 * virtual and bus address for that space. 686 */ 687 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 688 gfp_t gfp, struct dma_attrs *attrs) 689 { 690 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel); 691 void *memory; 692 693 if (dma_alloc_from_coherent(dev, size, handle, &memory)) 694 return memory; 695 696 return __dma_alloc(dev, size, handle, gfp, prot, false, 697 __builtin_return_address(0)); 698 } 699 700 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 701 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs) 702 { 703 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel); 704 void *memory; 705 706 if (dma_alloc_from_coherent(dev, size, handle, &memory)) 707 return memory; 708 709 return __dma_alloc(dev, size, handle, gfp, prot, true, 710 __builtin_return_address(0)); 711 } 712 713 /* 714 * Create userspace mapping for the DMA-coherent memory. 715 */ 716 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 717 void *cpu_addr, dma_addr_t dma_addr, size_t size, 718 struct dma_attrs *attrs) 719 { 720 int ret = -ENXIO; 721 #ifdef CONFIG_MMU 722 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 723 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 724 unsigned long pfn = dma_to_pfn(dev, dma_addr); 725 unsigned long off = vma->vm_pgoff; 726 727 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 728 729 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) 730 return ret; 731 732 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 733 ret = remap_pfn_range(vma, vma->vm_start, 734 pfn + off, 735 vma->vm_end - vma->vm_start, 736 vma->vm_page_prot); 737 } 738 #endif /* CONFIG_MMU */ 739 740 return ret; 741 } 742 743 /* 744 * Free a buffer as defined by the above mapping. 745 */ 746 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 747 dma_addr_t handle, struct dma_attrs *attrs, 748 bool is_coherent) 749 { 750 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 751 752 if (dma_release_from_coherent(dev, get_order(size), cpu_addr)) 753 return; 754 755 size = PAGE_ALIGN(size); 756 757 if (is_coherent || nommu()) { 758 __dma_free_buffer(page, size); 759 } else if (__free_from_pool(cpu_addr, size)) { 760 return; 761 } else if (!IS_ENABLED(CONFIG_DMA_CMA)) { 762 __dma_free_remap(cpu_addr, size); 763 __dma_free_buffer(page, size); 764 } else { 765 /* 766 * Non-atomic allocations cannot be freed with IRQs disabled 767 */ 768 WARN_ON(irqs_disabled()); 769 __free_from_contiguous(dev, page, cpu_addr, size); 770 } 771 } 772 773 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 774 dma_addr_t handle, struct dma_attrs *attrs) 775 { 776 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false); 777 } 778 779 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 780 dma_addr_t handle, struct dma_attrs *attrs) 781 { 782 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true); 783 } 784 785 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 786 void *cpu_addr, dma_addr_t handle, size_t size, 787 struct dma_attrs *attrs) 788 { 789 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 790 int ret; 791 792 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 793 if (unlikely(ret)) 794 return ret; 795 796 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 797 return 0; 798 } 799 800 static void dma_cache_maint_page(struct page *page, unsigned long offset, 801 size_t size, enum dma_data_direction dir, 802 void (*op)(const void *, size_t, int)) 803 { 804 unsigned long pfn; 805 size_t left = size; 806 807 pfn = page_to_pfn(page) + offset / PAGE_SIZE; 808 offset %= PAGE_SIZE; 809 810 /* 811 * A single sg entry may refer to multiple physically contiguous 812 * pages. But we still need to process highmem pages individually. 813 * If highmem is not configured then the bulk of this loop gets 814 * optimized out. 815 */ 816 do { 817 size_t len = left; 818 void *vaddr; 819 820 page = pfn_to_page(pfn); 821 822 if (PageHighMem(page)) { 823 if (len + offset > PAGE_SIZE) 824 len = PAGE_SIZE - offset; 825 826 if (cache_is_vipt_nonaliasing()) { 827 vaddr = kmap_atomic(page); 828 op(vaddr + offset, len, dir); 829 kunmap_atomic(vaddr); 830 } else { 831 vaddr = kmap_high_get(page); 832 if (vaddr) { 833 op(vaddr + offset, len, dir); 834 kunmap_high(page); 835 } 836 } 837 } else { 838 vaddr = page_address(page) + offset; 839 op(vaddr, len, dir); 840 } 841 offset = 0; 842 pfn++; 843 left -= len; 844 } while (left); 845 } 846 847 /* 848 * Make an area consistent for devices. 849 * Note: Drivers should NOT use this function directly, as it will break 850 * platforms with CONFIG_DMABOUNCE. 851 * Use the driver DMA support - see dma-mapping.h (dma_sync_*) 852 */ 853 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off, 854 size_t size, enum dma_data_direction dir) 855 { 856 unsigned long paddr; 857 858 dma_cache_maint_page(page, off, size, dir, dmac_map_area); 859 860 paddr = page_to_phys(page) + off; 861 if (dir == DMA_FROM_DEVICE) { 862 outer_inv_range(paddr, paddr + size); 863 } else { 864 outer_clean_range(paddr, paddr + size); 865 } 866 /* FIXME: non-speculating: flush on bidirectional mappings? */ 867 } 868 869 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off, 870 size_t size, enum dma_data_direction dir) 871 { 872 unsigned long paddr = page_to_phys(page) + off; 873 874 /* FIXME: non-speculating: not required */ 875 /* don't bother invalidating if DMA to device */ 876 if (dir != DMA_TO_DEVICE) 877 outer_inv_range(paddr, paddr + size); 878 879 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); 880 881 /* 882 * Mark the D-cache clean for these pages to avoid extra flushing. 883 */ 884 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) { 885 unsigned long pfn; 886 size_t left = size; 887 888 pfn = page_to_pfn(page) + off / PAGE_SIZE; 889 off %= PAGE_SIZE; 890 if (off) { 891 pfn++; 892 left -= PAGE_SIZE - off; 893 } 894 while (left >= PAGE_SIZE) { 895 page = pfn_to_page(pfn++); 896 set_bit(PG_dcache_clean, &page->flags); 897 left -= PAGE_SIZE; 898 } 899 } 900 } 901 902 /** 903 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA 904 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 905 * @sg: list of buffers 906 * @nents: number of buffers to map 907 * @dir: DMA transfer direction 908 * 909 * Map a set of buffers described by scatterlist in streaming mode for DMA. 910 * This is the scatter-gather version of the dma_map_single interface. 911 * Here the scatter gather list elements are each tagged with the 912 * appropriate dma address and length. They are obtained via 913 * sg_dma_{address,length}. 914 * 915 * Device ownership issues as mentioned for dma_map_single are the same 916 * here. 917 */ 918 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 919 enum dma_data_direction dir, struct dma_attrs *attrs) 920 { 921 struct dma_map_ops *ops = get_dma_ops(dev); 922 struct scatterlist *s; 923 int i, j; 924 925 for_each_sg(sg, s, nents, i) { 926 #ifdef CONFIG_NEED_SG_DMA_LENGTH 927 s->dma_length = s->length; 928 #endif 929 s->dma_address = ops->map_page(dev, sg_page(s), s->offset, 930 s->length, dir, attrs); 931 if (dma_mapping_error(dev, s->dma_address)) 932 goto bad_mapping; 933 } 934 return nents; 935 936 bad_mapping: 937 for_each_sg(sg, s, i, j) 938 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 939 return 0; 940 } 941 942 /** 943 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 944 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 945 * @sg: list of buffers 946 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 947 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 948 * 949 * Unmap a set of streaming mode DMA translations. Again, CPU access 950 * rules concerning calls here are the same as for dma_unmap_single(). 951 */ 952 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 953 enum dma_data_direction dir, struct dma_attrs *attrs) 954 { 955 struct dma_map_ops *ops = get_dma_ops(dev); 956 struct scatterlist *s; 957 958 int i; 959 960 for_each_sg(sg, s, nents, i) 961 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 962 } 963 964 /** 965 * arm_dma_sync_sg_for_cpu 966 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 967 * @sg: list of buffers 968 * @nents: number of buffers to map (returned from dma_map_sg) 969 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 970 */ 971 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 972 int nents, enum dma_data_direction dir) 973 { 974 struct dma_map_ops *ops = get_dma_ops(dev); 975 struct scatterlist *s; 976 int i; 977 978 for_each_sg(sg, s, nents, i) 979 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length, 980 dir); 981 } 982 983 /** 984 * arm_dma_sync_sg_for_device 985 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 986 * @sg: list of buffers 987 * @nents: number of buffers to map (returned from dma_map_sg) 988 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 989 */ 990 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 991 int nents, enum dma_data_direction dir) 992 { 993 struct dma_map_ops *ops = get_dma_ops(dev); 994 struct scatterlist *s; 995 int i; 996 997 for_each_sg(sg, s, nents, i) 998 ops->sync_single_for_device(dev, sg_dma_address(s), s->length, 999 dir); 1000 } 1001 1002 /* 1003 * Return whether the given device DMA address mask can be supported 1004 * properly. For example, if your device can only drive the low 24-bits 1005 * during bus mastering, then you would pass 0x00ffffff as the mask 1006 * to this function. 1007 */ 1008 int dma_supported(struct device *dev, u64 mask) 1009 { 1010 if (mask < (u64)arm_dma_limit) 1011 return 0; 1012 return 1; 1013 } 1014 EXPORT_SYMBOL(dma_supported); 1015 1016 int arm_dma_set_mask(struct device *dev, u64 dma_mask) 1017 { 1018 if (!dev->dma_mask || !dma_supported(dev, dma_mask)) 1019 return -EIO; 1020 1021 *dev->dma_mask = dma_mask; 1022 1023 return 0; 1024 } 1025 1026 #define PREALLOC_DMA_DEBUG_ENTRIES 4096 1027 1028 static int __init dma_debug_do_init(void) 1029 { 1030 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); 1031 return 0; 1032 } 1033 fs_initcall(dma_debug_do_init); 1034 1035 #ifdef CONFIG_ARM_DMA_USE_IOMMU 1036 1037 /* IOMMU */ 1038 1039 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, 1040 size_t size) 1041 { 1042 unsigned int order = get_order(size); 1043 unsigned int align = 0; 1044 unsigned int count, start; 1045 unsigned long flags; 1046 1047 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT) 1048 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT; 1049 1050 count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) + 1051 (1 << mapping->order) - 1) >> mapping->order; 1052 1053 if (order > mapping->order) 1054 align = (1 << (order - mapping->order)) - 1; 1055 1056 spin_lock_irqsave(&mapping->lock, flags); 1057 start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0, 1058 count, align); 1059 if (start > mapping->bits) { 1060 spin_unlock_irqrestore(&mapping->lock, flags); 1061 return DMA_ERROR_CODE; 1062 } 1063 1064 bitmap_set(mapping->bitmap, start, count); 1065 spin_unlock_irqrestore(&mapping->lock, flags); 1066 1067 return mapping->base + (start << (mapping->order + PAGE_SHIFT)); 1068 } 1069 1070 static inline void __free_iova(struct dma_iommu_mapping *mapping, 1071 dma_addr_t addr, size_t size) 1072 { 1073 unsigned int start = (addr - mapping->base) >> 1074 (mapping->order + PAGE_SHIFT); 1075 unsigned int count = ((size >> PAGE_SHIFT) + 1076 (1 << mapping->order) - 1) >> mapping->order; 1077 unsigned long flags; 1078 1079 spin_lock_irqsave(&mapping->lock, flags); 1080 bitmap_clear(mapping->bitmap, start, count); 1081 spin_unlock_irqrestore(&mapping->lock, flags); 1082 } 1083 1084 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, 1085 gfp_t gfp, struct dma_attrs *attrs) 1086 { 1087 struct page **pages; 1088 int count = size >> PAGE_SHIFT; 1089 int array_size = count * sizeof(struct page *); 1090 int i = 0; 1091 1092 if (array_size <= PAGE_SIZE) 1093 pages = kzalloc(array_size, gfp); 1094 else 1095 pages = vzalloc(array_size); 1096 if (!pages) 1097 return NULL; 1098 1099 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) 1100 { 1101 unsigned long order = get_order(size); 1102 struct page *page; 1103 1104 page = dma_alloc_from_contiguous(dev, count, order); 1105 if (!page) 1106 goto error; 1107 1108 __dma_clear_buffer(page, size); 1109 1110 for (i = 0; i < count; i++) 1111 pages[i] = page + i; 1112 1113 return pages; 1114 } 1115 1116 /* 1117 * IOMMU can map any pages, so himem can also be used here 1118 */ 1119 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 1120 1121 while (count) { 1122 int j, order = __fls(count); 1123 1124 pages[i] = alloc_pages(gfp, order); 1125 while (!pages[i] && order) 1126 pages[i] = alloc_pages(gfp, --order); 1127 if (!pages[i]) 1128 goto error; 1129 1130 if (order) { 1131 split_page(pages[i], order); 1132 j = 1 << order; 1133 while (--j) 1134 pages[i + j] = pages[i] + j; 1135 } 1136 1137 __dma_clear_buffer(pages[i], PAGE_SIZE << order); 1138 i += 1 << order; 1139 count -= 1 << order; 1140 } 1141 1142 return pages; 1143 error: 1144 while (i--) 1145 if (pages[i]) 1146 __free_pages(pages[i], 0); 1147 if (array_size <= PAGE_SIZE) 1148 kfree(pages); 1149 else 1150 vfree(pages); 1151 return NULL; 1152 } 1153 1154 static int __iommu_free_buffer(struct device *dev, struct page **pages, 1155 size_t size, struct dma_attrs *attrs) 1156 { 1157 int count = size >> PAGE_SHIFT; 1158 int array_size = count * sizeof(struct page *); 1159 int i; 1160 1161 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) { 1162 dma_release_from_contiguous(dev, pages[0], count); 1163 } else { 1164 for (i = 0; i < count; i++) 1165 if (pages[i]) 1166 __free_pages(pages[i], 0); 1167 } 1168 1169 if (array_size <= PAGE_SIZE) 1170 kfree(pages); 1171 else 1172 vfree(pages); 1173 return 0; 1174 } 1175 1176 /* 1177 * Create a CPU mapping for a specified pages 1178 */ 1179 static void * 1180 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot, 1181 const void *caller) 1182 { 1183 unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1184 struct vm_struct *area; 1185 unsigned long p; 1186 1187 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP, 1188 caller); 1189 if (!area) 1190 return NULL; 1191 1192 area->pages = pages; 1193 area->nr_pages = nr_pages; 1194 p = (unsigned long)area->addr; 1195 1196 for (i = 0; i < nr_pages; i++) { 1197 phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i])); 1198 if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot)) 1199 goto err; 1200 p += PAGE_SIZE; 1201 } 1202 return area->addr; 1203 err: 1204 unmap_kernel_range((unsigned long)area->addr, size); 1205 vunmap(area->addr); 1206 return NULL; 1207 } 1208 1209 /* 1210 * Create a mapping in device IO address space for specified pages 1211 */ 1212 static dma_addr_t 1213 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size) 1214 { 1215 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1216 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1217 dma_addr_t dma_addr, iova; 1218 int i, ret = DMA_ERROR_CODE; 1219 1220 dma_addr = __alloc_iova(mapping, size); 1221 if (dma_addr == DMA_ERROR_CODE) 1222 return dma_addr; 1223 1224 iova = dma_addr; 1225 for (i = 0; i < count; ) { 1226 unsigned int next_pfn = page_to_pfn(pages[i]) + 1; 1227 phys_addr_t phys = page_to_phys(pages[i]); 1228 unsigned int len, j; 1229 1230 for (j = i + 1; j < count; j++, next_pfn++) 1231 if (page_to_pfn(pages[j]) != next_pfn) 1232 break; 1233 1234 len = (j - i) << PAGE_SHIFT; 1235 ret = iommu_map(mapping->domain, iova, phys, len, 1236 IOMMU_READ|IOMMU_WRITE); 1237 if (ret < 0) 1238 goto fail; 1239 iova += len; 1240 i = j; 1241 } 1242 return dma_addr; 1243 fail: 1244 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); 1245 __free_iova(mapping, dma_addr, size); 1246 return DMA_ERROR_CODE; 1247 } 1248 1249 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) 1250 { 1251 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1252 1253 /* 1254 * add optional in-page offset from iova to size and align 1255 * result to page size 1256 */ 1257 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); 1258 iova &= PAGE_MASK; 1259 1260 iommu_unmap(mapping->domain, iova, size); 1261 __free_iova(mapping, iova, size); 1262 return 0; 1263 } 1264 1265 static struct page **__atomic_get_pages(void *addr) 1266 { 1267 struct dma_pool *pool = &atomic_pool; 1268 struct page **pages = pool->pages; 1269 int offs = (addr - pool->vaddr) >> PAGE_SHIFT; 1270 1271 return pages + offs; 1272 } 1273 1274 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs) 1275 { 1276 struct vm_struct *area; 1277 1278 if (__in_atomic_pool(cpu_addr, PAGE_SIZE)) 1279 return __atomic_get_pages(cpu_addr); 1280 1281 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) 1282 return cpu_addr; 1283 1284 area = find_vm_area(cpu_addr); 1285 if (area && (area->flags & VM_ARM_DMA_CONSISTENT)) 1286 return area->pages; 1287 return NULL; 1288 } 1289 1290 static void *__iommu_alloc_atomic(struct device *dev, size_t size, 1291 dma_addr_t *handle) 1292 { 1293 struct page *page; 1294 void *addr; 1295 1296 addr = __alloc_from_pool(size, &page); 1297 if (!addr) 1298 return NULL; 1299 1300 *handle = __iommu_create_mapping(dev, &page, size); 1301 if (*handle == DMA_ERROR_CODE) 1302 goto err_mapping; 1303 1304 return addr; 1305 1306 err_mapping: 1307 __free_from_pool(addr, size); 1308 return NULL; 1309 } 1310 1311 static void __iommu_free_atomic(struct device *dev, void *cpu_addr, 1312 dma_addr_t handle, size_t size) 1313 { 1314 __iommu_remove_mapping(dev, handle, size); 1315 __free_from_pool(cpu_addr, size); 1316 } 1317 1318 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, 1319 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs) 1320 { 1321 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel); 1322 struct page **pages; 1323 void *addr = NULL; 1324 1325 *handle = DMA_ERROR_CODE; 1326 size = PAGE_ALIGN(size); 1327 1328 if (gfp & GFP_ATOMIC) 1329 return __iommu_alloc_atomic(dev, size, handle); 1330 1331 /* 1332 * Following is a work-around (a.k.a. hack) to prevent pages 1333 * with __GFP_COMP being passed to split_page() which cannot 1334 * handle them. The real problem is that this flag probably 1335 * should be 0 on ARM as it is not supported on this 1336 * platform; see CONFIG_HUGETLBFS. 1337 */ 1338 gfp &= ~(__GFP_COMP); 1339 1340 pages = __iommu_alloc_buffer(dev, size, gfp, attrs); 1341 if (!pages) 1342 return NULL; 1343 1344 *handle = __iommu_create_mapping(dev, pages, size); 1345 if (*handle == DMA_ERROR_CODE) 1346 goto err_buffer; 1347 1348 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) 1349 return pages; 1350 1351 addr = __iommu_alloc_remap(pages, size, gfp, prot, 1352 __builtin_return_address(0)); 1353 if (!addr) 1354 goto err_mapping; 1355 1356 return addr; 1357 1358 err_mapping: 1359 __iommu_remove_mapping(dev, *handle, size); 1360 err_buffer: 1361 __iommu_free_buffer(dev, pages, size, attrs); 1362 return NULL; 1363 } 1364 1365 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 1366 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1367 struct dma_attrs *attrs) 1368 { 1369 unsigned long uaddr = vma->vm_start; 1370 unsigned long usize = vma->vm_end - vma->vm_start; 1371 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1372 1373 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 1374 1375 if (!pages) 1376 return -ENXIO; 1377 1378 do { 1379 int ret = vm_insert_page(vma, uaddr, *pages++); 1380 if (ret) { 1381 pr_err("Remapping memory failed: %d\n", ret); 1382 return ret; 1383 } 1384 uaddr += PAGE_SIZE; 1385 usize -= PAGE_SIZE; 1386 } while (usize > 0); 1387 1388 return 0; 1389 } 1390 1391 /* 1392 * free a page as defined by the above mapping. 1393 * Must not be called with IRQs disabled. 1394 */ 1395 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 1396 dma_addr_t handle, struct dma_attrs *attrs) 1397 { 1398 struct page **pages; 1399 size = PAGE_ALIGN(size); 1400 1401 if (__in_atomic_pool(cpu_addr, size)) { 1402 __iommu_free_atomic(dev, cpu_addr, handle, size); 1403 return; 1404 } 1405 1406 pages = __iommu_get_pages(cpu_addr, attrs); 1407 if (!pages) { 1408 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 1409 return; 1410 } 1411 1412 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) { 1413 unmap_kernel_range((unsigned long)cpu_addr, size); 1414 vunmap(cpu_addr); 1415 } 1416 1417 __iommu_remove_mapping(dev, handle, size); 1418 __iommu_free_buffer(dev, pages, size, attrs); 1419 } 1420 1421 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 1422 void *cpu_addr, dma_addr_t dma_addr, 1423 size_t size, struct dma_attrs *attrs) 1424 { 1425 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1426 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1427 1428 if (!pages) 1429 return -ENXIO; 1430 1431 return sg_alloc_table_from_pages(sgt, pages, count, 0, size, 1432 GFP_KERNEL); 1433 } 1434 1435 static int __dma_direction_to_prot(enum dma_data_direction dir) 1436 { 1437 int prot; 1438 1439 switch (dir) { 1440 case DMA_BIDIRECTIONAL: 1441 prot = IOMMU_READ | IOMMU_WRITE; 1442 break; 1443 case DMA_TO_DEVICE: 1444 prot = IOMMU_READ; 1445 break; 1446 case DMA_FROM_DEVICE: 1447 prot = IOMMU_WRITE; 1448 break; 1449 default: 1450 prot = 0; 1451 } 1452 1453 return prot; 1454 } 1455 1456 /* 1457 * Map a part of the scatter-gather list into contiguous io address space 1458 */ 1459 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg, 1460 size_t size, dma_addr_t *handle, 1461 enum dma_data_direction dir, struct dma_attrs *attrs, 1462 bool is_coherent) 1463 { 1464 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1465 dma_addr_t iova, iova_base; 1466 int ret = 0; 1467 unsigned int count; 1468 struct scatterlist *s; 1469 int prot; 1470 1471 size = PAGE_ALIGN(size); 1472 *handle = DMA_ERROR_CODE; 1473 1474 iova_base = iova = __alloc_iova(mapping, size); 1475 if (iova == DMA_ERROR_CODE) 1476 return -ENOMEM; 1477 1478 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) { 1479 phys_addr_t phys = page_to_phys(sg_page(s)); 1480 unsigned int len = PAGE_ALIGN(s->offset + s->length); 1481 1482 if (!is_coherent && 1483 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1484 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1485 1486 prot = __dma_direction_to_prot(dir); 1487 1488 ret = iommu_map(mapping->domain, iova, phys, len, prot); 1489 if (ret < 0) 1490 goto fail; 1491 count += len >> PAGE_SHIFT; 1492 iova += len; 1493 } 1494 *handle = iova_base; 1495 1496 return 0; 1497 fail: 1498 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE); 1499 __free_iova(mapping, iova_base, size); 1500 return ret; 1501 } 1502 1503 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1504 enum dma_data_direction dir, struct dma_attrs *attrs, 1505 bool is_coherent) 1506 { 1507 struct scatterlist *s = sg, *dma = sg, *start = sg; 1508 int i, count = 0; 1509 unsigned int offset = s->offset; 1510 unsigned int size = s->offset + s->length; 1511 unsigned int max = dma_get_max_seg_size(dev); 1512 1513 for (i = 1; i < nents; i++) { 1514 s = sg_next(s); 1515 1516 s->dma_address = DMA_ERROR_CODE; 1517 s->dma_length = 0; 1518 1519 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { 1520 if (__map_sg_chunk(dev, start, size, &dma->dma_address, 1521 dir, attrs, is_coherent) < 0) 1522 goto bad_mapping; 1523 1524 dma->dma_address += offset; 1525 dma->dma_length = size - offset; 1526 1527 size = offset = s->offset; 1528 start = s; 1529 dma = sg_next(dma); 1530 count += 1; 1531 } 1532 size += s->length; 1533 } 1534 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs, 1535 is_coherent) < 0) 1536 goto bad_mapping; 1537 1538 dma->dma_address += offset; 1539 dma->dma_length = size - offset; 1540 1541 return count+1; 1542 1543 bad_mapping: 1544 for_each_sg(sg, s, count, i) 1545 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); 1546 return 0; 1547 } 1548 1549 /** 1550 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1551 * @dev: valid struct device pointer 1552 * @sg: list of buffers 1553 * @nents: number of buffers to map 1554 * @dir: DMA transfer direction 1555 * 1556 * Map a set of i/o coherent buffers described by scatterlist in streaming 1557 * mode for DMA. The scatter gather list elements are merged together (if 1558 * possible) and tagged with the appropriate dma address and length. They are 1559 * obtained via sg_dma_{address,length}. 1560 */ 1561 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1562 int nents, enum dma_data_direction dir, struct dma_attrs *attrs) 1563 { 1564 return __iommu_map_sg(dev, sg, nents, dir, attrs, true); 1565 } 1566 1567 /** 1568 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1569 * @dev: valid struct device pointer 1570 * @sg: list of buffers 1571 * @nents: number of buffers to map 1572 * @dir: DMA transfer direction 1573 * 1574 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1575 * The scatter gather list elements are merged together (if possible) and 1576 * tagged with the appropriate dma address and length. They are obtained via 1577 * sg_dma_{address,length}. 1578 */ 1579 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1580 int nents, enum dma_data_direction dir, struct dma_attrs *attrs) 1581 { 1582 return __iommu_map_sg(dev, sg, nents, dir, attrs, false); 1583 } 1584 1585 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1586 int nents, enum dma_data_direction dir, struct dma_attrs *attrs, 1587 bool is_coherent) 1588 { 1589 struct scatterlist *s; 1590 int i; 1591 1592 for_each_sg(sg, s, nents, i) { 1593 if (sg_dma_len(s)) 1594 __iommu_remove_mapping(dev, sg_dma_address(s), 1595 sg_dma_len(s)); 1596 if (!is_coherent && 1597 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1598 __dma_page_dev_to_cpu(sg_page(s), s->offset, 1599 s->length, dir); 1600 } 1601 } 1602 1603 /** 1604 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1605 * @dev: valid struct device pointer 1606 * @sg: list of buffers 1607 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1608 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1609 * 1610 * Unmap a set of streaming mode DMA translations. Again, CPU access 1611 * rules concerning calls here are the same as for dma_unmap_single(). 1612 */ 1613 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1614 int nents, enum dma_data_direction dir, struct dma_attrs *attrs) 1615 { 1616 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true); 1617 } 1618 1619 /** 1620 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1621 * @dev: valid struct device pointer 1622 * @sg: list of buffers 1623 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1624 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1625 * 1626 * Unmap a set of streaming mode DMA translations. Again, CPU access 1627 * rules concerning calls here are the same as for dma_unmap_single(). 1628 */ 1629 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1630 enum dma_data_direction dir, struct dma_attrs *attrs) 1631 { 1632 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false); 1633 } 1634 1635 /** 1636 * arm_iommu_sync_sg_for_cpu 1637 * @dev: valid struct device pointer 1638 * @sg: list of buffers 1639 * @nents: number of buffers to map (returned from dma_map_sg) 1640 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1641 */ 1642 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1643 int nents, enum dma_data_direction dir) 1644 { 1645 struct scatterlist *s; 1646 int i; 1647 1648 for_each_sg(sg, s, nents, i) 1649 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); 1650 1651 } 1652 1653 /** 1654 * arm_iommu_sync_sg_for_device 1655 * @dev: valid struct device pointer 1656 * @sg: list of buffers 1657 * @nents: number of buffers to map (returned from dma_map_sg) 1658 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1659 */ 1660 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1661 int nents, enum dma_data_direction dir) 1662 { 1663 struct scatterlist *s; 1664 int i; 1665 1666 for_each_sg(sg, s, nents, i) 1667 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1668 } 1669 1670 1671 /** 1672 * arm_coherent_iommu_map_page 1673 * @dev: valid struct device pointer 1674 * @page: page that buffer resides in 1675 * @offset: offset into page for start of buffer 1676 * @size: size of buffer to map 1677 * @dir: DMA transfer direction 1678 * 1679 * Coherent IOMMU aware version of arm_dma_map_page() 1680 */ 1681 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page, 1682 unsigned long offset, size_t size, enum dma_data_direction dir, 1683 struct dma_attrs *attrs) 1684 { 1685 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1686 dma_addr_t dma_addr; 1687 int ret, prot, len = PAGE_ALIGN(size + offset); 1688 1689 dma_addr = __alloc_iova(mapping, len); 1690 if (dma_addr == DMA_ERROR_CODE) 1691 return dma_addr; 1692 1693 prot = __dma_direction_to_prot(dir); 1694 1695 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot); 1696 if (ret < 0) 1697 goto fail; 1698 1699 return dma_addr + offset; 1700 fail: 1701 __free_iova(mapping, dma_addr, len); 1702 return DMA_ERROR_CODE; 1703 } 1704 1705 /** 1706 * arm_iommu_map_page 1707 * @dev: valid struct device pointer 1708 * @page: page that buffer resides in 1709 * @offset: offset into page for start of buffer 1710 * @size: size of buffer to map 1711 * @dir: DMA transfer direction 1712 * 1713 * IOMMU aware version of arm_dma_map_page() 1714 */ 1715 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page, 1716 unsigned long offset, size_t size, enum dma_data_direction dir, 1717 struct dma_attrs *attrs) 1718 { 1719 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1720 __dma_page_cpu_to_dev(page, offset, size, dir); 1721 1722 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs); 1723 } 1724 1725 /** 1726 * arm_coherent_iommu_unmap_page 1727 * @dev: valid struct device pointer 1728 * @handle: DMA address of buffer 1729 * @size: size of buffer (same as passed to dma_map_page) 1730 * @dir: DMA transfer direction (same as passed to dma_map_page) 1731 * 1732 * Coherent IOMMU aware version of arm_dma_unmap_page() 1733 */ 1734 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1735 size_t size, enum dma_data_direction dir, 1736 struct dma_attrs *attrs) 1737 { 1738 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1739 dma_addr_t iova = handle & PAGE_MASK; 1740 int offset = handle & ~PAGE_MASK; 1741 int len = PAGE_ALIGN(size + offset); 1742 1743 if (!iova) 1744 return; 1745 1746 iommu_unmap(mapping->domain, iova, len); 1747 __free_iova(mapping, iova, len); 1748 } 1749 1750 /** 1751 * arm_iommu_unmap_page 1752 * @dev: valid struct device pointer 1753 * @handle: DMA address of buffer 1754 * @size: size of buffer (same as passed to dma_map_page) 1755 * @dir: DMA transfer direction (same as passed to dma_map_page) 1756 * 1757 * IOMMU aware version of arm_dma_unmap_page() 1758 */ 1759 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1760 size_t size, enum dma_data_direction dir, 1761 struct dma_attrs *attrs) 1762 { 1763 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1764 dma_addr_t iova = handle & PAGE_MASK; 1765 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1766 int offset = handle & ~PAGE_MASK; 1767 int len = PAGE_ALIGN(size + offset); 1768 1769 if (!iova) 1770 return; 1771 1772 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1773 __dma_page_dev_to_cpu(page, offset, size, dir); 1774 1775 iommu_unmap(mapping->domain, iova, len); 1776 __free_iova(mapping, iova, len); 1777 } 1778 1779 static void arm_iommu_sync_single_for_cpu(struct device *dev, 1780 dma_addr_t handle, size_t size, enum dma_data_direction dir) 1781 { 1782 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1783 dma_addr_t iova = handle & PAGE_MASK; 1784 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1785 unsigned int offset = handle & ~PAGE_MASK; 1786 1787 if (!iova) 1788 return; 1789 1790 __dma_page_dev_to_cpu(page, offset, size, dir); 1791 } 1792 1793 static void arm_iommu_sync_single_for_device(struct device *dev, 1794 dma_addr_t handle, size_t size, enum dma_data_direction dir) 1795 { 1796 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1797 dma_addr_t iova = handle & PAGE_MASK; 1798 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1799 unsigned int offset = handle & ~PAGE_MASK; 1800 1801 if (!iova) 1802 return; 1803 1804 __dma_page_cpu_to_dev(page, offset, size, dir); 1805 } 1806 1807 struct dma_map_ops iommu_ops = { 1808 .alloc = arm_iommu_alloc_attrs, 1809 .free = arm_iommu_free_attrs, 1810 .mmap = arm_iommu_mmap_attrs, 1811 .get_sgtable = arm_iommu_get_sgtable, 1812 1813 .map_page = arm_iommu_map_page, 1814 .unmap_page = arm_iommu_unmap_page, 1815 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu, 1816 .sync_single_for_device = arm_iommu_sync_single_for_device, 1817 1818 .map_sg = arm_iommu_map_sg, 1819 .unmap_sg = arm_iommu_unmap_sg, 1820 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu, 1821 .sync_sg_for_device = arm_iommu_sync_sg_for_device, 1822 1823 .set_dma_mask = arm_dma_set_mask, 1824 }; 1825 1826 struct dma_map_ops iommu_coherent_ops = { 1827 .alloc = arm_iommu_alloc_attrs, 1828 .free = arm_iommu_free_attrs, 1829 .mmap = arm_iommu_mmap_attrs, 1830 .get_sgtable = arm_iommu_get_sgtable, 1831 1832 .map_page = arm_coherent_iommu_map_page, 1833 .unmap_page = arm_coherent_iommu_unmap_page, 1834 1835 .map_sg = arm_coherent_iommu_map_sg, 1836 .unmap_sg = arm_coherent_iommu_unmap_sg, 1837 1838 .set_dma_mask = arm_dma_set_mask, 1839 }; 1840 1841 /** 1842 * arm_iommu_create_mapping 1843 * @bus: pointer to the bus holding the client device (for IOMMU calls) 1844 * @base: start address of the valid IO address space 1845 * @size: size of the valid IO address space 1846 * @order: accuracy of the IO addresses allocations 1847 * 1848 * Creates a mapping structure which holds information about used/unused 1849 * IO address ranges, which is required to perform memory allocation and 1850 * mapping with IOMMU aware functions. 1851 * 1852 * The client device need to be attached to the mapping with 1853 * arm_iommu_attach_device function. 1854 */ 1855 struct dma_iommu_mapping * 1856 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size, 1857 int order) 1858 { 1859 unsigned int count = size >> (PAGE_SHIFT + order); 1860 unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long); 1861 struct dma_iommu_mapping *mapping; 1862 int err = -ENOMEM; 1863 1864 if (!count) 1865 return ERR_PTR(-EINVAL); 1866 1867 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); 1868 if (!mapping) 1869 goto err; 1870 1871 mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL); 1872 if (!mapping->bitmap) 1873 goto err2; 1874 1875 mapping->base = base; 1876 mapping->bits = BITS_PER_BYTE * bitmap_size; 1877 mapping->order = order; 1878 spin_lock_init(&mapping->lock); 1879 1880 mapping->domain = iommu_domain_alloc(bus); 1881 if (!mapping->domain) 1882 goto err3; 1883 1884 kref_init(&mapping->kref); 1885 return mapping; 1886 err3: 1887 kfree(mapping->bitmap); 1888 err2: 1889 kfree(mapping); 1890 err: 1891 return ERR_PTR(err); 1892 } 1893 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping); 1894 1895 static void release_iommu_mapping(struct kref *kref) 1896 { 1897 struct dma_iommu_mapping *mapping = 1898 container_of(kref, struct dma_iommu_mapping, kref); 1899 1900 iommu_domain_free(mapping->domain); 1901 kfree(mapping->bitmap); 1902 kfree(mapping); 1903 } 1904 1905 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) 1906 { 1907 if (mapping) 1908 kref_put(&mapping->kref, release_iommu_mapping); 1909 } 1910 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping); 1911 1912 /** 1913 * arm_iommu_attach_device 1914 * @dev: valid struct device pointer 1915 * @mapping: io address space mapping structure (returned from 1916 * arm_iommu_create_mapping) 1917 * 1918 * Attaches specified io address space mapping to the provided device, 1919 * this replaces the dma operations (dma_map_ops pointer) with the 1920 * IOMMU aware version. More than one client might be attached to 1921 * the same io address space mapping. 1922 */ 1923 int arm_iommu_attach_device(struct device *dev, 1924 struct dma_iommu_mapping *mapping) 1925 { 1926 int err; 1927 1928 err = iommu_attach_device(mapping->domain, dev); 1929 if (err) 1930 return err; 1931 1932 kref_get(&mapping->kref); 1933 dev->archdata.mapping = mapping; 1934 set_dma_ops(dev, &iommu_ops); 1935 1936 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev)); 1937 return 0; 1938 } 1939 EXPORT_SYMBOL_GPL(arm_iommu_attach_device); 1940 1941 /** 1942 * arm_iommu_detach_device 1943 * @dev: valid struct device pointer 1944 * 1945 * Detaches the provided device from a previously attached map. 1946 * This voids the dma operations (dma_map_ops pointer) 1947 */ 1948 void arm_iommu_detach_device(struct device *dev) 1949 { 1950 struct dma_iommu_mapping *mapping; 1951 1952 mapping = to_dma_iommu_mapping(dev); 1953 if (!mapping) { 1954 dev_warn(dev, "Not attached\n"); 1955 return; 1956 } 1957 1958 iommu_detach_device(mapping->domain, dev); 1959 kref_put(&mapping->kref, release_iommu_mapping); 1960 dev->archdata.mapping = NULL; 1961 set_dma_ops(dev, NULL); 1962 1963 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev)); 1964 } 1965 EXPORT_SYMBOL_GPL(arm_iommu_detach_device); 1966 1967 #endif 1968