xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision ee89bd6b)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/dma-contiguous.h>
21 #include <linux/highmem.h>
22 #include <linux/memblock.h>
23 #include <linux/slab.h>
24 #include <linux/iommu.h>
25 #include <linux/io.h>
26 #include <linux/vmalloc.h>
27 #include <linux/sizes.h>
28 
29 #include <asm/memory.h>
30 #include <asm/highmem.h>
31 #include <asm/cacheflush.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mach/arch.h>
34 #include <asm/dma-iommu.h>
35 #include <asm/mach/map.h>
36 #include <asm/system_info.h>
37 #include <asm/dma-contiguous.h>
38 
39 #include "mm.h"
40 
41 /*
42  * The DMA API is built upon the notion of "buffer ownership".  A buffer
43  * is either exclusively owned by the CPU (and therefore may be accessed
44  * by it) or exclusively owned by the DMA device.  These helper functions
45  * represent the transitions between these two ownership states.
46  *
47  * Note, however, that on later ARMs, this notion does not work due to
48  * speculative prefetches.  We model our approach on the assumption that
49  * the CPU does do speculative prefetches, which means we clean caches
50  * before transfers and delay cache invalidation until transfer completion.
51  *
52  */
53 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
54 		size_t, enum dma_data_direction);
55 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
56 		size_t, enum dma_data_direction);
57 
58 /**
59  * arm_dma_map_page - map a portion of a page for streaming DMA
60  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
61  * @page: page that buffer resides in
62  * @offset: offset into page for start of buffer
63  * @size: size of buffer to map
64  * @dir: DMA transfer direction
65  *
66  * Ensure that any data held in the cache is appropriately discarded
67  * or written back.
68  *
69  * The device owns this memory once this call has completed.  The CPU
70  * can regain ownership by calling dma_unmap_page().
71  */
72 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
73 	     unsigned long offset, size_t size, enum dma_data_direction dir,
74 	     struct dma_attrs *attrs)
75 {
76 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
77 		__dma_page_cpu_to_dev(page, offset, size, dir);
78 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
79 }
80 
81 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
82 	     unsigned long offset, size_t size, enum dma_data_direction dir,
83 	     struct dma_attrs *attrs)
84 {
85 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
86 }
87 
88 /**
89  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
90  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
91  * @handle: DMA address of buffer
92  * @size: size of buffer (same as passed to dma_map_page)
93  * @dir: DMA transfer direction (same as passed to dma_map_page)
94  *
95  * Unmap a page streaming mode DMA translation.  The handle and size
96  * must match what was provided in the previous dma_map_page() call.
97  * All other usages are undefined.
98  *
99  * After this call, reads by the CPU to the buffer are guaranteed to see
100  * whatever the device wrote there.
101  */
102 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
103 		size_t size, enum dma_data_direction dir,
104 		struct dma_attrs *attrs)
105 {
106 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
107 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
108 				      handle & ~PAGE_MASK, size, dir);
109 }
110 
111 static void arm_dma_sync_single_for_cpu(struct device *dev,
112 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
113 {
114 	unsigned int offset = handle & (PAGE_SIZE - 1);
115 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
116 	__dma_page_dev_to_cpu(page, offset, size, dir);
117 }
118 
119 static void arm_dma_sync_single_for_device(struct device *dev,
120 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
121 {
122 	unsigned int offset = handle & (PAGE_SIZE - 1);
123 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
124 	__dma_page_cpu_to_dev(page, offset, size, dir);
125 }
126 
127 struct dma_map_ops arm_dma_ops = {
128 	.alloc			= arm_dma_alloc,
129 	.free			= arm_dma_free,
130 	.mmap			= arm_dma_mmap,
131 	.get_sgtable		= arm_dma_get_sgtable,
132 	.map_page		= arm_dma_map_page,
133 	.unmap_page		= arm_dma_unmap_page,
134 	.map_sg			= arm_dma_map_sg,
135 	.unmap_sg		= arm_dma_unmap_sg,
136 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
137 	.sync_single_for_device	= arm_dma_sync_single_for_device,
138 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
139 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
140 	.set_dma_mask		= arm_dma_set_mask,
141 };
142 EXPORT_SYMBOL(arm_dma_ops);
143 
144 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
145 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
146 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
147 				  dma_addr_t handle, struct dma_attrs *attrs);
148 
149 struct dma_map_ops arm_coherent_dma_ops = {
150 	.alloc			= arm_coherent_dma_alloc,
151 	.free			= arm_coherent_dma_free,
152 	.mmap			= arm_dma_mmap,
153 	.get_sgtable		= arm_dma_get_sgtable,
154 	.map_page		= arm_coherent_dma_map_page,
155 	.map_sg			= arm_dma_map_sg,
156 	.set_dma_mask		= arm_dma_set_mask,
157 };
158 EXPORT_SYMBOL(arm_coherent_dma_ops);
159 
160 static u64 get_coherent_dma_mask(struct device *dev)
161 {
162 	u64 mask = (u64)arm_dma_limit;
163 
164 	if (dev) {
165 		mask = dev->coherent_dma_mask;
166 
167 		/*
168 		 * Sanity check the DMA mask - it must be non-zero, and
169 		 * must be able to be satisfied by a DMA allocation.
170 		 */
171 		if (mask == 0) {
172 			dev_warn(dev, "coherent DMA mask is unset\n");
173 			return 0;
174 		}
175 
176 		if ((~mask) & (u64)arm_dma_limit) {
177 			dev_warn(dev, "coherent DMA mask %#llx is smaller "
178 				 "than system GFP_DMA mask %#llx\n",
179 				 mask, (u64)arm_dma_limit);
180 			return 0;
181 		}
182 	}
183 
184 	return mask;
185 }
186 
187 static void __dma_clear_buffer(struct page *page, size_t size)
188 {
189 	/*
190 	 * Ensure that the allocated pages are zeroed, and that any data
191 	 * lurking in the kernel direct-mapped region is invalidated.
192 	 */
193 	if (PageHighMem(page)) {
194 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
195 		phys_addr_t end = base + size;
196 		while (size > 0) {
197 			void *ptr = kmap_atomic(page);
198 			memset(ptr, 0, PAGE_SIZE);
199 			dmac_flush_range(ptr, ptr + PAGE_SIZE);
200 			kunmap_atomic(ptr);
201 			page++;
202 			size -= PAGE_SIZE;
203 		}
204 		outer_flush_range(base, end);
205 	} else {
206 		void *ptr = page_address(page);
207 		memset(ptr, 0, size);
208 		dmac_flush_range(ptr, ptr + size);
209 		outer_flush_range(__pa(ptr), __pa(ptr) + size);
210 	}
211 }
212 
213 /*
214  * Allocate a DMA buffer for 'dev' of size 'size' using the
215  * specified gfp mask.  Note that 'size' must be page aligned.
216  */
217 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
218 {
219 	unsigned long order = get_order(size);
220 	struct page *page, *p, *e;
221 
222 	page = alloc_pages(gfp, order);
223 	if (!page)
224 		return NULL;
225 
226 	/*
227 	 * Now split the huge page and free the excess pages
228 	 */
229 	split_page(page, order);
230 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
231 		__free_page(p);
232 
233 	__dma_clear_buffer(page, size);
234 
235 	return page;
236 }
237 
238 /*
239  * Free a DMA buffer.  'size' must be page aligned.
240  */
241 static void __dma_free_buffer(struct page *page, size_t size)
242 {
243 	struct page *e = page + (size >> PAGE_SHIFT);
244 
245 	while (page < e) {
246 		__free_page(page);
247 		page++;
248 	}
249 }
250 
251 #ifdef CONFIG_MMU
252 #ifdef CONFIG_HUGETLB_PAGE
253 #error ARM Coherent DMA allocator does not (yet) support huge TLB
254 #endif
255 
256 static void *__alloc_from_contiguous(struct device *dev, size_t size,
257 				     pgprot_t prot, struct page **ret_page,
258 				     const void *caller);
259 
260 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
261 				 pgprot_t prot, struct page **ret_page,
262 				 const void *caller);
263 
264 static void *
265 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
266 	const void *caller)
267 {
268 	struct vm_struct *area;
269 	unsigned long addr;
270 
271 	/*
272 	 * DMA allocation can be mapped to user space, so lets
273 	 * set VM_USERMAP flags too.
274 	 */
275 	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
276 				  caller);
277 	if (!area)
278 		return NULL;
279 	addr = (unsigned long)area->addr;
280 	area->phys_addr = __pfn_to_phys(page_to_pfn(page));
281 
282 	if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
283 		vunmap((void *)addr);
284 		return NULL;
285 	}
286 	return (void *)addr;
287 }
288 
289 static void __dma_free_remap(void *cpu_addr, size_t size)
290 {
291 	unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
292 	struct vm_struct *area = find_vm_area(cpu_addr);
293 	if (!area || (area->flags & flags) != flags) {
294 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
295 		return;
296 	}
297 	unmap_kernel_range((unsigned long)cpu_addr, size);
298 	vunmap(cpu_addr);
299 }
300 
301 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
302 
303 struct dma_pool {
304 	size_t size;
305 	spinlock_t lock;
306 	unsigned long *bitmap;
307 	unsigned long nr_pages;
308 	void *vaddr;
309 	struct page **pages;
310 };
311 
312 static struct dma_pool atomic_pool = {
313 	.size = DEFAULT_DMA_COHERENT_POOL_SIZE,
314 };
315 
316 static int __init early_coherent_pool(char *p)
317 {
318 	atomic_pool.size = memparse(p, &p);
319 	return 0;
320 }
321 early_param("coherent_pool", early_coherent_pool);
322 
323 void __init init_dma_coherent_pool_size(unsigned long size)
324 {
325 	/*
326 	 * Catch any attempt to set the pool size too late.
327 	 */
328 	BUG_ON(atomic_pool.vaddr);
329 
330 	/*
331 	 * Set architecture specific coherent pool size only if
332 	 * it has not been changed by kernel command line parameter.
333 	 */
334 	if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
335 		atomic_pool.size = size;
336 }
337 
338 /*
339  * Initialise the coherent pool for atomic allocations.
340  */
341 static int __init atomic_pool_init(void)
342 {
343 	struct dma_pool *pool = &atomic_pool;
344 	pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
345 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
346 	unsigned long nr_pages = pool->size >> PAGE_SHIFT;
347 	unsigned long *bitmap;
348 	struct page *page;
349 	struct page **pages;
350 	void *ptr;
351 	int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
352 
353 	bitmap = kzalloc(bitmap_size, GFP_KERNEL);
354 	if (!bitmap)
355 		goto no_bitmap;
356 
357 	pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
358 	if (!pages)
359 		goto no_pages;
360 
361 	if (IS_ENABLED(CONFIG_CMA))
362 		ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
363 					      atomic_pool_init);
364 	else
365 		ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,
366 					   atomic_pool_init);
367 	if (ptr) {
368 		int i;
369 
370 		for (i = 0; i < nr_pages; i++)
371 			pages[i] = page + i;
372 
373 		spin_lock_init(&pool->lock);
374 		pool->vaddr = ptr;
375 		pool->pages = pages;
376 		pool->bitmap = bitmap;
377 		pool->nr_pages = nr_pages;
378 		pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
379 		       (unsigned)pool->size / 1024);
380 		return 0;
381 	}
382 
383 	kfree(pages);
384 no_pages:
385 	kfree(bitmap);
386 no_bitmap:
387 	pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
388 	       (unsigned)pool->size / 1024);
389 	return -ENOMEM;
390 }
391 /*
392  * CMA is activated by core_initcall, so we must be called after it.
393  */
394 postcore_initcall(atomic_pool_init);
395 
396 struct dma_contig_early_reserve {
397 	phys_addr_t base;
398 	unsigned long size;
399 };
400 
401 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
402 
403 static int dma_mmu_remap_num __initdata;
404 
405 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
406 {
407 	dma_mmu_remap[dma_mmu_remap_num].base = base;
408 	dma_mmu_remap[dma_mmu_remap_num].size = size;
409 	dma_mmu_remap_num++;
410 }
411 
412 void __init dma_contiguous_remap(void)
413 {
414 	int i;
415 	for (i = 0; i < dma_mmu_remap_num; i++) {
416 		phys_addr_t start = dma_mmu_remap[i].base;
417 		phys_addr_t end = start + dma_mmu_remap[i].size;
418 		struct map_desc map;
419 		unsigned long addr;
420 
421 		if (end > arm_lowmem_limit)
422 			end = arm_lowmem_limit;
423 		if (start >= end)
424 			continue;
425 
426 		map.pfn = __phys_to_pfn(start);
427 		map.virtual = __phys_to_virt(start);
428 		map.length = end - start;
429 		map.type = MT_MEMORY_DMA_READY;
430 
431 		/*
432 		 * Clear previous low-memory mapping
433 		 */
434 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
435 		     addr += PMD_SIZE)
436 			pmd_clear(pmd_off_k(addr));
437 
438 		iotable_init(&map, 1);
439 	}
440 }
441 
442 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
443 			    void *data)
444 {
445 	struct page *page = virt_to_page(addr);
446 	pgprot_t prot = *(pgprot_t *)data;
447 
448 	set_pte_ext(pte, mk_pte(page, prot), 0);
449 	return 0;
450 }
451 
452 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
453 {
454 	unsigned long start = (unsigned long) page_address(page);
455 	unsigned end = start + size;
456 
457 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
458 	dsb();
459 	flush_tlb_kernel_range(start, end);
460 }
461 
462 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
463 				 pgprot_t prot, struct page **ret_page,
464 				 const void *caller)
465 {
466 	struct page *page;
467 	void *ptr;
468 	page = __dma_alloc_buffer(dev, size, gfp);
469 	if (!page)
470 		return NULL;
471 
472 	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
473 	if (!ptr) {
474 		__dma_free_buffer(page, size);
475 		return NULL;
476 	}
477 
478 	*ret_page = page;
479 	return ptr;
480 }
481 
482 static void *__alloc_from_pool(size_t size, struct page **ret_page)
483 {
484 	struct dma_pool *pool = &atomic_pool;
485 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
486 	unsigned int pageno;
487 	unsigned long flags;
488 	void *ptr = NULL;
489 	unsigned long align_mask;
490 
491 	if (!pool->vaddr) {
492 		WARN(1, "coherent pool not initialised!\n");
493 		return NULL;
494 	}
495 
496 	/*
497 	 * Align the region allocation - allocations from pool are rather
498 	 * small, so align them to their order in pages, minimum is a page
499 	 * size. This helps reduce fragmentation of the DMA space.
500 	 */
501 	align_mask = (1 << get_order(size)) - 1;
502 
503 	spin_lock_irqsave(&pool->lock, flags);
504 	pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
505 					    0, count, align_mask);
506 	if (pageno < pool->nr_pages) {
507 		bitmap_set(pool->bitmap, pageno, count);
508 		ptr = pool->vaddr + PAGE_SIZE * pageno;
509 		*ret_page = pool->pages[pageno];
510 	} else {
511 		pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
512 			    "Please increase it with coherent_pool= kernel parameter!\n",
513 			    (unsigned)pool->size / 1024);
514 	}
515 	spin_unlock_irqrestore(&pool->lock, flags);
516 
517 	return ptr;
518 }
519 
520 static bool __in_atomic_pool(void *start, size_t size)
521 {
522 	struct dma_pool *pool = &atomic_pool;
523 	void *end = start + size;
524 	void *pool_start = pool->vaddr;
525 	void *pool_end = pool->vaddr + pool->size;
526 
527 	if (start < pool_start || start >= pool_end)
528 		return false;
529 
530 	if (end <= pool_end)
531 		return true;
532 
533 	WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
534 	     start, end - 1, pool_start, pool_end - 1);
535 
536 	return false;
537 }
538 
539 static int __free_from_pool(void *start, size_t size)
540 {
541 	struct dma_pool *pool = &atomic_pool;
542 	unsigned long pageno, count;
543 	unsigned long flags;
544 
545 	if (!__in_atomic_pool(start, size))
546 		return 0;
547 
548 	pageno = (start - pool->vaddr) >> PAGE_SHIFT;
549 	count = size >> PAGE_SHIFT;
550 
551 	spin_lock_irqsave(&pool->lock, flags);
552 	bitmap_clear(pool->bitmap, pageno, count);
553 	spin_unlock_irqrestore(&pool->lock, flags);
554 
555 	return 1;
556 }
557 
558 static void *__alloc_from_contiguous(struct device *dev, size_t size,
559 				     pgprot_t prot, struct page **ret_page,
560 				     const void *caller)
561 {
562 	unsigned long order = get_order(size);
563 	size_t count = size >> PAGE_SHIFT;
564 	struct page *page;
565 	void *ptr;
566 
567 	page = dma_alloc_from_contiguous(dev, count, order);
568 	if (!page)
569 		return NULL;
570 
571 	__dma_clear_buffer(page, size);
572 
573 	if (PageHighMem(page)) {
574 		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
575 		if (!ptr) {
576 			dma_release_from_contiguous(dev, page, count);
577 			return NULL;
578 		}
579 	} else {
580 		__dma_remap(page, size, prot);
581 		ptr = page_address(page);
582 	}
583 	*ret_page = page;
584 	return ptr;
585 }
586 
587 static void __free_from_contiguous(struct device *dev, struct page *page,
588 				   void *cpu_addr, size_t size)
589 {
590 	if (PageHighMem(page))
591 		__dma_free_remap(cpu_addr, size);
592 	else
593 		__dma_remap(page, size, pgprot_kernel);
594 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
595 }
596 
597 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
598 {
599 	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
600 			    pgprot_writecombine(prot) :
601 			    pgprot_dmacoherent(prot);
602 	return prot;
603 }
604 
605 #define nommu() 0
606 
607 #else	/* !CONFIG_MMU */
608 
609 #define nommu() 1
610 
611 #define __get_dma_pgprot(attrs, prot)	__pgprot(0)
612 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)	NULL
613 #define __alloc_from_pool(size, ret_page)			NULL
614 #define __alloc_from_contiguous(dev, size, prot, ret, c)	NULL
615 #define __free_from_pool(cpu_addr, size)			0
616 #define __free_from_contiguous(dev, page, cpu_addr, size)	do { } while (0)
617 #define __dma_free_remap(cpu_addr, size)			do { } while (0)
618 
619 #endif	/* CONFIG_MMU */
620 
621 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
622 				   struct page **ret_page)
623 {
624 	struct page *page;
625 	page = __dma_alloc_buffer(dev, size, gfp);
626 	if (!page)
627 		return NULL;
628 
629 	*ret_page = page;
630 	return page_address(page);
631 }
632 
633 
634 
635 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
636 			 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
637 {
638 	u64 mask = get_coherent_dma_mask(dev);
639 	struct page *page = NULL;
640 	void *addr;
641 
642 #ifdef CONFIG_DMA_API_DEBUG
643 	u64 limit = (mask + 1) & ~mask;
644 	if (limit && size >= limit) {
645 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
646 			size, mask);
647 		return NULL;
648 	}
649 #endif
650 
651 	if (!mask)
652 		return NULL;
653 
654 	if (mask < 0xffffffffULL)
655 		gfp |= GFP_DMA;
656 
657 	/*
658 	 * Following is a work-around (a.k.a. hack) to prevent pages
659 	 * with __GFP_COMP being passed to split_page() which cannot
660 	 * handle them.  The real problem is that this flag probably
661 	 * should be 0 on ARM as it is not supported on this
662 	 * platform; see CONFIG_HUGETLBFS.
663 	 */
664 	gfp &= ~(__GFP_COMP);
665 
666 	*handle = DMA_ERROR_CODE;
667 	size = PAGE_ALIGN(size);
668 
669 	if (is_coherent || nommu())
670 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
671 	else if (!(gfp & __GFP_WAIT))
672 		addr = __alloc_from_pool(size, &page);
673 	else if (!IS_ENABLED(CONFIG_CMA))
674 		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
675 	else
676 		addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
677 
678 	if (addr)
679 		*handle = pfn_to_dma(dev, page_to_pfn(page));
680 
681 	return addr;
682 }
683 
684 /*
685  * Allocate DMA-coherent memory space and return both the kernel remapped
686  * virtual and bus address for that space.
687  */
688 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
689 		    gfp_t gfp, struct dma_attrs *attrs)
690 {
691 	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
692 	void *memory;
693 
694 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
695 		return memory;
696 
697 	return __dma_alloc(dev, size, handle, gfp, prot, false,
698 			   __builtin_return_address(0));
699 }
700 
701 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
702 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
703 {
704 	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
705 	void *memory;
706 
707 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
708 		return memory;
709 
710 	return __dma_alloc(dev, size, handle, gfp, prot, true,
711 			   __builtin_return_address(0));
712 }
713 
714 /*
715  * Create userspace mapping for the DMA-coherent memory.
716  */
717 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
718 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
719 		 struct dma_attrs *attrs)
720 {
721 	int ret = -ENXIO;
722 #ifdef CONFIG_MMU
723 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
724 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
725 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
726 	unsigned long off = vma->vm_pgoff;
727 
728 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
729 
730 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
731 		return ret;
732 
733 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
734 		ret = remap_pfn_range(vma, vma->vm_start,
735 				      pfn + off,
736 				      vma->vm_end - vma->vm_start,
737 				      vma->vm_page_prot);
738 	}
739 #endif	/* CONFIG_MMU */
740 
741 	return ret;
742 }
743 
744 /*
745  * Free a buffer as defined by the above mapping.
746  */
747 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
748 			   dma_addr_t handle, struct dma_attrs *attrs,
749 			   bool is_coherent)
750 {
751 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
752 
753 	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
754 		return;
755 
756 	size = PAGE_ALIGN(size);
757 
758 	if (is_coherent || nommu()) {
759 		__dma_free_buffer(page, size);
760 	} else if (__free_from_pool(cpu_addr, size)) {
761 		return;
762 	} else if (!IS_ENABLED(CONFIG_CMA)) {
763 		__dma_free_remap(cpu_addr, size);
764 		__dma_free_buffer(page, size);
765 	} else {
766 		/*
767 		 * Non-atomic allocations cannot be freed with IRQs disabled
768 		 */
769 		WARN_ON(irqs_disabled());
770 		__free_from_contiguous(dev, page, cpu_addr, size);
771 	}
772 }
773 
774 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
775 		  dma_addr_t handle, struct dma_attrs *attrs)
776 {
777 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
778 }
779 
780 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
781 				  dma_addr_t handle, struct dma_attrs *attrs)
782 {
783 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
784 }
785 
786 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
787 		 void *cpu_addr, dma_addr_t handle, size_t size,
788 		 struct dma_attrs *attrs)
789 {
790 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
791 	int ret;
792 
793 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
794 	if (unlikely(ret))
795 		return ret;
796 
797 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
798 	return 0;
799 }
800 
801 static void dma_cache_maint_page(struct page *page, unsigned long offset,
802 	size_t size, enum dma_data_direction dir,
803 	void (*op)(const void *, size_t, int))
804 {
805 	unsigned long pfn;
806 	size_t left = size;
807 
808 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
809 	offset %= PAGE_SIZE;
810 
811 	/*
812 	 * A single sg entry may refer to multiple physically contiguous
813 	 * pages.  But we still need to process highmem pages individually.
814 	 * If highmem is not configured then the bulk of this loop gets
815 	 * optimized out.
816 	 */
817 	do {
818 		size_t len = left;
819 		void *vaddr;
820 
821 		page = pfn_to_page(pfn);
822 
823 		if (PageHighMem(page)) {
824 			if (len + offset > PAGE_SIZE)
825 				len = PAGE_SIZE - offset;
826 
827 			if (cache_is_vipt_nonaliasing()) {
828 				vaddr = kmap_atomic(page);
829 				op(vaddr + offset, len, dir);
830 				kunmap_atomic(vaddr);
831 			} else {
832 				vaddr = kmap_high_get(page);
833 				if (vaddr) {
834 					op(vaddr + offset, len, dir);
835 					kunmap_high(page);
836 				}
837 			}
838 		} else {
839 			vaddr = page_address(page) + offset;
840 			op(vaddr, len, dir);
841 		}
842 		offset = 0;
843 		pfn++;
844 		left -= len;
845 	} while (left);
846 }
847 
848 /*
849  * Make an area consistent for devices.
850  * Note: Drivers should NOT use this function directly, as it will break
851  * platforms with CONFIG_DMABOUNCE.
852  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
853  */
854 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
855 	size_t size, enum dma_data_direction dir)
856 {
857 	unsigned long paddr;
858 
859 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
860 
861 	paddr = page_to_phys(page) + off;
862 	if (dir == DMA_FROM_DEVICE) {
863 		outer_inv_range(paddr, paddr + size);
864 	} else {
865 		outer_clean_range(paddr, paddr + size);
866 	}
867 	/* FIXME: non-speculating: flush on bidirectional mappings? */
868 }
869 
870 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
871 	size_t size, enum dma_data_direction dir)
872 {
873 	unsigned long paddr = page_to_phys(page) + off;
874 
875 	/* FIXME: non-speculating: not required */
876 	/* don't bother invalidating if DMA to device */
877 	if (dir != DMA_TO_DEVICE)
878 		outer_inv_range(paddr, paddr + size);
879 
880 	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
881 
882 	/*
883 	 * Mark the D-cache clean for this page to avoid extra flushing.
884 	 */
885 	if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
886 		set_bit(PG_dcache_clean, &page->flags);
887 }
888 
889 /**
890  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
891  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
892  * @sg: list of buffers
893  * @nents: number of buffers to map
894  * @dir: DMA transfer direction
895  *
896  * Map a set of buffers described by scatterlist in streaming mode for DMA.
897  * This is the scatter-gather version of the dma_map_single interface.
898  * Here the scatter gather list elements are each tagged with the
899  * appropriate dma address and length.  They are obtained via
900  * sg_dma_{address,length}.
901  *
902  * Device ownership issues as mentioned for dma_map_single are the same
903  * here.
904  */
905 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
906 		enum dma_data_direction dir, struct dma_attrs *attrs)
907 {
908 	struct dma_map_ops *ops = get_dma_ops(dev);
909 	struct scatterlist *s;
910 	int i, j;
911 
912 	for_each_sg(sg, s, nents, i) {
913 #ifdef CONFIG_NEED_SG_DMA_LENGTH
914 		s->dma_length = s->length;
915 #endif
916 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
917 						s->length, dir, attrs);
918 		if (dma_mapping_error(dev, s->dma_address))
919 			goto bad_mapping;
920 	}
921 	return nents;
922 
923  bad_mapping:
924 	for_each_sg(sg, s, i, j)
925 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
926 	return 0;
927 }
928 
929 /**
930  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
931  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
932  * @sg: list of buffers
933  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
934  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
935  *
936  * Unmap a set of streaming mode DMA translations.  Again, CPU access
937  * rules concerning calls here are the same as for dma_unmap_single().
938  */
939 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
940 		enum dma_data_direction dir, struct dma_attrs *attrs)
941 {
942 	struct dma_map_ops *ops = get_dma_ops(dev);
943 	struct scatterlist *s;
944 
945 	int i;
946 
947 	for_each_sg(sg, s, nents, i)
948 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
949 }
950 
951 /**
952  * arm_dma_sync_sg_for_cpu
953  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
954  * @sg: list of buffers
955  * @nents: number of buffers to map (returned from dma_map_sg)
956  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
957  */
958 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
959 			int nents, enum dma_data_direction dir)
960 {
961 	struct dma_map_ops *ops = get_dma_ops(dev);
962 	struct scatterlist *s;
963 	int i;
964 
965 	for_each_sg(sg, s, nents, i)
966 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
967 					 dir);
968 }
969 
970 /**
971  * arm_dma_sync_sg_for_device
972  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
973  * @sg: list of buffers
974  * @nents: number of buffers to map (returned from dma_map_sg)
975  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
976  */
977 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
978 			int nents, enum dma_data_direction dir)
979 {
980 	struct dma_map_ops *ops = get_dma_ops(dev);
981 	struct scatterlist *s;
982 	int i;
983 
984 	for_each_sg(sg, s, nents, i)
985 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
986 					    dir);
987 }
988 
989 /*
990  * Return whether the given device DMA address mask can be supported
991  * properly.  For example, if your device can only drive the low 24-bits
992  * during bus mastering, then you would pass 0x00ffffff as the mask
993  * to this function.
994  */
995 int dma_supported(struct device *dev, u64 mask)
996 {
997 	if (mask < (u64)arm_dma_limit)
998 		return 0;
999 	return 1;
1000 }
1001 EXPORT_SYMBOL(dma_supported);
1002 
1003 int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1004 {
1005 	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1006 		return -EIO;
1007 
1008 	*dev->dma_mask = dma_mask;
1009 
1010 	return 0;
1011 }
1012 
1013 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
1014 
1015 static int __init dma_debug_do_init(void)
1016 {
1017 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1018 	return 0;
1019 }
1020 fs_initcall(dma_debug_do_init);
1021 
1022 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1023 
1024 /* IOMMU */
1025 
1026 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1027 				      size_t size)
1028 {
1029 	unsigned int order = get_order(size);
1030 	unsigned int align = 0;
1031 	unsigned int count, start;
1032 	unsigned long flags;
1033 
1034 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1035 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1036 
1037 	count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
1038 		 (1 << mapping->order) - 1) >> mapping->order;
1039 
1040 	if (order > mapping->order)
1041 		align = (1 << (order - mapping->order)) - 1;
1042 
1043 	spin_lock_irqsave(&mapping->lock, flags);
1044 	start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
1045 					   count, align);
1046 	if (start > mapping->bits) {
1047 		spin_unlock_irqrestore(&mapping->lock, flags);
1048 		return DMA_ERROR_CODE;
1049 	}
1050 
1051 	bitmap_set(mapping->bitmap, start, count);
1052 	spin_unlock_irqrestore(&mapping->lock, flags);
1053 
1054 	return mapping->base + (start << (mapping->order + PAGE_SHIFT));
1055 }
1056 
1057 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1058 			       dma_addr_t addr, size_t size)
1059 {
1060 	unsigned int start = (addr - mapping->base) >>
1061 			     (mapping->order + PAGE_SHIFT);
1062 	unsigned int count = ((size >> PAGE_SHIFT) +
1063 			      (1 << mapping->order) - 1) >> mapping->order;
1064 	unsigned long flags;
1065 
1066 	spin_lock_irqsave(&mapping->lock, flags);
1067 	bitmap_clear(mapping->bitmap, start, count);
1068 	spin_unlock_irqrestore(&mapping->lock, flags);
1069 }
1070 
1071 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1072 					  gfp_t gfp, struct dma_attrs *attrs)
1073 {
1074 	struct page **pages;
1075 	int count = size >> PAGE_SHIFT;
1076 	int array_size = count * sizeof(struct page *);
1077 	int i = 0;
1078 
1079 	if (array_size <= PAGE_SIZE)
1080 		pages = kzalloc(array_size, gfp);
1081 	else
1082 		pages = vzalloc(array_size);
1083 	if (!pages)
1084 		return NULL;
1085 
1086 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1087 	{
1088 		unsigned long order = get_order(size);
1089 		struct page *page;
1090 
1091 		page = dma_alloc_from_contiguous(dev, count, order);
1092 		if (!page)
1093 			goto error;
1094 
1095 		__dma_clear_buffer(page, size);
1096 
1097 		for (i = 0; i < count; i++)
1098 			pages[i] = page + i;
1099 
1100 		return pages;
1101 	}
1102 
1103 	/*
1104 	 * IOMMU can map any pages, so himem can also be used here
1105 	 */
1106 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1107 
1108 	while (count) {
1109 		int j, order = __fls(count);
1110 
1111 		pages[i] = alloc_pages(gfp, order);
1112 		while (!pages[i] && order)
1113 			pages[i] = alloc_pages(gfp, --order);
1114 		if (!pages[i])
1115 			goto error;
1116 
1117 		if (order) {
1118 			split_page(pages[i], order);
1119 			j = 1 << order;
1120 			while (--j)
1121 				pages[i + j] = pages[i] + j;
1122 		}
1123 
1124 		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
1125 		i += 1 << order;
1126 		count -= 1 << order;
1127 	}
1128 
1129 	return pages;
1130 error:
1131 	while (i--)
1132 		if (pages[i])
1133 			__free_pages(pages[i], 0);
1134 	if (array_size <= PAGE_SIZE)
1135 		kfree(pages);
1136 	else
1137 		vfree(pages);
1138 	return NULL;
1139 }
1140 
1141 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1142 			       size_t size, struct dma_attrs *attrs)
1143 {
1144 	int count = size >> PAGE_SHIFT;
1145 	int array_size = count * sizeof(struct page *);
1146 	int i;
1147 
1148 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1149 		dma_release_from_contiguous(dev, pages[0], count);
1150 	} else {
1151 		for (i = 0; i < count; i++)
1152 			if (pages[i])
1153 				__free_pages(pages[i], 0);
1154 	}
1155 
1156 	if (array_size <= PAGE_SIZE)
1157 		kfree(pages);
1158 	else
1159 		vfree(pages);
1160 	return 0;
1161 }
1162 
1163 /*
1164  * Create a CPU mapping for a specified pages
1165  */
1166 static void *
1167 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1168 		    const void *caller)
1169 {
1170 	unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1171 	struct vm_struct *area;
1172 	unsigned long p;
1173 
1174 	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1175 				  caller);
1176 	if (!area)
1177 		return NULL;
1178 
1179 	area->pages = pages;
1180 	area->nr_pages = nr_pages;
1181 	p = (unsigned long)area->addr;
1182 
1183 	for (i = 0; i < nr_pages; i++) {
1184 		phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1185 		if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1186 			goto err;
1187 		p += PAGE_SIZE;
1188 	}
1189 	return area->addr;
1190 err:
1191 	unmap_kernel_range((unsigned long)area->addr, size);
1192 	vunmap(area->addr);
1193 	return NULL;
1194 }
1195 
1196 /*
1197  * Create a mapping in device IO address space for specified pages
1198  */
1199 static dma_addr_t
1200 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1201 {
1202 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1203 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1204 	dma_addr_t dma_addr, iova;
1205 	int i, ret = DMA_ERROR_CODE;
1206 
1207 	dma_addr = __alloc_iova(mapping, size);
1208 	if (dma_addr == DMA_ERROR_CODE)
1209 		return dma_addr;
1210 
1211 	iova = dma_addr;
1212 	for (i = 0; i < count; ) {
1213 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1214 		phys_addr_t phys = page_to_phys(pages[i]);
1215 		unsigned int len, j;
1216 
1217 		for (j = i + 1; j < count; j++, next_pfn++)
1218 			if (page_to_pfn(pages[j]) != next_pfn)
1219 				break;
1220 
1221 		len = (j - i) << PAGE_SHIFT;
1222 		ret = iommu_map(mapping->domain, iova, phys, len, 0);
1223 		if (ret < 0)
1224 			goto fail;
1225 		iova += len;
1226 		i = j;
1227 	}
1228 	return dma_addr;
1229 fail:
1230 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1231 	__free_iova(mapping, dma_addr, size);
1232 	return DMA_ERROR_CODE;
1233 }
1234 
1235 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1236 {
1237 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1238 
1239 	/*
1240 	 * add optional in-page offset from iova to size and align
1241 	 * result to page size
1242 	 */
1243 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1244 	iova &= PAGE_MASK;
1245 
1246 	iommu_unmap(mapping->domain, iova, size);
1247 	__free_iova(mapping, iova, size);
1248 	return 0;
1249 }
1250 
1251 static struct page **__atomic_get_pages(void *addr)
1252 {
1253 	struct dma_pool *pool = &atomic_pool;
1254 	struct page **pages = pool->pages;
1255 	int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
1256 
1257 	return pages + offs;
1258 }
1259 
1260 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1261 {
1262 	struct vm_struct *area;
1263 
1264 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1265 		return __atomic_get_pages(cpu_addr);
1266 
1267 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1268 		return cpu_addr;
1269 
1270 	area = find_vm_area(cpu_addr);
1271 	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1272 		return area->pages;
1273 	return NULL;
1274 }
1275 
1276 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1277 				  dma_addr_t *handle)
1278 {
1279 	struct page *page;
1280 	void *addr;
1281 
1282 	addr = __alloc_from_pool(size, &page);
1283 	if (!addr)
1284 		return NULL;
1285 
1286 	*handle = __iommu_create_mapping(dev, &page, size);
1287 	if (*handle == DMA_ERROR_CODE)
1288 		goto err_mapping;
1289 
1290 	return addr;
1291 
1292 err_mapping:
1293 	__free_from_pool(addr, size);
1294 	return NULL;
1295 }
1296 
1297 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1298 				dma_addr_t handle, size_t size)
1299 {
1300 	__iommu_remove_mapping(dev, handle, size);
1301 	__free_from_pool(cpu_addr, size);
1302 }
1303 
1304 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1305 	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1306 {
1307 	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1308 	struct page **pages;
1309 	void *addr = NULL;
1310 
1311 	*handle = DMA_ERROR_CODE;
1312 	size = PAGE_ALIGN(size);
1313 
1314 	if (gfp & GFP_ATOMIC)
1315 		return __iommu_alloc_atomic(dev, size, handle);
1316 
1317 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1318 	if (!pages)
1319 		return NULL;
1320 
1321 	*handle = __iommu_create_mapping(dev, pages, size);
1322 	if (*handle == DMA_ERROR_CODE)
1323 		goto err_buffer;
1324 
1325 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1326 		return pages;
1327 
1328 	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1329 				   __builtin_return_address(0));
1330 	if (!addr)
1331 		goto err_mapping;
1332 
1333 	return addr;
1334 
1335 err_mapping:
1336 	__iommu_remove_mapping(dev, *handle, size);
1337 err_buffer:
1338 	__iommu_free_buffer(dev, pages, size, attrs);
1339 	return NULL;
1340 }
1341 
1342 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1343 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1344 		    struct dma_attrs *attrs)
1345 {
1346 	unsigned long uaddr = vma->vm_start;
1347 	unsigned long usize = vma->vm_end - vma->vm_start;
1348 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1349 
1350 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1351 
1352 	if (!pages)
1353 		return -ENXIO;
1354 
1355 	do {
1356 		int ret = vm_insert_page(vma, uaddr, *pages++);
1357 		if (ret) {
1358 			pr_err("Remapping memory failed: %d\n", ret);
1359 			return ret;
1360 		}
1361 		uaddr += PAGE_SIZE;
1362 		usize -= PAGE_SIZE;
1363 	} while (usize > 0);
1364 
1365 	return 0;
1366 }
1367 
1368 /*
1369  * free a page as defined by the above mapping.
1370  * Must not be called with IRQs disabled.
1371  */
1372 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1373 			  dma_addr_t handle, struct dma_attrs *attrs)
1374 {
1375 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1376 	size = PAGE_ALIGN(size);
1377 
1378 	if (!pages) {
1379 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1380 		return;
1381 	}
1382 
1383 	if (__in_atomic_pool(cpu_addr, size)) {
1384 		__iommu_free_atomic(dev, cpu_addr, handle, size);
1385 		return;
1386 	}
1387 
1388 	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1389 		unmap_kernel_range((unsigned long)cpu_addr, size);
1390 		vunmap(cpu_addr);
1391 	}
1392 
1393 	__iommu_remove_mapping(dev, handle, size);
1394 	__iommu_free_buffer(dev, pages, size, attrs);
1395 }
1396 
1397 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1398 				 void *cpu_addr, dma_addr_t dma_addr,
1399 				 size_t size, struct dma_attrs *attrs)
1400 {
1401 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1402 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1403 
1404 	if (!pages)
1405 		return -ENXIO;
1406 
1407 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1408 					 GFP_KERNEL);
1409 }
1410 
1411 /*
1412  * Map a part of the scatter-gather list into contiguous io address space
1413  */
1414 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1415 			  size_t size, dma_addr_t *handle,
1416 			  enum dma_data_direction dir, struct dma_attrs *attrs,
1417 			  bool is_coherent)
1418 {
1419 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1420 	dma_addr_t iova, iova_base;
1421 	int ret = 0;
1422 	unsigned int count;
1423 	struct scatterlist *s;
1424 
1425 	size = PAGE_ALIGN(size);
1426 	*handle = DMA_ERROR_CODE;
1427 
1428 	iova_base = iova = __alloc_iova(mapping, size);
1429 	if (iova == DMA_ERROR_CODE)
1430 		return -ENOMEM;
1431 
1432 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1433 		phys_addr_t phys = page_to_phys(sg_page(s));
1434 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1435 
1436 		if (!is_coherent &&
1437 			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1438 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1439 
1440 		ret = iommu_map(mapping->domain, iova, phys, len, 0);
1441 		if (ret < 0)
1442 			goto fail;
1443 		count += len >> PAGE_SHIFT;
1444 		iova += len;
1445 	}
1446 	*handle = iova_base;
1447 
1448 	return 0;
1449 fail:
1450 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1451 	__free_iova(mapping, iova_base, size);
1452 	return ret;
1453 }
1454 
1455 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1456 		     enum dma_data_direction dir, struct dma_attrs *attrs,
1457 		     bool is_coherent)
1458 {
1459 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1460 	int i, count = 0;
1461 	unsigned int offset = s->offset;
1462 	unsigned int size = s->offset + s->length;
1463 	unsigned int max = dma_get_max_seg_size(dev);
1464 
1465 	for (i = 1; i < nents; i++) {
1466 		s = sg_next(s);
1467 
1468 		s->dma_address = DMA_ERROR_CODE;
1469 		s->dma_length = 0;
1470 
1471 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1472 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1473 			    dir, attrs, is_coherent) < 0)
1474 				goto bad_mapping;
1475 
1476 			dma->dma_address += offset;
1477 			dma->dma_length = size - offset;
1478 
1479 			size = offset = s->offset;
1480 			start = s;
1481 			dma = sg_next(dma);
1482 			count += 1;
1483 		}
1484 		size += s->length;
1485 	}
1486 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1487 		is_coherent) < 0)
1488 		goto bad_mapping;
1489 
1490 	dma->dma_address += offset;
1491 	dma->dma_length = size - offset;
1492 
1493 	return count+1;
1494 
1495 bad_mapping:
1496 	for_each_sg(sg, s, count, i)
1497 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1498 	return 0;
1499 }
1500 
1501 /**
1502  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1503  * @dev: valid struct device pointer
1504  * @sg: list of buffers
1505  * @nents: number of buffers to map
1506  * @dir: DMA transfer direction
1507  *
1508  * Map a set of i/o coherent buffers described by scatterlist in streaming
1509  * mode for DMA. The scatter gather list elements are merged together (if
1510  * possible) and tagged with the appropriate dma address and length. They are
1511  * obtained via sg_dma_{address,length}.
1512  */
1513 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1514 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1515 {
1516 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1517 }
1518 
1519 /**
1520  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1521  * @dev: valid struct device pointer
1522  * @sg: list of buffers
1523  * @nents: number of buffers to map
1524  * @dir: DMA transfer direction
1525  *
1526  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1527  * The scatter gather list elements are merged together (if possible) and
1528  * tagged with the appropriate dma address and length. They are obtained via
1529  * sg_dma_{address,length}.
1530  */
1531 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1532 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1533 {
1534 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1535 }
1536 
1537 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1538 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1539 		bool is_coherent)
1540 {
1541 	struct scatterlist *s;
1542 	int i;
1543 
1544 	for_each_sg(sg, s, nents, i) {
1545 		if (sg_dma_len(s))
1546 			__iommu_remove_mapping(dev, sg_dma_address(s),
1547 					       sg_dma_len(s));
1548 		if (!is_coherent &&
1549 		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1550 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1551 					      s->length, dir);
1552 	}
1553 }
1554 
1555 /**
1556  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1557  * @dev: valid struct device pointer
1558  * @sg: list of buffers
1559  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1560  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1561  *
1562  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1563  * rules concerning calls here are the same as for dma_unmap_single().
1564  */
1565 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1566 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1567 {
1568 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1569 }
1570 
1571 /**
1572  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1573  * @dev: valid struct device pointer
1574  * @sg: list of buffers
1575  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1576  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1577  *
1578  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1579  * rules concerning calls here are the same as for dma_unmap_single().
1580  */
1581 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1582 			enum dma_data_direction dir, struct dma_attrs *attrs)
1583 {
1584 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1585 }
1586 
1587 /**
1588  * arm_iommu_sync_sg_for_cpu
1589  * @dev: valid struct device pointer
1590  * @sg: list of buffers
1591  * @nents: number of buffers to map (returned from dma_map_sg)
1592  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1593  */
1594 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1595 			int nents, enum dma_data_direction dir)
1596 {
1597 	struct scatterlist *s;
1598 	int i;
1599 
1600 	for_each_sg(sg, s, nents, i)
1601 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1602 
1603 }
1604 
1605 /**
1606  * arm_iommu_sync_sg_for_device
1607  * @dev: valid struct device pointer
1608  * @sg: list of buffers
1609  * @nents: number of buffers to map (returned from dma_map_sg)
1610  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1611  */
1612 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1613 			int nents, enum dma_data_direction dir)
1614 {
1615 	struct scatterlist *s;
1616 	int i;
1617 
1618 	for_each_sg(sg, s, nents, i)
1619 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1620 }
1621 
1622 
1623 /**
1624  * arm_coherent_iommu_map_page
1625  * @dev: valid struct device pointer
1626  * @page: page that buffer resides in
1627  * @offset: offset into page for start of buffer
1628  * @size: size of buffer to map
1629  * @dir: DMA transfer direction
1630  *
1631  * Coherent IOMMU aware version of arm_dma_map_page()
1632  */
1633 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1634 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1635 	     struct dma_attrs *attrs)
1636 {
1637 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1638 	dma_addr_t dma_addr;
1639 	int ret, len = PAGE_ALIGN(size + offset);
1640 
1641 	dma_addr = __alloc_iova(mapping, len);
1642 	if (dma_addr == DMA_ERROR_CODE)
1643 		return dma_addr;
1644 
1645 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0);
1646 	if (ret < 0)
1647 		goto fail;
1648 
1649 	return dma_addr + offset;
1650 fail:
1651 	__free_iova(mapping, dma_addr, len);
1652 	return DMA_ERROR_CODE;
1653 }
1654 
1655 /**
1656  * arm_iommu_map_page
1657  * @dev: valid struct device pointer
1658  * @page: page that buffer resides in
1659  * @offset: offset into page for start of buffer
1660  * @size: size of buffer to map
1661  * @dir: DMA transfer direction
1662  *
1663  * IOMMU aware version of arm_dma_map_page()
1664  */
1665 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1666 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1667 	     struct dma_attrs *attrs)
1668 {
1669 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1670 		__dma_page_cpu_to_dev(page, offset, size, dir);
1671 
1672 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1673 }
1674 
1675 /**
1676  * arm_coherent_iommu_unmap_page
1677  * @dev: valid struct device pointer
1678  * @handle: DMA address of buffer
1679  * @size: size of buffer (same as passed to dma_map_page)
1680  * @dir: DMA transfer direction (same as passed to dma_map_page)
1681  *
1682  * Coherent IOMMU aware version of arm_dma_unmap_page()
1683  */
1684 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1685 		size_t size, enum dma_data_direction dir,
1686 		struct dma_attrs *attrs)
1687 {
1688 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1689 	dma_addr_t iova = handle & PAGE_MASK;
1690 	int offset = handle & ~PAGE_MASK;
1691 	int len = PAGE_ALIGN(size + offset);
1692 
1693 	if (!iova)
1694 		return;
1695 
1696 	iommu_unmap(mapping->domain, iova, len);
1697 	__free_iova(mapping, iova, len);
1698 }
1699 
1700 /**
1701  * arm_iommu_unmap_page
1702  * @dev: valid struct device pointer
1703  * @handle: DMA address of buffer
1704  * @size: size of buffer (same as passed to dma_map_page)
1705  * @dir: DMA transfer direction (same as passed to dma_map_page)
1706  *
1707  * IOMMU aware version of arm_dma_unmap_page()
1708  */
1709 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1710 		size_t size, enum dma_data_direction dir,
1711 		struct dma_attrs *attrs)
1712 {
1713 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1714 	dma_addr_t iova = handle & PAGE_MASK;
1715 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1716 	int offset = handle & ~PAGE_MASK;
1717 	int len = PAGE_ALIGN(size + offset);
1718 
1719 	if (!iova)
1720 		return;
1721 
1722 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1723 		__dma_page_dev_to_cpu(page, offset, size, dir);
1724 
1725 	iommu_unmap(mapping->domain, iova, len);
1726 	__free_iova(mapping, iova, len);
1727 }
1728 
1729 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1730 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1731 {
1732 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1733 	dma_addr_t iova = handle & PAGE_MASK;
1734 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1735 	unsigned int offset = handle & ~PAGE_MASK;
1736 
1737 	if (!iova)
1738 		return;
1739 
1740 	__dma_page_dev_to_cpu(page, offset, size, dir);
1741 }
1742 
1743 static void arm_iommu_sync_single_for_device(struct device *dev,
1744 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1745 {
1746 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1747 	dma_addr_t iova = handle & PAGE_MASK;
1748 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1749 	unsigned int offset = handle & ~PAGE_MASK;
1750 
1751 	if (!iova)
1752 		return;
1753 
1754 	__dma_page_cpu_to_dev(page, offset, size, dir);
1755 }
1756 
1757 struct dma_map_ops iommu_ops = {
1758 	.alloc		= arm_iommu_alloc_attrs,
1759 	.free		= arm_iommu_free_attrs,
1760 	.mmap		= arm_iommu_mmap_attrs,
1761 	.get_sgtable	= arm_iommu_get_sgtable,
1762 
1763 	.map_page		= arm_iommu_map_page,
1764 	.unmap_page		= arm_iommu_unmap_page,
1765 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1766 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1767 
1768 	.map_sg			= arm_iommu_map_sg,
1769 	.unmap_sg		= arm_iommu_unmap_sg,
1770 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1771 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1772 
1773 	.set_dma_mask		= arm_dma_set_mask,
1774 };
1775 
1776 struct dma_map_ops iommu_coherent_ops = {
1777 	.alloc		= arm_iommu_alloc_attrs,
1778 	.free		= arm_iommu_free_attrs,
1779 	.mmap		= arm_iommu_mmap_attrs,
1780 	.get_sgtable	= arm_iommu_get_sgtable,
1781 
1782 	.map_page	= arm_coherent_iommu_map_page,
1783 	.unmap_page	= arm_coherent_iommu_unmap_page,
1784 
1785 	.map_sg		= arm_coherent_iommu_map_sg,
1786 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
1787 
1788 	.set_dma_mask	= arm_dma_set_mask,
1789 };
1790 
1791 /**
1792  * arm_iommu_create_mapping
1793  * @bus: pointer to the bus holding the client device (for IOMMU calls)
1794  * @base: start address of the valid IO address space
1795  * @size: size of the valid IO address space
1796  * @order: accuracy of the IO addresses allocations
1797  *
1798  * Creates a mapping structure which holds information about used/unused
1799  * IO address ranges, which is required to perform memory allocation and
1800  * mapping with IOMMU aware functions.
1801  *
1802  * The client device need to be attached to the mapping with
1803  * arm_iommu_attach_device function.
1804  */
1805 struct dma_iommu_mapping *
1806 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
1807 			 int order)
1808 {
1809 	unsigned int count = size >> (PAGE_SHIFT + order);
1810 	unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
1811 	struct dma_iommu_mapping *mapping;
1812 	int err = -ENOMEM;
1813 
1814 	if (!count)
1815 		return ERR_PTR(-EINVAL);
1816 
1817 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1818 	if (!mapping)
1819 		goto err;
1820 
1821 	mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1822 	if (!mapping->bitmap)
1823 		goto err2;
1824 
1825 	mapping->base = base;
1826 	mapping->bits = BITS_PER_BYTE * bitmap_size;
1827 	mapping->order = order;
1828 	spin_lock_init(&mapping->lock);
1829 
1830 	mapping->domain = iommu_domain_alloc(bus);
1831 	if (!mapping->domain)
1832 		goto err3;
1833 
1834 	kref_init(&mapping->kref);
1835 	return mapping;
1836 err3:
1837 	kfree(mapping->bitmap);
1838 err2:
1839 	kfree(mapping);
1840 err:
1841 	return ERR_PTR(err);
1842 }
1843 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1844 
1845 static void release_iommu_mapping(struct kref *kref)
1846 {
1847 	struct dma_iommu_mapping *mapping =
1848 		container_of(kref, struct dma_iommu_mapping, kref);
1849 
1850 	iommu_domain_free(mapping->domain);
1851 	kfree(mapping->bitmap);
1852 	kfree(mapping);
1853 }
1854 
1855 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1856 {
1857 	if (mapping)
1858 		kref_put(&mapping->kref, release_iommu_mapping);
1859 }
1860 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1861 
1862 /**
1863  * arm_iommu_attach_device
1864  * @dev: valid struct device pointer
1865  * @mapping: io address space mapping structure (returned from
1866  *	arm_iommu_create_mapping)
1867  *
1868  * Attaches specified io address space mapping to the provided device,
1869  * this replaces the dma operations (dma_map_ops pointer) with the
1870  * IOMMU aware version. More than one client might be attached to
1871  * the same io address space mapping.
1872  */
1873 int arm_iommu_attach_device(struct device *dev,
1874 			    struct dma_iommu_mapping *mapping)
1875 {
1876 	int err;
1877 
1878 	err = iommu_attach_device(mapping->domain, dev);
1879 	if (err)
1880 		return err;
1881 
1882 	kref_get(&mapping->kref);
1883 	dev->archdata.mapping = mapping;
1884 	set_dma_ops(dev, &iommu_ops);
1885 
1886 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1887 	return 0;
1888 }
1889 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1890 
1891 /**
1892  * arm_iommu_detach_device
1893  * @dev: valid struct device pointer
1894  *
1895  * Detaches the provided device from a previously attached map.
1896  * This voids the dma operations (dma_map_ops pointer)
1897  */
1898 void arm_iommu_detach_device(struct device *dev)
1899 {
1900 	struct dma_iommu_mapping *mapping;
1901 
1902 	mapping = to_dma_iommu_mapping(dev);
1903 	if (!mapping) {
1904 		dev_warn(dev, "Not attached\n");
1905 		return;
1906 	}
1907 
1908 	iommu_detach_device(mapping->domain, dev);
1909 	kref_put(&mapping->kref, release_iommu_mapping);
1910 	mapping = NULL;
1911 	set_dma_ops(dev, NULL);
1912 
1913 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
1914 }
1915 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
1916 
1917 #endif
1918