1 /* 2 * linux/arch/arm/mm/dma-mapping.c 3 * 4 * Copyright (C) 2000-2004 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * DMA uncached mapping support. 11 */ 12 #include <linux/bootmem.h> 13 #include <linux/module.h> 14 #include <linux/mm.h> 15 #include <linux/genalloc.h> 16 #include <linux/gfp.h> 17 #include <linux/errno.h> 18 #include <linux/list.h> 19 #include <linux/init.h> 20 #include <linux/device.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/dma-contiguous.h> 23 #include <linux/highmem.h> 24 #include <linux/memblock.h> 25 #include <linux/slab.h> 26 #include <linux/iommu.h> 27 #include <linux/io.h> 28 #include <linux/vmalloc.h> 29 #include <linux/sizes.h> 30 #include <linux/cma.h> 31 32 #include <asm/memory.h> 33 #include <asm/highmem.h> 34 #include <asm/cacheflush.h> 35 #include <asm/tlbflush.h> 36 #include <asm/mach/arch.h> 37 #include <asm/dma-iommu.h> 38 #include <asm/mach/map.h> 39 #include <asm/system_info.h> 40 #include <asm/dma-contiguous.h> 41 42 #include "dma.h" 43 #include "mm.h" 44 45 /* 46 * The DMA API is built upon the notion of "buffer ownership". A buffer 47 * is either exclusively owned by the CPU (and therefore may be accessed 48 * by it) or exclusively owned by the DMA device. These helper functions 49 * represent the transitions between these two ownership states. 50 * 51 * Note, however, that on later ARMs, this notion does not work due to 52 * speculative prefetches. We model our approach on the assumption that 53 * the CPU does do speculative prefetches, which means we clean caches 54 * before transfers and delay cache invalidation until transfer completion. 55 * 56 */ 57 static void __dma_page_cpu_to_dev(struct page *, unsigned long, 58 size_t, enum dma_data_direction); 59 static void __dma_page_dev_to_cpu(struct page *, unsigned long, 60 size_t, enum dma_data_direction); 61 62 /** 63 * arm_dma_map_page - map a portion of a page for streaming DMA 64 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 65 * @page: page that buffer resides in 66 * @offset: offset into page for start of buffer 67 * @size: size of buffer to map 68 * @dir: DMA transfer direction 69 * 70 * Ensure that any data held in the cache is appropriately discarded 71 * or written back. 72 * 73 * The device owns this memory once this call has completed. The CPU 74 * can regain ownership by calling dma_unmap_page(). 75 */ 76 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page, 77 unsigned long offset, size_t size, enum dma_data_direction dir, 78 struct dma_attrs *attrs) 79 { 80 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 81 __dma_page_cpu_to_dev(page, offset, size, dir); 82 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 83 } 84 85 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page, 86 unsigned long offset, size_t size, enum dma_data_direction dir, 87 struct dma_attrs *attrs) 88 { 89 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 90 } 91 92 /** 93 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page() 94 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 95 * @handle: DMA address of buffer 96 * @size: size of buffer (same as passed to dma_map_page) 97 * @dir: DMA transfer direction (same as passed to dma_map_page) 98 * 99 * Unmap a page streaming mode DMA translation. The handle and size 100 * must match what was provided in the previous dma_map_page() call. 101 * All other usages are undefined. 102 * 103 * After this call, reads by the CPU to the buffer are guaranteed to see 104 * whatever the device wrote there. 105 */ 106 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle, 107 size_t size, enum dma_data_direction dir, 108 struct dma_attrs *attrs) 109 { 110 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 111 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)), 112 handle & ~PAGE_MASK, size, dir); 113 } 114 115 static void arm_dma_sync_single_for_cpu(struct device *dev, 116 dma_addr_t handle, size_t size, enum dma_data_direction dir) 117 { 118 unsigned int offset = handle & (PAGE_SIZE - 1); 119 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 120 __dma_page_dev_to_cpu(page, offset, size, dir); 121 } 122 123 static void arm_dma_sync_single_for_device(struct device *dev, 124 dma_addr_t handle, size_t size, enum dma_data_direction dir) 125 { 126 unsigned int offset = handle & (PAGE_SIZE - 1); 127 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 128 __dma_page_cpu_to_dev(page, offset, size, dir); 129 } 130 131 struct dma_map_ops arm_dma_ops = { 132 .alloc = arm_dma_alloc, 133 .free = arm_dma_free, 134 .mmap = arm_dma_mmap, 135 .get_sgtable = arm_dma_get_sgtable, 136 .map_page = arm_dma_map_page, 137 .unmap_page = arm_dma_unmap_page, 138 .map_sg = arm_dma_map_sg, 139 .unmap_sg = arm_dma_unmap_sg, 140 .sync_single_for_cpu = arm_dma_sync_single_for_cpu, 141 .sync_single_for_device = arm_dma_sync_single_for_device, 142 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu, 143 .sync_sg_for_device = arm_dma_sync_sg_for_device, 144 .set_dma_mask = arm_dma_set_mask, 145 }; 146 EXPORT_SYMBOL(arm_dma_ops); 147 148 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 149 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs); 150 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 151 dma_addr_t handle, struct dma_attrs *attrs); 152 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma, 153 void *cpu_addr, dma_addr_t dma_addr, size_t size, 154 struct dma_attrs *attrs); 155 156 struct dma_map_ops arm_coherent_dma_ops = { 157 .alloc = arm_coherent_dma_alloc, 158 .free = arm_coherent_dma_free, 159 .mmap = arm_coherent_dma_mmap, 160 .get_sgtable = arm_dma_get_sgtable, 161 .map_page = arm_coherent_dma_map_page, 162 .map_sg = arm_dma_map_sg, 163 .set_dma_mask = arm_dma_set_mask, 164 }; 165 EXPORT_SYMBOL(arm_coherent_dma_ops); 166 167 static int __dma_supported(struct device *dev, u64 mask, bool warn) 168 { 169 unsigned long max_dma_pfn; 170 171 /* 172 * If the mask allows for more memory than we can address, 173 * and we actually have that much memory, then we must 174 * indicate that DMA to this device is not supported. 175 */ 176 if (sizeof(mask) != sizeof(dma_addr_t) && 177 mask > (dma_addr_t)~0 && 178 dma_to_pfn(dev, ~0) < max_pfn - 1) { 179 if (warn) { 180 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n", 181 mask); 182 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n"); 183 } 184 return 0; 185 } 186 187 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit); 188 189 /* 190 * Translate the device's DMA mask to a PFN limit. This 191 * PFN number includes the page which we can DMA to. 192 */ 193 if (dma_to_pfn(dev, mask) < max_dma_pfn) { 194 if (warn) 195 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n", 196 mask, 197 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1, 198 max_dma_pfn + 1); 199 return 0; 200 } 201 202 return 1; 203 } 204 205 static u64 get_coherent_dma_mask(struct device *dev) 206 { 207 u64 mask = (u64)DMA_BIT_MASK(32); 208 209 if (dev) { 210 mask = dev->coherent_dma_mask; 211 212 /* 213 * Sanity check the DMA mask - it must be non-zero, and 214 * must be able to be satisfied by a DMA allocation. 215 */ 216 if (mask == 0) { 217 dev_warn(dev, "coherent DMA mask is unset\n"); 218 return 0; 219 } 220 221 if (!__dma_supported(dev, mask, true)) 222 return 0; 223 } 224 225 return mask; 226 } 227 228 static void __dma_clear_buffer(struct page *page, size_t size) 229 { 230 /* 231 * Ensure that the allocated pages are zeroed, and that any data 232 * lurking in the kernel direct-mapped region is invalidated. 233 */ 234 if (PageHighMem(page)) { 235 phys_addr_t base = __pfn_to_phys(page_to_pfn(page)); 236 phys_addr_t end = base + size; 237 while (size > 0) { 238 void *ptr = kmap_atomic(page); 239 memset(ptr, 0, PAGE_SIZE); 240 dmac_flush_range(ptr, ptr + PAGE_SIZE); 241 kunmap_atomic(ptr); 242 page++; 243 size -= PAGE_SIZE; 244 } 245 outer_flush_range(base, end); 246 } else { 247 void *ptr = page_address(page); 248 memset(ptr, 0, size); 249 dmac_flush_range(ptr, ptr + size); 250 outer_flush_range(__pa(ptr), __pa(ptr) + size); 251 } 252 } 253 254 /* 255 * Allocate a DMA buffer for 'dev' of size 'size' using the 256 * specified gfp mask. Note that 'size' must be page aligned. 257 */ 258 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp) 259 { 260 unsigned long order = get_order(size); 261 struct page *page, *p, *e; 262 263 page = alloc_pages(gfp, order); 264 if (!page) 265 return NULL; 266 267 /* 268 * Now split the huge page and free the excess pages 269 */ 270 split_page(page, order); 271 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) 272 __free_page(p); 273 274 __dma_clear_buffer(page, size); 275 276 return page; 277 } 278 279 /* 280 * Free a DMA buffer. 'size' must be page aligned. 281 */ 282 static void __dma_free_buffer(struct page *page, size_t size) 283 { 284 struct page *e = page + (size >> PAGE_SHIFT); 285 286 while (page < e) { 287 __free_page(page); 288 page++; 289 } 290 } 291 292 #ifdef CONFIG_MMU 293 294 static void *__alloc_from_contiguous(struct device *dev, size_t size, 295 pgprot_t prot, struct page **ret_page, 296 const void *caller, bool want_vaddr); 297 298 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 299 pgprot_t prot, struct page **ret_page, 300 const void *caller, bool want_vaddr); 301 302 static void * 303 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot, 304 const void *caller) 305 { 306 /* 307 * DMA allocation can be mapped to user space, so lets 308 * set VM_USERMAP flags too. 309 */ 310 return dma_common_contiguous_remap(page, size, 311 VM_ARM_DMA_CONSISTENT | VM_USERMAP, 312 prot, caller); 313 } 314 315 static void __dma_free_remap(void *cpu_addr, size_t size) 316 { 317 dma_common_free_remap(cpu_addr, size, 318 VM_ARM_DMA_CONSISTENT | VM_USERMAP); 319 } 320 321 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K 322 static struct gen_pool *atomic_pool; 323 324 static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE; 325 326 static int __init early_coherent_pool(char *p) 327 { 328 atomic_pool_size = memparse(p, &p); 329 return 0; 330 } 331 early_param("coherent_pool", early_coherent_pool); 332 333 void __init init_dma_coherent_pool_size(unsigned long size) 334 { 335 /* 336 * Catch any attempt to set the pool size too late. 337 */ 338 BUG_ON(atomic_pool); 339 340 /* 341 * Set architecture specific coherent pool size only if 342 * it has not been changed by kernel command line parameter. 343 */ 344 if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE) 345 atomic_pool_size = size; 346 } 347 348 /* 349 * Initialise the coherent pool for atomic allocations. 350 */ 351 static int __init atomic_pool_init(void) 352 { 353 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL); 354 gfp_t gfp = GFP_KERNEL | GFP_DMA; 355 struct page *page; 356 void *ptr; 357 358 atomic_pool = gen_pool_create(PAGE_SHIFT, -1); 359 if (!atomic_pool) 360 goto out; 361 362 if (dev_get_cma_area(NULL)) 363 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot, 364 &page, atomic_pool_init, true); 365 else 366 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot, 367 &page, atomic_pool_init, true); 368 if (ptr) { 369 int ret; 370 371 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr, 372 page_to_phys(page), 373 atomic_pool_size, -1); 374 if (ret) 375 goto destroy_genpool; 376 377 gen_pool_set_algo(atomic_pool, 378 gen_pool_first_fit_order_align, 379 (void *)PAGE_SHIFT); 380 pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n", 381 atomic_pool_size / 1024); 382 return 0; 383 } 384 385 destroy_genpool: 386 gen_pool_destroy(atomic_pool); 387 atomic_pool = NULL; 388 out: 389 pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n", 390 atomic_pool_size / 1024); 391 return -ENOMEM; 392 } 393 /* 394 * CMA is activated by core_initcall, so we must be called after it. 395 */ 396 postcore_initcall(atomic_pool_init); 397 398 struct dma_contig_early_reserve { 399 phys_addr_t base; 400 unsigned long size; 401 }; 402 403 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata; 404 405 static int dma_mmu_remap_num __initdata; 406 407 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) 408 { 409 dma_mmu_remap[dma_mmu_remap_num].base = base; 410 dma_mmu_remap[dma_mmu_remap_num].size = size; 411 dma_mmu_remap_num++; 412 } 413 414 void __init dma_contiguous_remap(void) 415 { 416 int i; 417 for (i = 0; i < dma_mmu_remap_num; i++) { 418 phys_addr_t start = dma_mmu_remap[i].base; 419 phys_addr_t end = start + dma_mmu_remap[i].size; 420 struct map_desc map; 421 unsigned long addr; 422 423 if (end > arm_lowmem_limit) 424 end = arm_lowmem_limit; 425 if (start >= end) 426 continue; 427 428 map.pfn = __phys_to_pfn(start); 429 map.virtual = __phys_to_virt(start); 430 map.length = end - start; 431 map.type = MT_MEMORY_DMA_READY; 432 433 /* 434 * Clear previous low-memory mapping to ensure that the 435 * TLB does not see any conflicting entries, then flush 436 * the TLB of the old entries before creating new mappings. 437 * 438 * This ensures that any speculatively loaded TLB entries 439 * (even though they may be rare) can not cause any problems, 440 * and ensures that this code is architecturally compliant. 441 */ 442 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end); 443 addr += PMD_SIZE) 444 pmd_clear(pmd_off_k(addr)); 445 446 flush_tlb_kernel_range(__phys_to_virt(start), 447 __phys_to_virt(end)); 448 449 iotable_init(&map, 1); 450 } 451 } 452 453 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr, 454 void *data) 455 { 456 struct page *page = virt_to_page(addr); 457 pgprot_t prot = *(pgprot_t *)data; 458 459 set_pte_ext(pte, mk_pte(page, prot), 0); 460 return 0; 461 } 462 463 static void __dma_remap(struct page *page, size_t size, pgprot_t prot) 464 { 465 unsigned long start = (unsigned long) page_address(page); 466 unsigned end = start + size; 467 468 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot); 469 flush_tlb_kernel_range(start, end); 470 } 471 472 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 473 pgprot_t prot, struct page **ret_page, 474 const void *caller, bool want_vaddr) 475 { 476 struct page *page; 477 void *ptr = NULL; 478 page = __dma_alloc_buffer(dev, size, gfp); 479 if (!page) 480 return NULL; 481 if (!want_vaddr) 482 goto out; 483 484 ptr = __dma_alloc_remap(page, size, gfp, prot, caller); 485 if (!ptr) { 486 __dma_free_buffer(page, size); 487 return NULL; 488 } 489 490 out: 491 *ret_page = page; 492 return ptr; 493 } 494 495 static void *__alloc_from_pool(size_t size, struct page **ret_page) 496 { 497 unsigned long val; 498 void *ptr = NULL; 499 500 if (!atomic_pool) { 501 WARN(1, "coherent pool not initialised!\n"); 502 return NULL; 503 } 504 505 val = gen_pool_alloc(atomic_pool, size); 506 if (val) { 507 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); 508 509 *ret_page = phys_to_page(phys); 510 ptr = (void *)val; 511 } 512 513 return ptr; 514 } 515 516 static bool __in_atomic_pool(void *start, size_t size) 517 { 518 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size); 519 } 520 521 static int __free_from_pool(void *start, size_t size) 522 { 523 if (!__in_atomic_pool(start, size)) 524 return 0; 525 526 gen_pool_free(atomic_pool, (unsigned long)start, size); 527 528 return 1; 529 } 530 531 static void *__alloc_from_contiguous(struct device *dev, size_t size, 532 pgprot_t prot, struct page **ret_page, 533 const void *caller, bool want_vaddr) 534 { 535 unsigned long order = get_order(size); 536 size_t count = size >> PAGE_SHIFT; 537 struct page *page; 538 void *ptr = NULL; 539 540 page = dma_alloc_from_contiguous(dev, count, order); 541 if (!page) 542 return NULL; 543 544 __dma_clear_buffer(page, size); 545 546 if (!want_vaddr) 547 goto out; 548 549 if (PageHighMem(page)) { 550 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller); 551 if (!ptr) { 552 dma_release_from_contiguous(dev, page, count); 553 return NULL; 554 } 555 } else { 556 __dma_remap(page, size, prot); 557 ptr = page_address(page); 558 } 559 560 out: 561 *ret_page = page; 562 return ptr; 563 } 564 565 static void __free_from_contiguous(struct device *dev, struct page *page, 566 void *cpu_addr, size_t size, bool want_vaddr) 567 { 568 if (want_vaddr) { 569 if (PageHighMem(page)) 570 __dma_free_remap(cpu_addr, size); 571 else 572 __dma_remap(page, size, PAGE_KERNEL); 573 } 574 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); 575 } 576 577 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot) 578 { 579 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ? 580 pgprot_writecombine(prot) : 581 pgprot_dmacoherent(prot); 582 return prot; 583 } 584 585 #define nommu() 0 586 587 #else /* !CONFIG_MMU */ 588 589 #define nommu() 1 590 591 #define __get_dma_pgprot(attrs, prot) __pgprot(0) 592 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv) NULL 593 #define __alloc_from_pool(size, ret_page) NULL 594 #define __alloc_from_contiguous(dev, size, prot, ret, c, wv) NULL 595 #define __free_from_pool(cpu_addr, size) 0 596 #define __free_from_contiguous(dev, page, cpu_addr, size, wv) do { } while (0) 597 #define __dma_free_remap(cpu_addr, size) do { } while (0) 598 599 #endif /* CONFIG_MMU */ 600 601 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp, 602 struct page **ret_page) 603 { 604 struct page *page; 605 page = __dma_alloc_buffer(dev, size, gfp); 606 if (!page) 607 return NULL; 608 609 *ret_page = page; 610 return page_address(page); 611 } 612 613 614 615 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 616 gfp_t gfp, pgprot_t prot, bool is_coherent, 617 struct dma_attrs *attrs, const void *caller) 618 { 619 u64 mask = get_coherent_dma_mask(dev); 620 struct page *page = NULL; 621 void *addr; 622 bool want_vaddr; 623 624 #ifdef CONFIG_DMA_API_DEBUG 625 u64 limit = (mask + 1) & ~mask; 626 if (limit && size >= limit) { 627 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", 628 size, mask); 629 return NULL; 630 } 631 #endif 632 633 if (!mask) 634 return NULL; 635 636 if (mask < 0xffffffffULL) 637 gfp |= GFP_DMA; 638 639 /* 640 * Following is a work-around (a.k.a. hack) to prevent pages 641 * with __GFP_COMP being passed to split_page() which cannot 642 * handle them. The real problem is that this flag probably 643 * should be 0 on ARM as it is not supported on this 644 * platform; see CONFIG_HUGETLBFS. 645 */ 646 gfp &= ~(__GFP_COMP); 647 648 *handle = DMA_ERROR_CODE; 649 size = PAGE_ALIGN(size); 650 want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs); 651 652 if (nommu()) 653 addr = __alloc_simple_buffer(dev, size, gfp, &page); 654 else if (dev_get_cma_area(dev) && (gfp & __GFP_WAIT)) 655 addr = __alloc_from_contiguous(dev, size, prot, &page, 656 caller, want_vaddr); 657 else if (is_coherent) 658 addr = __alloc_simple_buffer(dev, size, gfp, &page); 659 else if (!(gfp & __GFP_WAIT)) 660 addr = __alloc_from_pool(size, &page); 661 else 662 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, 663 caller, want_vaddr); 664 665 if (page) 666 *handle = pfn_to_dma(dev, page_to_pfn(page)); 667 668 return want_vaddr ? addr : page; 669 } 670 671 /* 672 * Allocate DMA-coherent memory space and return both the kernel remapped 673 * virtual and bus address for that space. 674 */ 675 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 676 gfp_t gfp, struct dma_attrs *attrs) 677 { 678 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 679 680 return __dma_alloc(dev, size, handle, gfp, prot, false, 681 attrs, __builtin_return_address(0)); 682 } 683 684 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 685 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs) 686 { 687 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true, 688 attrs, __builtin_return_address(0)); 689 } 690 691 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 692 void *cpu_addr, dma_addr_t dma_addr, size_t size, 693 struct dma_attrs *attrs) 694 { 695 int ret = -ENXIO; 696 #ifdef CONFIG_MMU 697 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 698 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 699 unsigned long pfn = dma_to_pfn(dev, dma_addr); 700 unsigned long off = vma->vm_pgoff; 701 702 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) 703 return ret; 704 705 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 706 ret = remap_pfn_range(vma, vma->vm_start, 707 pfn + off, 708 vma->vm_end - vma->vm_start, 709 vma->vm_page_prot); 710 } 711 #endif /* CONFIG_MMU */ 712 713 return ret; 714 } 715 716 /* 717 * Create userspace mapping for the DMA-coherent memory. 718 */ 719 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma, 720 void *cpu_addr, dma_addr_t dma_addr, size_t size, 721 struct dma_attrs *attrs) 722 { 723 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 724 } 725 726 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 727 void *cpu_addr, dma_addr_t dma_addr, size_t size, 728 struct dma_attrs *attrs) 729 { 730 #ifdef CONFIG_MMU 731 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 732 #endif /* CONFIG_MMU */ 733 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 734 } 735 736 /* 737 * Free a buffer as defined by the above mapping. 738 */ 739 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 740 dma_addr_t handle, struct dma_attrs *attrs, 741 bool is_coherent) 742 { 743 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 744 bool want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs); 745 746 size = PAGE_ALIGN(size); 747 748 if (nommu()) { 749 __dma_free_buffer(page, size); 750 } else if (!is_coherent && __free_from_pool(cpu_addr, size)) { 751 return; 752 } else if (!dev_get_cma_area(dev)) { 753 if (want_vaddr && !is_coherent) 754 __dma_free_remap(cpu_addr, size); 755 __dma_free_buffer(page, size); 756 } else { 757 /* 758 * Non-atomic allocations cannot be freed with IRQs disabled 759 */ 760 WARN_ON(irqs_disabled()); 761 __free_from_contiguous(dev, page, cpu_addr, size, want_vaddr); 762 } 763 } 764 765 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 766 dma_addr_t handle, struct dma_attrs *attrs) 767 { 768 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false); 769 } 770 771 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 772 dma_addr_t handle, struct dma_attrs *attrs) 773 { 774 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true); 775 } 776 777 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 778 void *cpu_addr, dma_addr_t handle, size_t size, 779 struct dma_attrs *attrs) 780 { 781 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 782 int ret; 783 784 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 785 if (unlikely(ret)) 786 return ret; 787 788 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 789 return 0; 790 } 791 792 static void dma_cache_maint_page(struct page *page, unsigned long offset, 793 size_t size, enum dma_data_direction dir, 794 void (*op)(const void *, size_t, int)) 795 { 796 unsigned long pfn; 797 size_t left = size; 798 799 pfn = page_to_pfn(page) + offset / PAGE_SIZE; 800 offset %= PAGE_SIZE; 801 802 /* 803 * A single sg entry may refer to multiple physically contiguous 804 * pages. But we still need to process highmem pages individually. 805 * If highmem is not configured then the bulk of this loop gets 806 * optimized out. 807 */ 808 do { 809 size_t len = left; 810 void *vaddr; 811 812 page = pfn_to_page(pfn); 813 814 if (PageHighMem(page)) { 815 if (len + offset > PAGE_SIZE) 816 len = PAGE_SIZE - offset; 817 818 if (cache_is_vipt_nonaliasing()) { 819 vaddr = kmap_atomic(page); 820 op(vaddr + offset, len, dir); 821 kunmap_atomic(vaddr); 822 } else { 823 vaddr = kmap_high_get(page); 824 if (vaddr) { 825 op(vaddr + offset, len, dir); 826 kunmap_high(page); 827 } 828 } 829 } else { 830 vaddr = page_address(page) + offset; 831 op(vaddr, len, dir); 832 } 833 offset = 0; 834 pfn++; 835 left -= len; 836 } while (left); 837 } 838 839 /* 840 * Make an area consistent for devices. 841 * Note: Drivers should NOT use this function directly, as it will break 842 * platforms with CONFIG_DMABOUNCE. 843 * Use the driver DMA support - see dma-mapping.h (dma_sync_*) 844 */ 845 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off, 846 size_t size, enum dma_data_direction dir) 847 { 848 phys_addr_t paddr; 849 850 dma_cache_maint_page(page, off, size, dir, dmac_map_area); 851 852 paddr = page_to_phys(page) + off; 853 if (dir == DMA_FROM_DEVICE) { 854 outer_inv_range(paddr, paddr + size); 855 } else { 856 outer_clean_range(paddr, paddr + size); 857 } 858 /* FIXME: non-speculating: flush on bidirectional mappings? */ 859 } 860 861 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off, 862 size_t size, enum dma_data_direction dir) 863 { 864 phys_addr_t paddr = page_to_phys(page) + off; 865 866 /* FIXME: non-speculating: not required */ 867 /* in any case, don't bother invalidating if DMA to device */ 868 if (dir != DMA_TO_DEVICE) { 869 outer_inv_range(paddr, paddr + size); 870 871 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); 872 } 873 874 /* 875 * Mark the D-cache clean for these pages to avoid extra flushing. 876 */ 877 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) { 878 unsigned long pfn; 879 size_t left = size; 880 881 pfn = page_to_pfn(page) + off / PAGE_SIZE; 882 off %= PAGE_SIZE; 883 if (off) { 884 pfn++; 885 left -= PAGE_SIZE - off; 886 } 887 while (left >= PAGE_SIZE) { 888 page = pfn_to_page(pfn++); 889 set_bit(PG_dcache_clean, &page->flags); 890 left -= PAGE_SIZE; 891 } 892 } 893 } 894 895 /** 896 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA 897 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 898 * @sg: list of buffers 899 * @nents: number of buffers to map 900 * @dir: DMA transfer direction 901 * 902 * Map a set of buffers described by scatterlist in streaming mode for DMA. 903 * This is the scatter-gather version of the dma_map_single interface. 904 * Here the scatter gather list elements are each tagged with the 905 * appropriate dma address and length. They are obtained via 906 * sg_dma_{address,length}. 907 * 908 * Device ownership issues as mentioned for dma_map_single are the same 909 * here. 910 */ 911 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 912 enum dma_data_direction dir, struct dma_attrs *attrs) 913 { 914 struct dma_map_ops *ops = get_dma_ops(dev); 915 struct scatterlist *s; 916 int i, j; 917 918 for_each_sg(sg, s, nents, i) { 919 #ifdef CONFIG_NEED_SG_DMA_LENGTH 920 s->dma_length = s->length; 921 #endif 922 s->dma_address = ops->map_page(dev, sg_page(s), s->offset, 923 s->length, dir, attrs); 924 if (dma_mapping_error(dev, s->dma_address)) 925 goto bad_mapping; 926 } 927 return nents; 928 929 bad_mapping: 930 for_each_sg(sg, s, i, j) 931 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 932 return 0; 933 } 934 935 /** 936 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 937 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 938 * @sg: list of buffers 939 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 940 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 941 * 942 * Unmap a set of streaming mode DMA translations. Again, CPU access 943 * rules concerning calls here are the same as for dma_unmap_single(). 944 */ 945 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 946 enum dma_data_direction dir, struct dma_attrs *attrs) 947 { 948 struct dma_map_ops *ops = get_dma_ops(dev); 949 struct scatterlist *s; 950 951 int i; 952 953 for_each_sg(sg, s, nents, i) 954 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 955 } 956 957 /** 958 * arm_dma_sync_sg_for_cpu 959 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 960 * @sg: list of buffers 961 * @nents: number of buffers to map (returned from dma_map_sg) 962 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 963 */ 964 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 965 int nents, enum dma_data_direction dir) 966 { 967 struct dma_map_ops *ops = get_dma_ops(dev); 968 struct scatterlist *s; 969 int i; 970 971 for_each_sg(sg, s, nents, i) 972 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length, 973 dir); 974 } 975 976 /** 977 * arm_dma_sync_sg_for_device 978 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 979 * @sg: list of buffers 980 * @nents: number of buffers to map (returned from dma_map_sg) 981 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 982 */ 983 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 984 int nents, enum dma_data_direction dir) 985 { 986 struct dma_map_ops *ops = get_dma_ops(dev); 987 struct scatterlist *s; 988 int i; 989 990 for_each_sg(sg, s, nents, i) 991 ops->sync_single_for_device(dev, sg_dma_address(s), s->length, 992 dir); 993 } 994 995 /* 996 * Return whether the given device DMA address mask can be supported 997 * properly. For example, if your device can only drive the low 24-bits 998 * during bus mastering, then you would pass 0x00ffffff as the mask 999 * to this function. 1000 */ 1001 int dma_supported(struct device *dev, u64 mask) 1002 { 1003 return __dma_supported(dev, mask, false); 1004 } 1005 EXPORT_SYMBOL(dma_supported); 1006 1007 int arm_dma_set_mask(struct device *dev, u64 dma_mask) 1008 { 1009 if (!dev->dma_mask || !dma_supported(dev, dma_mask)) 1010 return -EIO; 1011 1012 *dev->dma_mask = dma_mask; 1013 1014 return 0; 1015 } 1016 1017 #define PREALLOC_DMA_DEBUG_ENTRIES 4096 1018 1019 static int __init dma_debug_do_init(void) 1020 { 1021 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); 1022 return 0; 1023 } 1024 fs_initcall(dma_debug_do_init); 1025 1026 #ifdef CONFIG_ARM_DMA_USE_IOMMU 1027 1028 /* IOMMU */ 1029 1030 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping); 1031 1032 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, 1033 size_t size) 1034 { 1035 unsigned int order = get_order(size); 1036 unsigned int align = 0; 1037 unsigned int count, start; 1038 size_t mapping_size = mapping->bits << PAGE_SHIFT; 1039 unsigned long flags; 1040 dma_addr_t iova; 1041 int i; 1042 1043 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT) 1044 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT; 1045 1046 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1047 align = (1 << order) - 1; 1048 1049 spin_lock_irqsave(&mapping->lock, flags); 1050 for (i = 0; i < mapping->nr_bitmaps; i++) { 1051 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1052 mapping->bits, 0, count, align); 1053 1054 if (start > mapping->bits) 1055 continue; 1056 1057 bitmap_set(mapping->bitmaps[i], start, count); 1058 break; 1059 } 1060 1061 /* 1062 * No unused range found. Try to extend the existing mapping 1063 * and perform a second attempt to reserve an IO virtual 1064 * address range of size bytes. 1065 */ 1066 if (i == mapping->nr_bitmaps) { 1067 if (extend_iommu_mapping(mapping)) { 1068 spin_unlock_irqrestore(&mapping->lock, flags); 1069 return DMA_ERROR_CODE; 1070 } 1071 1072 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1073 mapping->bits, 0, count, align); 1074 1075 if (start > mapping->bits) { 1076 spin_unlock_irqrestore(&mapping->lock, flags); 1077 return DMA_ERROR_CODE; 1078 } 1079 1080 bitmap_set(mapping->bitmaps[i], start, count); 1081 } 1082 spin_unlock_irqrestore(&mapping->lock, flags); 1083 1084 iova = mapping->base + (mapping_size * i); 1085 iova += start << PAGE_SHIFT; 1086 1087 return iova; 1088 } 1089 1090 static inline void __free_iova(struct dma_iommu_mapping *mapping, 1091 dma_addr_t addr, size_t size) 1092 { 1093 unsigned int start, count; 1094 size_t mapping_size = mapping->bits << PAGE_SHIFT; 1095 unsigned long flags; 1096 dma_addr_t bitmap_base; 1097 u32 bitmap_index; 1098 1099 if (!size) 1100 return; 1101 1102 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size; 1103 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions); 1104 1105 bitmap_base = mapping->base + mapping_size * bitmap_index; 1106 1107 start = (addr - bitmap_base) >> PAGE_SHIFT; 1108 1109 if (addr + size > bitmap_base + mapping_size) { 1110 /* 1111 * The address range to be freed reaches into the iova 1112 * range of the next bitmap. This should not happen as 1113 * we don't allow this in __alloc_iova (at the 1114 * moment). 1115 */ 1116 BUG(); 1117 } else 1118 count = size >> PAGE_SHIFT; 1119 1120 spin_lock_irqsave(&mapping->lock, flags); 1121 bitmap_clear(mapping->bitmaps[bitmap_index], start, count); 1122 spin_unlock_irqrestore(&mapping->lock, flags); 1123 } 1124 1125 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, 1126 gfp_t gfp, struct dma_attrs *attrs) 1127 { 1128 struct page **pages; 1129 int count = size >> PAGE_SHIFT; 1130 int array_size = count * sizeof(struct page *); 1131 int i = 0; 1132 1133 if (array_size <= PAGE_SIZE) 1134 pages = kzalloc(array_size, GFP_KERNEL); 1135 else 1136 pages = vzalloc(array_size); 1137 if (!pages) 1138 return NULL; 1139 1140 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) 1141 { 1142 unsigned long order = get_order(size); 1143 struct page *page; 1144 1145 page = dma_alloc_from_contiguous(dev, count, order); 1146 if (!page) 1147 goto error; 1148 1149 __dma_clear_buffer(page, size); 1150 1151 for (i = 0; i < count; i++) 1152 pages[i] = page + i; 1153 1154 return pages; 1155 } 1156 1157 /* 1158 * IOMMU can map any pages, so himem can also be used here 1159 */ 1160 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 1161 1162 while (count) { 1163 int j, order; 1164 1165 for (order = __fls(count); order > 0; --order) { 1166 /* 1167 * We do not want OOM killer to be invoked as long 1168 * as we can fall back to single pages, so we force 1169 * __GFP_NORETRY for orders higher than zero. 1170 */ 1171 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order); 1172 if (pages[i]) 1173 break; 1174 } 1175 1176 if (!pages[i]) { 1177 /* 1178 * Fall back to single page allocation. 1179 * Might invoke OOM killer as last resort. 1180 */ 1181 pages[i] = alloc_pages(gfp, 0); 1182 if (!pages[i]) 1183 goto error; 1184 } 1185 1186 if (order) { 1187 split_page(pages[i], order); 1188 j = 1 << order; 1189 while (--j) 1190 pages[i + j] = pages[i] + j; 1191 } 1192 1193 __dma_clear_buffer(pages[i], PAGE_SIZE << order); 1194 i += 1 << order; 1195 count -= 1 << order; 1196 } 1197 1198 return pages; 1199 error: 1200 while (i--) 1201 if (pages[i]) 1202 __free_pages(pages[i], 0); 1203 if (array_size <= PAGE_SIZE) 1204 kfree(pages); 1205 else 1206 vfree(pages); 1207 return NULL; 1208 } 1209 1210 static int __iommu_free_buffer(struct device *dev, struct page **pages, 1211 size_t size, struct dma_attrs *attrs) 1212 { 1213 int count = size >> PAGE_SHIFT; 1214 int array_size = count * sizeof(struct page *); 1215 int i; 1216 1217 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) { 1218 dma_release_from_contiguous(dev, pages[0], count); 1219 } else { 1220 for (i = 0; i < count; i++) 1221 if (pages[i]) 1222 __free_pages(pages[i], 0); 1223 } 1224 1225 if (array_size <= PAGE_SIZE) 1226 kfree(pages); 1227 else 1228 vfree(pages); 1229 return 0; 1230 } 1231 1232 /* 1233 * Create a CPU mapping for a specified pages 1234 */ 1235 static void * 1236 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot, 1237 const void *caller) 1238 { 1239 return dma_common_pages_remap(pages, size, 1240 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller); 1241 } 1242 1243 /* 1244 * Create a mapping in device IO address space for specified pages 1245 */ 1246 static dma_addr_t 1247 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size) 1248 { 1249 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1250 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1251 dma_addr_t dma_addr, iova; 1252 int i; 1253 1254 dma_addr = __alloc_iova(mapping, size); 1255 if (dma_addr == DMA_ERROR_CODE) 1256 return dma_addr; 1257 1258 iova = dma_addr; 1259 for (i = 0; i < count; ) { 1260 int ret; 1261 1262 unsigned int next_pfn = page_to_pfn(pages[i]) + 1; 1263 phys_addr_t phys = page_to_phys(pages[i]); 1264 unsigned int len, j; 1265 1266 for (j = i + 1; j < count; j++, next_pfn++) 1267 if (page_to_pfn(pages[j]) != next_pfn) 1268 break; 1269 1270 len = (j - i) << PAGE_SHIFT; 1271 ret = iommu_map(mapping->domain, iova, phys, len, 1272 IOMMU_READ|IOMMU_WRITE); 1273 if (ret < 0) 1274 goto fail; 1275 iova += len; 1276 i = j; 1277 } 1278 return dma_addr; 1279 fail: 1280 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); 1281 __free_iova(mapping, dma_addr, size); 1282 return DMA_ERROR_CODE; 1283 } 1284 1285 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) 1286 { 1287 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1288 1289 /* 1290 * add optional in-page offset from iova to size and align 1291 * result to page size 1292 */ 1293 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); 1294 iova &= PAGE_MASK; 1295 1296 iommu_unmap(mapping->domain, iova, size); 1297 __free_iova(mapping, iova, size); 1298 return 0; 1299 } 1300 1301 static struct page **__atomic_get_pages(void *addr) 1302 { 1303 struct page *page; 1304 phys_addr_t phys; 1305 1306 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr); 1307 page = phys_to_page(phys); 1308 1309 return (struct page **)page; 1310 } 1311 1312 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs) 1313 { 1314 struct vm_struct *area; 1315 1316 if (__in_atomic_pool(cpu_addr, PAGE_SIZE)) 1317 return __atomic_get_pages(cpu_addr); 1318 1319 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) 1320 return cpu_addr; 1321 1322 area = find_vm_area(cpu_addr); 1323 if (area && (area->flags & VM_ARM_DMA_CONSISTENT)) 1324 return area->pages; 1325 return NULL; 1326 } 1327 1328 static void *__iommu_alloc_atomic(struct device *dev, size_t size, 1329 dma_addr_t *handle) 1330 { 1331 struct page *page; 1332 void *addr; 1333 1334 addr = __alloc_from_pool(size, &page); 1335 if (!addr) 1336 return NULL; 1337 1338 *handle = __iommu_create_mapping(dev, &page, size); 1339 if (*handle == DMA_ERROR_CODE) 1340 goto err_mapping; 1341 1342 return addr; 1343 1344 err_mapping: 1345 __free_from_pool(addr, size); 1346 return NULL; 1347 } 1348 1349 static void __iommu_free_atomic(struct device *dev, void *cpu_addr, 1350 dma_addr_t handle, size_t size) 1351 { 1352 __iommu_remove_mapping(dev, handle, size); 1353 __free_from_pool(cpu_addr, size); 1354 } 1355 1356 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, 1357 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs) 1358 { 1359 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 1360 struct page **pages; 1361 void *addr = NULL; 1362 1363 *handle = DMA_ERROR_CODE; 1364 size = PAGE_ALIGN(size); 1365 1366 if (!(gfp & __GFP_WAIT)) 1367 return __iommu_alloc_atomic(dev, size, handle); 1368 1369 /* 1370 * Following is a work-around (a.k.a. hack) to prevent pages 1371 * with __GFP_COMP being passed to split_page() which cannot 1372 * handle them. The real problem is that this flag probably 1373 * should be 0 on ARM as it is not supported on this 1374 * platform; see CONFIG_HUGETLBFS. 1375 */ 1376 gfp &= ~(__GFP_COMP); 1377 1378 pages = __iommu_alloc_buffer(dev, size, gfp, attrs); 1379 if (!pages) 1380 return NULL; 1381 1382 *handle = __iommu_create_mapping(dev, pages, size); 1383 if (*handle == DMA_ERROR_CODE) 1384 goto err_buffer; 1385 1386 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) 1387 return pages; 1388 1389 addr = __iommu_alloc_remap(pages, size, gfp, prot, 1390 __builtin_return_address(0)); 1391 if (!addr) 1392 goto err_mapping; 1393 1394 return addr; 1395 1396 err_mapping: 1397 __iommu_remove_mapping(dev, *handle, size); 1398 err_buffer: 1399 __iommu_free_buffer(dev, pages, size, attrs); 1400 return NULL; 1401 } 1402 1403 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 1404 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1405 struct dma_attrs *attrs) 1406 { 1407 unsigned long uaddr = vma->vm_start; 1408 unsigned long usize = vma->vm_end - vma->vm_start; 1409 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1410 1411 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 1412 1413 if (!pages) 1414 return -ENXIO; 1415 1416 do { 1417 int ret = vm_insert_page(vma, uaddr, *pages++); 1418 if (ret) { 1419 pr_err("Remapping memory failed: %d\n", ret); 1420 return ret; 1421 } 1422 uaddr += PAGE_SIZE; 1423 usize -= PAGE_SIZE; 1424 } while (usize > 0); 1425 1426 return 0; 1427 } 1428 1429 /* 1430 * free a page as defined by the above mapping. 1431 * Must not be called with IRQs disabled. 1432 */ 1433 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 1434 dma_addr_t handle, struct dma_attrs *attrs) 1435 { 1436 struct page **pages; 1437 size = PAGE_ALIGN(size); 1438 1439 if (__in_atomic_pool(cpu_addr, size)) { 1440 __iommu_free_atomic(dev, cpu_addr, handle, size); 1441 return; 1442 } 1443 1444 pages = __iommu_get_pages(cpu_addr, attrs); 1445 if (!pages) { 1446 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 1447 return; 1448 } 1449 1450 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) { 1451 dma_common_free_remap(cpu_addr, size, 1452 VM_ARM_DMA_CONSISTENT | VM_USERMAP); 1453 } 1454 1455 __iommu_remove_mapping(dev, handle, size); 1456 __iommu_free_buffer(dev, pages, size, attrs); 1457 } 1458 1459 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 1460 void *cpu_addr, dma_addr_t dma_addr, 1461 size_t size, struct dma_attrs *attrs) 1462 { 1463 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1464 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1465 1466 if (!pages) 1467 return -ENXIO; 1468 1469 return sg_alloc_table_from_pages(sgt, pages, count, 0, size, 1470 GFP_KERNEL); 1471 } 1472 1473 static int __dma_direction_to_prot(enum dma_data_direction dir) 1474 { 1475 int prot; 1476 1477 switch (dir) { 1478 case DMA_BIDIRECTIONAL: 1479 prot = IOMMU_READ | IOMMU_WRITE; 1480 break; 1481 case DMA_TO_DEVICE: 1482 prot = IOMMU_READ; 1483 break; 1484 case DMA_FROM_DEVICE: 1485 prot = IOMMU_WRITE; 1486 break; 1487 default: 1488 prot = 0; 1489 } 1490 1491 return prot; 1492 } 1493 1494 /* 1495 * Map a part of the scatter-gather list into contiguous io address space 1496 */ 1497 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg, 1498 size_t size, dma_addr_t *handle, 1499 enum dma_data_direction dir, struct dma_attrs *attrs, 1500 bool is_coherent) 1501 { 1502 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1503 dma_addr_t iova, iova_base; 1504 int ret = 0; 1505 unsigned int count; 1506 struct scatterlist *s; 1507 int prot; 1508 1509 size = PAGE_ALIGN(size); 1510 *handle = DMA_ERROR_CODE; 1511 1512 iova_base = iova = __alloc_iova(mapping, size); 1513 if (iova == DMA_ERROR_CODE) 1514 return -ENOMEM; 1515 1516 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) { 1517 phys_addr_t phys = sg_phys(s) & PAGE_MASK; 1518 unsigned int len = PAGE_ALIGN(s->offset + s->length); 1519 1520 if (!is_coherent && 1521 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1522 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1523 1524 prot = __dma_direction_to_prot(dir); 1525 1526 ret = iommu_map(mapping->domain, iova, phys, len, prot); 1527 if (ret < 0) 1528 goto fail; 1529 count += len >> PAGE_SHIFT; 1530 iova += len; 1531 } 1532 *handle = iova_base; 1533 1534 return 0; 1535 fail: 1536 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE); 1537 __free_iova(mapping, iova_base, size); 1538 return ret; 1539 } 1540 1541 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1542 enum dma_data_direction dir, struct dma_attrs *attrs, 1543 bool is_coherent) 1544 { 1545 struct scatterlist *s = sg, *dma = sg, *start = sg; 1546 int i, count = 0; 1547 unsigned int offset = s->offset; 1548 unsigned int size = s->offset + s->length; 1549 unsigned int max = dma_get_max_seg_size(dev); 1550 1551 for (i = 1; i < nents; i++) { 1552 s = sg_next(s); 1553 1554 s->dma_address = DMA_ERROR_CODE; 1555 s->dma_length = 0; 1556 1557 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { 1558 if (__map_sg_chunk(dev, start, size, &dma->dma_address, 1559 dir, attrs, is_coherent) < 0) 1560 goto bad_mapping; 1561 1562 dma->dma_address += offset; 1563 dma->dma_length = size - offset; 1564 1565 size = offset = s->offset; 1566 start = s; 1567 dma = sg_next(dma); 1568 count += 1; 1569 } 1570 size += s->length; 1571 } 1572 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs, 1573 is_coherent) < 0) 1574 goto bad_mapping; 1575 1576 dma->dma_address += offset; 1577 dma->dma_length = size - offset; 1578 1579 return count+1; 1580 1581 bad_mapping: 1582 for_each_sg(sg, s, count, i) 1583 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); 1584 return 0; 1585 } 1586 1587 /** 1588 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1589 * @dev: valid struct device pointer 1590 * @sg: list of buffers 1591 * @nents: number of buffers to map 1592 * @dir: DMA transfer direction 1593 * 1594 * Map a set of i/o coherent buffers described by scatterlist in streaming 1595 * mode for DMA. The scatter gather list elements are merged together (if 1596 * possible) and tagged with the appropriate dma address and length. They are 1597 * obtained via sg_dma_{address,length}. 1598 */ 1599 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1600 int nents, enum dma_data_direction dir, struct dma_attrs *attrs) 1601 { 1602 return __iommu_map_sg(dev, sg, nents, dir, attrs, true); 1603 } 1604 1605 /** 1606 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1607 * @dev: valid struct device pointer 1608 * @sg: list of buffers 1609 * @nents: number of buffers to map 1610 * @dir: DMA transfer direction 1611 * 1612 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1613 * The scatter gather list elements are merged together (if possible) and 1614 * tagged with the appropriate dma address and length. They are obtained via 1615 * sg_dma_{address,length}. 1616 */ 1617 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1618 int nents, enum dma_data_direction dir, struct dma_attrs *attrs) 1619 { 1620 return __iommu_map_sg(dev, sg, nents, dir, attrs, false); 1621 } 1622 1623 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1624 int nents, enum dma_data_direction dir, struct dma_attrs *attrs, 1625 bool is_coherent) 1626 { 1627 struct scatterlist *s; 1628 int i; 1629 1630 for_each_sg(sg, s, nents, i) { 1631 if (sg_dma_len(s)) 1632 __iommu_remove_mapping(dev, sg_dma_address(s), 1633 sg_dma_len(s)); 1634 if (!is_coherent && 1635 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1636 __dma_page_dev_to_cpu(sg_page(s), s->offset, 1637 s->length, dir); 1638 } 1639 } 1640 1641 /** 1642 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1643 * @dev: valid struct device pointer 1644 * @sg: list of buffers 1645 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1646 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1647 * 1648 * Unmap a set of streaming mode DMA translations. Again, CPU access 1649 * rules concerning calls here are the same as for dma_unmap_single(). 1650 */ 1651 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1652 int nents, enum dma_data_direction dir, struct dma_attrs *attrs) 1653 { 1654 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true); 1655 } 1656 1657 /** 1658 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1659 * @dev: valid struct device pointer 1660 * @sg: list of buffers 1661 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1662 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1663 * 1664 * Unmap a set of streaming mode DMA translations. Again, CPU access 1665 * rules concerning calls here are the same as for dma_unmap_single(). 1666 */ 1667 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1668 enum dma_data_direction dir, struct dma_attrs *attrs) 1669 { 1670 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false); 1671 } 1672 1673 /** 1674 * arm_iommu_sync_sg_for_cpu 1675 * @dev: valid struct device pointer 1676 * @sg: list of buffers 1677 * @nents: number of buffers to map (returned from dma_map_sg) 1678 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1679 */ 1680 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1681 int nents, enum dma_data_direction dir) 1682 { 1683 struct scatterlist *s; 1684 int i; 1685 1686 for_each_sg(sg, s, nents, i) 1687 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); 1688 1689 } 1690 1691 /** 1692 * arm_iommu_sync_sg_for_device 1693 * @dev: valid struct device pointer 1694 * @sg: list of buffers 1695 * @nents: number of buffers to map (returned from dma_map_sg) 1696 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1697 */ 1698 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1699 int nents, enum dma_data_direction dir) 1700 { 1701 struct scatterlist *s; 1702 int i; 1703 1704 for_each_sg(sg, s, nents, i) 1705 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1706 } 1707 1708 1709 /** 1710 * arm_coherent_iommu_map_page 1711 * @dev: valid struct device pointer 1712 * @page: page that buffer resides in 1713 * @offset: offset into page for start of buffer 1714 * @size: size of buffer to map 1715 * @dir: DMA transfer direction 1716 * 1717 * Coherent IOMMU aware version of arm_dma_map_page() 1718 */ 1719 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page, 1720 unsigned long offset, size_t size, enum dma_data_direction dir, 1721 struct dma_attrs *attrs) 1722 { 1723 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1724 dma_addr_t dma_addr; 1725 int ret, prot, len = PAGE_ALIGN(size + offset); 1726 1727 dma_addr = __alloc_iova(mapping, len); 1728 if (dma_addr == DMA_ERROR_CODE) 1729 return dma_addr; 1730 1731 prot = __dma_direction_to_prot(dir); 1732 1733 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot); 1734 if (ret < 0) 1735 goto fail; 1736 1737 return dma_addr + offset; 1738 fail: 1739 __free_iova(mapping, dma_addr, len); 1740 return DMA_ERROR_CODE; 1741 } 1742 1743 /** 1744 * arm_iommu_map_page 1745 * @dev: valid struct device pointer 1746 * @page: page that buffer resides in 1747 * @offset: offset into page for start of buffer 1748 * @size: size of buffer to map 1749 * @dir: DMA transfer direction 1750 * 1751 * IOMMU aware version of arm_dma_map_page() 1752 */ 1753 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page, 1754 unsigned long offset, size_t size, enum dma_data_direction dir, 1755 struct dma_attrs *attrs) 1756 { 1757 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1758 __dma_page_cpu_to_dev(page, offset, size, dir); 1759 1760 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs); 1761 } 1762 1763 /** 1764 * arm_coherent_iommu_unmap_page 1765 * @dev: valid struct device pointer 1766 * @handle: DMA address of buffer 1767 * @size: size of buffer (same as passed to dma_map_page) 1768 * @dir: DMA transfer direction (same as passed to dma_map_page) 1769 * 1770 * Coherent IOMMU aware version of arm_dma_unmap_page() 1771 */ 1772 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1773 size_t size, enum dma_data_direction dir, 1774 struct dma_attrs *attrs) 1775 { 1776 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1777 dma_addr_t iova = handle & PAGE_MASK; 1778 int offset = handle & ~PAGE_MASK; 1779 int len = PAGE_ALIGN(size + offset); 1780 1781 if (!iova) 1782 return; 1783 1784 iommu_unmap(mapping->domain, iova, len); 1785 __free_iova(mapping, iova, len); 1786 } 1787 1788 /** 1789 * arm_iommu_unmap_page 1790 * @dev: valid struct device pointer 1791 * @handle: DMA address of buffer 1792 * @size: size of buffer (same as passed to dma_map_page) 1793 * @dir: DMA transfer direction (same as passed to dma_map_page) 1794 * 1795 * IOMMU aware version of arm_dma_unmap_page() 1796 */ 1797 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1798 size_t size, enum dma_data_direction dir, 1799 struct dma_attrs *attrs) 1800 { 1801 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1802 dma_addr_t iova = handle & PAGE_MASK; 1803 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1804 int offset = handle & ~PAGE_MASK; 1805 int len = PAGE_ALIGN(size + offset); 1806 1807 if (!iova) 1808 return; 1809 1810 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1811 __dma_page_dev_to_cpu(page, offset, size, dir); 1812 1813 iommu_unmap(mapping->domain, iova, len); 1814 __free_iova(mapping, iova, len); 1815 } 1816 1817 static void arm_iommu_sync_single_for_cpu(struct device *dev, 1818 dma_addr_t handle, size_t size, enum dma_data_direction dir) 1819 { 1820 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1821 dma_addr_t iova = handle & PAGE_MASK; 1822 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1823 unsigned int offset = handle & ~PAGE_MASK; 1824 1825 if (!iova) 1826 return; 1827 1828 __dma_page_dev_to_cpu(page, offset, size, dir); 1829 } 1830 1831 static void arm_iommu_sync_single_for_device(struct device *dev, 1832 dma_addr_t handle, size_t size, enum dma_data_direction dir) 1833 { 1834 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1835 dma_addr_t iova = handle & PAGE_MASK; 1836 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1837 unsigned int offset = handle & ~PAGE_MASK; 1838 1839 if (!iova) 1840 return; 1841 1842 __dma_page_cpu_to_dev(page, offset, size, dir); 1843 } 1844 1845 struct dma_map_ops iommu_ops = { 1846 .alloc = arm_iommu_alloc_attrs, 1847 .free = arm_iommu_free_attrs, 1848 .mmap = arm_iommu_mmap_attrs, 1849 .get_sgtable = arm_iommu_get_sgtable, 1850 1851 .map_page = arm_iommu_map_page, 1852 .unmap_page = arm_iommu_unmap_page, 1853 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu, 1854 .sync_single_for_device = arm_iommu_sync_single_for_device, 1855 1856 .map_sg = arm_iommu_map_sg, 1857 .unmap_sg = arm_iommu_unmap_sg, 1858 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu, 1859 .sync_sg_for_device = arm_iommu_sync_sg_for_device, 1860 1861 .set_dma_mask = arm_dma_set_mask, 1862 }; 1863 1864 struct dma_map_ops iommu_coherent_ops = { 1865 .alloc = arm_iommu_alloc_attrs, 1866 .free = arm_iommu_free_attrs, 1867 .mmap = arm_iommu_mmap_attrs, 1868 .get_sgtable = arm_iommu_get_sgtable, 1869 1870 .map_page = arm_coherent_iommu_map_page, 1871 .unmap_page = arm_coherent_iommu_unmap_page, 1872 1873 .map_sg = arm_coherent_iommu_map_sg, 1874 .unmap_sg = arm_coherent_iommu_unmap_sg, 1875 1876 .set_dma_mask = arm_dma_set_mask, 1877 }; 1878 1879 /** 1880 * arm_iommu_create_mapping 1881 * @bus: pointer to the bus holding the client device (for IOMMU calls) 1882 * @base: start address of the valid IO address space 1883 * @size: maximum size of the valid IO address space 1884 * 1885 * Creates a mapping structure which holds information about used/unused 1886 * IO address ranges, which is required to perform memory allocation and 1887 * mapping with IOMMU aware functions. 1888 * 1889 * The client device need to be attached to the mapping with 1890 * arm_iommu_attach_device function. 1891 */ 1892 struct dma_iommu_mapping * 1893 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size) 1894 { 1895 unsigned int bits = size >> PAGE_SHIFT; 1896 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long); 1897 struct dma_iommu_mapping *mapping; 1898 int extensions = 1; 1899 int err = -ENOMEM; 1900 1901 /* currently only 32-bit DMA address space is supported */ 1902 if (size > DMA_BIT_MASK(32) + 1) 1903 return ERR_PTR(-ERANGE); 1904 1905 if (!bitmap_size) 1906 return ERR_PTR(-EINVAL); 1907 1908 if (bitmap_size > PAGE_SIZE) { 1909 extensions = bitmap_size / PAGE_SIZE; 1910 bitmap_size = PAGE_SIZE; 1911 } 1912 1913 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); 1914 if (!mapping) 1915 goto err; 1916 1917 mapping->bitmap_size = bitmap_size; 1918 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *), 1919 GFP_KERNEL); 1920 if (!mapping->bitmaps) 1921 goto err2; 1922 1923 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL); 1924 if (!mapping->bitmaps[0]) 1925 goto err3; 1926 1927 mapping->nr_bitmaps = 1; 1928 mapping->extensions = extensions; 1929 mapping->base = base; 1930 mapping->bits = BITS_PER_BYTE * bitmap_size; 1931 1932 spin_lock_init(&mapping->lock); 1933 1934 mapping->domain = iommu_domain_alloc(bus); 1935 if (!mapping->domain) 1936 goto err4; 1937 1938 kref_init(&mapping->kref); 1939 return mapping; 1940 err4: 1941 kfree(mapping->bitmaps[0]); 1942 err3: 1943 kfree(mapping->bitmaps); 1944 err2: 1945 kfree(mapping); 1946 err: 1947 return ERR_PTR(err); 1948 } 1949 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping); 1950 1951 static void release_iommu_mapping(struct kref *kref) 1952 { 1953 int i; 1954 struct dma_iommu_mapping *mapping = 1955 container_of(kref, struct dma_iommu_mapping, kref); 1956 1957 iommu_domain_free(mapping->domain); 1958 for (i = 0; i < mapping->nr_bitmaps; i++) 1959 kfree(mapping->bitmaps[i]); 1960 kfree(mapping->bitmaps); 1961 kfree(mapping); 1962 } 1963 1964 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping) 1965 { 1966 int next_bitmap; 1967 1968 if (mapping->nr_bitmaps >= mapping->extensions) 1969 return -EINVAL; 1970 1971 next_bitmap = mapping->nr_bitmaps; 1972 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size, 1973 GFP_ATOMIC); 1974 if (!mapping->bitmaps[next_bitmap]) 1975 return -ENOMEM; 1976 1977 mapping->nr_bitmaps++; 1978 1979 return 0; 1980 } 1981 1982 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) 1983 { 1984 if (mapping) 1985 kref_put(&mapping->kref, release_iommu_mapping); 1986 } 1987 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping); 1988 1989 static int __arm_iommu_attach_device(struct device *dev, 1990 struct dma_iommu_mapping *mapping) 1991 { 1992 int err; 1993 1994 err = iommu_attach_device(mapping->domain, dev); 1995 if (err) 1996 return err; 1997 1998 kref_get(&mapping->kref); 1999 to_dma_iommu_mapping(dev) = mapping; 2000 2001 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev)); 2002 return 0; 2003 } 2004 2005 /** 2006 * arm_iommu_attach_device 2007 * @dev: valid struct device pointer 2008 * @mapping: io address space mapping structure (returned from 2009 * arm_iommu_create_mapping) 2010 * 2011 * Attaches specified io address space mapping to the provided device. 2012 * This replaces the dma operations (dma_map_ops pointer) with the 2013 * IOMMU aware version. 2014 * 2015 * More than one client might be attached to the same io address space 2016 * mapping. 2017 */ 2018 int arm_iommu_attach_device(struct device *dev, 2019 struct dma_iommu_mapping *mapping) 2020 { 2021 int err; 2022 2023 err = __arm_iommu_attach_device(dev, mapping); 2024 if (err) 2025 return err; 2026 2027 set_dma_ops(dev, &iommu_ops); 2028 return 0; 2029 } 2030 EXPORT_SYMBOL_GPL(arm_iommu_attach_device); 2031 2032 static void __arm_iommu_detach_device(struct device *dev) 2033 { 2034 struct dma_iommu_mapping *mapping; 2035 2036 mapping = to_dma_iommu_mapping(dev); 2037 if (!mapping) { 2038 dev_warn(dev, "Not attached\n"); 2039 return; 2040 } 2041 2042 iommu_detach_device(mapping->domain, dev); 2043 kref_put(&mapping->kref, release_iommu_mapping); 2044 to_dma_iommu_mapping(dev) = NULL; 2045 2046 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev)); 2047 } 2048 2049 /** 2050 * arm_iommu_detach_device 2051 * @dev: valid struct device pointer 2052 * 2053 * Detaches the provided device from a previously attached map. 2054 * This voids the dma operations (dma_map_ops pointer) 2055 */ 2056 void arm_iommu_detach_device(struct device *dev) 2057 { 2058 __arm_iommu_detach_device(dev); 2059 set_dma_ops(dev, NULL); 2060 } 2061 EXPORT_SYMBOL_GPL(arm_iommu_detach_device); 2062 2063 static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent) 2064 { 2065 return coherent ? &iommu_coherent_ops : &iommu_ops; 2066 } 2067 2068 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 2069 struct iommu_ops *iommu) 2070 { 2071 struct dma_iommu_mapping *mapping; 2072 2073 if (!iommu) 2074 return false; 2075 2076 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size); 2077 if (IS_ERR(mapping)) { 2078 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n", 2079 size, dev_name(dev)); 2080 return false; 2081 } 2082 2083 if (__arm_iommu_attach_device(dev, mapping)) { 2084 pr_warn("Failed to attached device %s to IOMMU_mapping\n", 2085 dev_name(dev)); 2086 arm_iommu_release_mapping(mapping); 2087 return false; 2088 } 2089 2090 return true; 2091 } 2092 2093 static void arm_teardown_iommu_dma_ops(struct device *dev) 2094 { 2095 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2096 2097 if (!mapping) 2098 return; 2099 2100 __arm_iommu_detach_device(dev); 2101 arm_iommu_release_mapping(mapping); 2102 } 2103 2104 #else 2105 2106 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 2107 struct iommu_ops *iommu) 2108 { 2109 return false; 2110 } 2111 2112 static void arm_teardown_iommu_dma_ops(struct device *dev) { } 2113 2114 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops 2115 2116 #endif /* CONFIG_ARM_DMA_USE_IOMMU */ 2117 2118 static struct dma_map_ops *arm_get_dma_map_ops(bool coherent) 2119 { 2120 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops; 2121 } 2122 2123 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 2124 struct iommu_ops *iommu, bool coherent) 2125 { 2126 struct dma_map_ops *dma_ops; 2127 2128 dev->archdata.dma_coherent = coherent; 2129 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu)) 2130 dma_ops = arm_get_iommu_dma_map_ops(coherent); 2131 else 2132 dma_ops = arm_get_dma_map_ops(coherent); 2133 2134 set_dma_ops(dev, dma_ops); 2135 } 2136 2137 void arch_teardown_dma_ops(struct device *dev) 2138 { 2139 arm_teardown_iommu_dma_ops(dev); 2140 } 2141