xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision e8e0929d)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/slab.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 
21 #include <asm/memory.h>
22 #include <asm/highmem.h>
23 #include <asm/cacheflush.h>
24 #include <asm/tlbflush.h>
25 #include <asm/sizes.h>
26 
27 /* Sanity check size */
28 #if (CONSISTENT_DMA_SIZE % SZ_2M)
29 #error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
30 #endif
31 
32 #define CONSISTENT_END	(0xffe00000)
33 #define CONSISTENT_BASE	(CONSISTENT_END - CONSISTENT_DMA_SIZE)
34 
35 #define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
36 #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
37 #define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)
38 
39 static u64 get_coherent_dma_mask(struct device *dev)
40 {
41 	u64 mask = ISA_DMA_THRESHOLD;
42 
43 	if (dev) {
44 		mask = dev->coherent_dma_mask;
45 
46 		/*
47 		 * Sanity check the DMA mask - it must be non-zero, and
48 		 * must be able to be satisfied by a DMA allocation.
49 		 */
50 		if (mask == 0) {
51 			dev_warn(dev, "coherent DMA mask is unset\n");
52 			return 0;
53 		}
54 
55 		if ((~mask) & ISA_DMA_THRESHOLD) {
56 			dev_warn(dev, "coherent DMA mask %#llx is smaller "
57 				 "than system GFP_DMA mask %#llx\n",
58 				 mask, (unsigned long long)ISA_DMA_THRESHOLD);
59 			return 0;
60 		}
61 	}
62 
63 	return mask;
64 }
65 
66 #ifdef CONFIG_MMU
67 /*
68  * These are the page tables (2MB each) covering uncached, DMA consistent allocations
69  */
70 static pte_t *consistent_pte[NUM_CONSISTENT_PTES];
71 static DEFINE_SPINLOCK(consistent_lock);
72 
73 /*
74  * VM region handling support.
75  *
76  * This should become something generic, handling VM region allocations for
77  * vmalloc and similar (ioremap, module space, etc).
78  *
79  * I envisage vmalloc()'s supporting vm_struct becoming:
80  *
81  *  struct vm_struct {
82  *    struct vm_region	region;
83  *    unsigned long	flags;
84  *    struct page	**pages;
85  *    unsigned int	nr_pages;
86  *    unsigned long	phys_addr;
87  *  };
88  *
89  * get_vm_area() would then call vm_region_alloc with an appropriate
90  * struct vm_region head (eg):
91  *
92  *  struct vm_region vmalloc_head = {
93  *	.vm_list	= LIST_HEAD_INIT(vmalloc_head.vm_list),
94  *	.vm_start	= VMALLOC_START,
95  *	.vm_end		= VMALLOC_END,
96  *  };
97  *
98  * However, vmalloc_head.vm_start is variable (typically, it is dependent on
99  * the amount of RAM found at boot time.)  I would imagine that get_vm_area()
100  * would have to initialise this each time prior to calling vm_region_alloc().
101  */
102 struct arm_vm_region {
103 	struct list_head	vm_list;
104 	unsigned long		vm_start;
105 	unsigned long		vm_end;
106 	struct page		*vm_pages;
107 	int			vm_active;
108 };
109 
110 static struct arm_vm_region consistent_head = {
111 	.vm_list	= LIST_HEAD_INIT(consistent_head.vm_list),
112 	.vm_start	= CONSISTENT_BASE,
113 	.vm_end		= CONSISTENT_END,
114 };
115 
116 static struct arm_vm_region *
117 arm_vm_region_alloc(struct arm_vm_region *head, size_t size, gfp_t gfp)
118 {
119 	unsigned long addr = head->vm_start, end = head->vm_end - size;
120 	unsigned long flags;
121 	struct arm_vm_region *c, *new;
122 
123 	new = kmalloc(sizeof(struct arm_vm_region), gfp);
124 	if (!new)
125 		goto out;
126 
127 	spin_lock_irqsave(&consistent_lock, flags);
128 
129 	list_for_each_entry(c, &head->vm_list, vm_list) {
130 		if ((addr + size) < addr)
131 			goto nospc;
132 		if ((addr + size) <= c->vm_start)
133 			goto found;
134 		addr = c->vm_end;
135 		if (addr > end)
136 			goto nospc;
137 	}
138 
139  found:
140 	/*
141 	 * Insert this entry _before_ the one we found.
142 	 */
143 	list_add_tail(&new->vm_list, &c->vm_list);
144 	new->vm_start = addr;
145 	new->vm_end = addr + size;
146 	new->vm_active = 1;
147 
148 	spin_unlock_irqrestore(&consistent_lock, flags);
149 	return new;
150 
151  nospc:
152 	spin_unlock_irqrestore(&consistent_lock, flags);
153 	kfree(new);
154  out:
155 	return NULL;
156 }
157 
158 static struct arm_vm_region *arm_vm_region_find(struct arm_vm_region *head, unsigned long addr)
159 {
160 	struct arm_vm_region *c;
161 
162 	list_for_each_entry(c, &head->vm_list, vm_list) {
163 		if (c->vm_active && c->vm_start == addr)
164 			goto out;
165 	}
166 	c = NULL;
167  out:
168 	return c;
169 }
170 
171 #ifdef CONFIG_HUGETLB_PAGE
172 #error ARM Coherent DMA allocator does not (yet) support huge TLB
173 #endif
174 
175 static void *
176 __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
177 	    pgprot_t prot)
178 {
179 	struct page *page;
180 	struct arm_vm_region *c;
181 	unsigned long order;
182 	u64 mask = get_coherent_dma_mask(dev);
183 	u64 limit;
184 
185 	if (!consistent_pte[0]) {
186 		printk(KERN_ERR "%s: not initialised\n", __func__);
187 		dump_stack();
188 		return NULL;
189 	}
190 
191 	if (!mask)
192 		goto no_page;
193 
194 	/*
195 	 * Sanity check the allocation size.
196 	 */
197 	size = PAGE_ALIGN(size);
198 	limit = (mask + 1) & ~mask;
199 	if ((limit && size >= limit) ||
200 	    size >= (CONSISTENT_END - CONSISTENT_BASE)) {
201 		printk(KERN_WARNING "coherent allocation too big "
202 		       "(requested %#x mask %#llx)\n", size, mask);
203 		goto no_page;
204 	}
205 
206 	order = get_order(size);
207 
208 	if (mask != 0xffffffff)
209 		gfp |= GFP_DMA;
210 
211 	page = alloc_pages(gfp, order);
212 	if (!page)
213 		goto no_page;
214 
215 	/*
216 	 * Invalidate any data that might be lurking in the
217 	 * kernel direct-mapped region for device DMA.
218 	 */
219 	{
220 		void *ptr = page_address(page);
221 		memset(ptr, 0, size);
222 		dmac_flush_range(ptr, ptr + size);
223 		outer_flush_range(__pa(ptr), __pa(ptr) + size);
224 	}
225 
226 	/*
227 	 * Allocate a virtual address in the consistent mapping region.
228 	 */
229 	c = arm_vm_region_alloc(&consistent_head, size,
230 			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
231 	if (c) {
232 		pte_t *pte;
233 		struct page *end = page + (1 << order);
234 		int idx = CONSISTENT_PTE_INDEX(c->vm_start);
235 		u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
236 
237 		pte = consistent_pte[idx] + off;
238 		c->vm_pages = page;
239 
240 		split_page(page, order);
241 
242 		/*
243 		 * Set the "dma handle"
244 		 */
245 		*handle = page_to_dma(dev, page);
246 
247 		do {
248 			BUG_ON(!pte_none(*pte));
249 
250 			/*
251 			 * x86 does not mark the pages reserved...
252 			 */
253 			SetPageReserved(page);
254 			set_pte_ext(pte, mk_pte(page, prot), 0);
255 			page++;
256 			pte++;
257 			off++;
258 			if (off >= PTRS_PER_PTE) {
259 				off = 0;
260 				pte = consistent_pte[++idx];
261 			}
262 		} while (size -= PAGE_SIZE);
263 
264 		/*
265 		 * Free the otherwise unused pages.
266 		 */
267 		while (page < end) {
268 			__free_page(page);
269 			page++;
270 		}
271 
272 		return (void *)c->vm_start;
273 	}
274 
275 	if (page)
276 		__free_pages(page, order);
277  no_page:
278 	*handle = ~0;
279 	return NULL;
280 }
281 #else	/* !CONFIG_MMU */
282 static void *
283 __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
284 	    pgprot_t prot)
285 {
286 	void *virt;
287 	u64 mask = get_coherent_dma_mask(dev);
288 
289 	if (!mask)
290 		goto error;
291 
292 	if (mask != 0xffffffff)
293 		gfp |= GFP_DMA;
294 	virt = kmalloc(size, gfp);
295 	if (!virt)
296 		goto error;
297 
298 	*handle =  virt_to_dma(dev, virt);
299 	return virt;
300 
301 error:
302 	*handle = ~0;
303 	return NULL;
304 }
305 #endif	/* CONFIG_MMU */
306 
307 /*
308  * Allocate DMA-coherent memory space and return both the kernel remapped
309  * virtual and bus address for that space.
310  */
311 void *
312 dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
313 {
314 	void *memory;
315 
316 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
317 		return memory;
318 
319 	if (arch_is_coherent()) {
320 		void *virt;
321 
322 		virt = kmalloc(size, gfp);
323 		if (!virt)
324 			return NULL;
325 		*handle =  virt_to_dma(dev, virt);
326 
327 		return virt;
328 	}
329 
330 	return __dma_alloc(dev, size, handle, gfp,
331 			   pgprot_noncached(pgprot_kernel));
332 }
333 EXPORT_SYMBOL(dma_alloc_coherent);
334 
335 /*
336  * Allocate a writecombining region, in much the same way as
337  * dma_alloc_coherent above.
338  */
339 void *
340 dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
341 {
342 	return __dma_alloc(dev, size, handle, gfp,
343 			   pgprot_writecombine(pgprot_kernel));
344 }
345 EXPORT_SYMBOL(dma_alloc_writecombine);
346 
347 static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
348 		    void *cpu_addr, dma_addr_t dma_addr, size_t size)
349 {
350 	int ret = -ENXIO;
351 #ifdef CONFIG_MMU
352 	unsigned long flags, user_size, kern_size;
353 	struct arm_vm_region *c;
354 
355 	user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
356 
357 	spin_lock_irqsave(&consistent_lock, flags);
358 	c = arm_vm_region_find(&consistent_head, (unsigned long)cpu_addr);
359 	spin_unlock_irqrestore(&consistent_lock, flags);
360 
361 	if (c) {
362 		unsigned long off = vma->vm_pgoff;
363 
364 		kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
365 
366 		if (off < kern_size &&
367 		    user_size <= (kern_size - off)) {
368 			ret = remap_pfn_range(vma, vma->vm_start,
369 					      page_to_pfn(c->vm_pages) + off,
370 					      user_size << PAGE_SHIFT,
371 					      vma->vm_page_prot);
372 		}
373 	}
374 #endif	/* CONFIG_MMU */
375 
376 	return ret;
377 }
378 
379 int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
380 		      void *cpu_addr, dma_addr_t dma_addr, size_t size)
381 {
382 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
383 	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
384 }
385 EXPORT_SYMBOL(dma_mmap_coherent);
386 
387 int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
388 			  void *cpu_addr, dma_addr_t dma_addr, size_t size)
389 {
390 	vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
391 	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
392 }
393 EXPORT_SYMBOL(dma_mmap_writecombine);
394 
395 /*
396  * free a page as defined by the above mapping.
397  * Must not be called with IRQs disabled.
398  */
399 #ifdef CONFIG_MMU
400 void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
401 {
402 	struct arm_vm_region *c;
403 	unsigned long flags, addr;
404 	pte_t *ptep;
405 	int idx;
406 	u32 off;
407 
408 	WARN_ON(irqs_disabled());
409 
410 	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
411 		return;
412 
413 	if (arch_is_coherent()) {
414 		kfree(cpu_addr);
415 		return;
416 	}
417 
418 	size = PAGE_ALIGN(size);
419 
420 	spin_lock_irqsave(&consistent_lock, flags);
421 	c = arm_vm_region_find(&consistent_head, (unsigned long)cpu_addr);
422 	if (!c)
423 		goto no_area;
424 
425 	c->vm_active = 0;
426 	spin_unlock_irqrestore(&consistent_lock, flags);
427 
428 	if ((c->vm_end - c->vm_start) != size) {
429 		printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
430 		       __func__, c->vm_end - c->vm_start, size);
431 		dump_stack();
432 		size = c->vm_end - c->vm_start;
433 	}
434 
435 	idx = CONSISTENT_PTE_INDEX(c->vm_start);
436 	off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
437 	ptep = consistent_pte[idx] + off;
438 	addr = c->vm_start;
439 	do {
440 		pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
441 		unsigned long pfn;
442 
443 		ptep++;
444 		addr += PAGE_SIZE;
445 		off++;
446 		if (off >= PTRS_PER_PTE) {
447 			off = 0;
448 			ptep = consistent_pte[++idx];
449 		}
450 
451 		if (!pte_none(pte) && pte_present(pte)) {
452 			pfn = pte_pfn(pte);
453 
454 			if (pfn_valid(pfn)) {
455 				struct page *page = pfn_to_page(pfn);
456 
457 				/*
458 				 * x86 does not mark the pages reserved...
459 				 */
460 				ClearPageReserved(page);
461 
462 				__free_page(page);
463 				continue;
464 			}
465 		}
466 
467 		printk(KERN_CRIT "%s: bad page in kernel page table\n",
468 		       __func__);
469 	} while (size -= PAGE_SIZE);
470 
471 	flush_tlb_kernel_range(c->vm_start, c->vm_end);
472 
473 	spin_lock_irqsave(&consistent_lock, flags);
474 	list_del(&c->vm_list);
475 	spin_unlock_irqrestore(&consistent_lock, flags);
476 
477 	kfree(c);
478 	return;
479 
480  no_area:
481 	spin_unlock_irqrestore(&consistent_lock, flags);
482 	printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
483 	       __func__, cpu_addr);
484 	dump_stack();
485 }
486 #else	/* !CONFIG_MMU */
487 void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
488 {
489 	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
490 		return;
491 	kfree(cpu_addr);
492 }
493 #endif	/* CONFIG_MMU */
494 EXPORT_SYMBOL(dma_free_coherent);
495 
496 /*
497  * Initialise the consistent memory allocation.
498  */
499 static int __init consistent_init(void)
500 {
501 	int ret = 0;
502 #ifdef CONFIG_MMU
503 	pgd_t *pgd;
504 	pmd_t *pmd;
505 	pte_t *pte;
506 	int i = 0;
507 	u32 base = CONSISTENT_BASE;
508 
509 	do {
510 		pgd = pgd_offset(&init_mm, base);
511 		pmd = pmd_alloc(&init_mm, pgd, base);
512 		if (!pmd) {
513 			printk(KERN_ERR "%s: no pmd tables\n", __func__);
514 			ret = -ENOMEM;
515 			break;
516 		}
517 		WARN_ON(!pmd_none(*pmd));
518 
519 		pte = pte_alloc_kernel(pmd, base);
520 		if (!pte) {
521 			printk(KERN_ERR "%s: no pte tables\n", __func__);
522 			ret = -ENOMEM;
523 			break;
524 		}
525 
526 		consistent_pte[i++] = pte;
527 		base += (1 << PGDIR_SHIFT);
528 	} while (base < CONSISTENT_END);
529 #endif	/* !CONFIG_MMU */
530 
531 	return ret;
532 }
533 
534 core_initcall(consistent_init);
535 
536 /*
537  * Make an area consistent for devices.
538  * Note: Drivers should NOT use this function directly, as it will break
539  * platforms with CONFIG_DMABOUNCE.
540  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
541  */
542 void dma_cache_maint(const void *start, size_t size, int direction)
543 {
544 	void (*inner_op)(const void *, const void *);
545 	void (*outer_op)(unsigned long, unsigned long);
546 
547 	BUG_ON(!virt_addr_valid(start) || !virt_addr_valid(start + size - 1));
548 
549 	switch (direction) {
550 	case DMA_FROM_DEVICE:		/* invalidate only */
551 		inner_op = dmac_inv_range;
552 		outer_op = outer_inv_range;
553 		break;
554 	case DMA_TO_DEVICE:		/* writeback only */
555 		inner_op = dmac_clean_range;
556 		outer_op = outer_clean_range;
557 		break;
558 	case DMA_BIDIRECTIONAL:		/* writeback and invalidate */
559 		inner_op = dmac_flush_range;
560 		outer_op = outer_flush_range;
561 		break;
562 	default:
563 		BUG();
564 	}
565 
566 	inner_op(start, start + size);
567 	outer_op(__pa(start), __pa(start) + size);
568 }
569 EXPORT_SYMBOL(dma_cache_maint);
570 
571 static void dma_cache_maint_contiguous(struct page *page, unsigned long offset,
572 				       size_t size, int direction)
573 {
574 	void *vaddr;
575 	unsigned long paddr;
576 	void (*inner_op)(const void *, const void *);
577 	void (*outer_op)(unsigned long, unsigned long);
578 
579 	switch (direction) {
580 	case DMA_FROM_DEVICE:		/* invalidate only */
581 		inner_op = dmac_inv_range;
582 		outer_op = outer_inv_range;
583 		break;
584 	case DMA_TO_DEVICE:		/* writeback only */
585 		inner_op = dmac_clean_range;
586 		outer_op = outer_clean_range;
587 		break;
588 	case DMA_BIDIRECTIONAL:		/* writeback and invalidate */
589 		inner_op = dmac_flush_range;
590 		outer_op = outer_flush_range;
591 		break;
592 	default:
593 		BUG();
594 	}
595 
596 	if (!PageHighMem(page)) {
597 		vaddr = page_address(page) + offset;
598 		inner_op(vaddr, vaddr + size);
599 	} else {
600 		vaddr = kmap_high_get(page);
601 		if (vaddr) {
602 			vaddr += offset;
603 			inner_op(vaddr, vaddr + size);
604 			kunmap_high(page);
605 		}
606 	}
607 
608 	paddr = page_to_phys(page) + offset;
609 	outer_op(paddr, paddr + size);
610 }
611 
612 void dma_cache_maint_page(struct page *page, unsigned long offset,
613 			  size_t size, int dir)
614 {
615 	/*
616 	 * A single sg entry may refer to multiple physically contiguous
617 	 * pages.  But we still need to process highmem pages individually.
618 	 * If highmem is not configured then the bulk of this loop gets
619 	 * optimized out.
620 	 */
621 	size_t left = size;
622 	do {
623 		size_t len = left;
624 		if (PageHighMem(page) && len + offset > PAGE_SIZE) {
625 			if (offset >= PAGE_SIZE) {
626 				page += offset / PAGE_SIZE;
627 				offset %= PAGE_SIZE;
628 			}
629 			len = PAGE_SIZE - offset;
630 		}
631 		dma_cache_maint_contiguous(page, offset, len, dir);
632 		offset = 0;
633 		page++;
634 		left -= len;
635 	} while (left);
636 }
637 EXPORT_SYMBOL(dma_cache_maint_page);
638 
639 /**
640  * dma_map_sg - map a set of SG buffers for streaming mode DMA
641  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
642  * @sg: list of buffers
643  * @nents: number of buffers to map
644  * @dir: DMA transfer direction
645  *
646  * Map a set of buffers described by scatterlist in streaming mode for DMA.
647  * This is the scatter-gather version of the dma_map_single interface.
648  * Here the scatter gather list elements are each tagged with the
649  * appropriate dma address and length.  They are obtained via
650  * sg_dma_{address,length}.
651  *
652  * Device ownership issues as mentioned for dma_map_single are the same
653  * here.
654  */
655 int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
656 		enum dma_data_direction dir)
657 {
658 	struct scatterlist *s;
659 	int i, j;
660 
661 	for_each_sg(sg, s, nents, i) {
662 		s->dma_address = dma_map_page(dev, sg_page(s), s->offset,
663 						s->length, dir);
664 		if (dma_mapping_error(dev, s->dma_address))
665 			goto bad_mapping;
666 	}
667 	return nents;
668 
669  bad_mapping:
670 	for_each_sg(sg, s, i, j)
671 		dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
672 	return 0;
673 }
674 EXPORT_SYMBOL(dma_map_sg);
675 
676 /**
677  * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
678  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
679  * @sg: list of buffers
680  * @nents: number of buffers to unmap (returned from dma_map_sg)
681  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
682  *
683  * Unmap a set of streaming mode DMA translations.  Again, CPU access
684  * rules concerning calls here are the same as for dma_unmap_single().
685  */
686 void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
687 		enum dma_data_direction dir)
688 {
689 	struct scatterlist *s;
690 	int i;
691 
692 	for_each_sg(sg, s, nents, i)
693 		dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
694 }
695 EXPORT_SYMBOL(dma_unmap_sg);
696 
697 /**
698  * dma_sync_sg_for_cpu
699  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
700  * @sg: list of buffers
701  * @nents: number of buffers to map (returned from dma_map_sg)
702  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
703  */
704 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
705 			int nents, enum dma_data_direction dir)
706 {
707 	struct scatterlist *s;
708 	int i;
709 
710 	for_each_sg(sg, s, nents, i) {
711 		dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
712 					sg_dma_len(s), dir);
713 	}
714 }
715 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
716 
717 /**
718  * dma_sync_sg_for_device
719  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
720  * @sg: list of buffers
721  * @nents: number of buffers to map (returned from dma_map_sg)
722  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
723  */
724 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
725 			int nents, enum dma_data_direction dir)
726 {
727 	struct scatterlist *s;
728 	int i;
729 
730 	for_each_sg(sg, s, nents, i) {
731 		if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
732 					sg_dma_len(s), dir))
733 			continue;
734 
735 		if (!arch_is_coherent())
736 			dma_cache_maint_page(sg_page(s), s->offset,
737 					     s->length, dir);
738 	}
739 }
740 EXPORT_SYMBOL(dma_sync_sg_for_device);
741