xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision e5f586c763a079349398e2b0c7c271386193ac34)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/bootmem.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/genalloc.h>
16 #include <linux/gfp.h>
17 #include <linux/errno.h>
18 #include <linux/list.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-contiguous.h>
23 #include <linux/highmem.h>
24 #include <linux/memblock.h>
25 #include <linux/slab.h>
26 #include <linux/iommu.h>
27 #include <linux/io.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sizes.h>
30 #include <linux/cma.h>
31 
32 #include <asm/memory.h>
33 #include <asm/highmem.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mach/arch.h>
37 #include <asm/dma-iommu.h>
38 #include <asm/mach/map.h>
39 #include <asm/system_info.h>
40 #include <asm/dma-contiguous.h>
41 
42 #include "dma.h"
43 #include "mm.h"
44 
45 struct arm_dma_alloc_args {
46 	struct device *dev;
47 	size_t size;
48 	gfp_t gfp;
49 	pgprot_t prot;
50 	const void *caller;
51 	bool want_vaddr;
52 	int coherent_flag;
53 };
54 
55 struct arm_dma_free_args {
56 	struct device *dev;
57 	size_t size;
58 	void *cpu_addr;
59 	struct page *page;
60 	bool want_vaddr;
61 };
62 
63 #define NORMAL	    0
64 #define COHERENT    1
65 
66 struct arm_dma_allocator {
67 	void *(*alloc)(struct arm_dma_alloc_args *args,
68 		       struct page **ret_page);
69 	void (*free)(struct arm_dma_free_args *args);
70 };
71 
72 struct arm_dma_buffer {
73 	struct list_head list;
74 	void *virt;
75 	struct arm_dma_allocator *allocator;
76 };
77 
78 static LIST_HEAD(arm_dma_bufs);
79 static DEFINE_SPINLOCK(arm_dma_bufs_lock);
80 
81 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
82 {
83 	struct arm_dma_buffer *buf, *found = NULL;
84 	unsigned long flags;
85 
86 	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
87 	list_for_each_entry(buf, &arm_dma_bufs, list) {
88 		if (buf->virt == virt) {
89 			list_del(&buf->list);
90 			found = buf;
91 			break;
92 		}
93 	}
94 	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
95 	return found;
96 }
97 
98 /*
99  * The DMA API is built upon the notion of "buffer ownership".  A buffer
100  * is either exclusively owned by the CPU (and therefore may be accessed
101  * by it) or exclusively owned by the DMA device.  These helper functions
102  * represent the transitions between these two ownership states.
103  *
104  * Note, however, that on later ARMs, this notion does not work due to
105  * speculative prefetches.  We model our approach on the assumption that
106  * the CPU does do speculative prefetches, which means we clean caches
107  * before transfers and delay cache invalidation until transfer completion.
108  *
109  */
110 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
111 		size_t, enum dma_data_direction);
112 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
113 		size_t, enum dma_data_direction);
114 
115 /**
116  * arm_dma_map_page - map a portion of a page for streaming DMA
117  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
118  * @page: page that buffer resides in
119  * @offset: offset into page for start of buffer
120  * @size: size of buffer to map
121  * @dir: DMA transfer direction
122  *
123  * Ensure that any data held in the cache is appropriately discarded
124  * or written back.
125  *
126  * The device owns this memory once this call has completed.  The CPU
127  * can regain ownership by calling dma_unmap_page().
128  */
129 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
130 	     unsigned long offset, size_t size, enum dma_data_direction dir,
131 	     unsigned long attrs)
132 {
133 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
134 		__dma_page_cpu_to_dev(page, offset, size, dir);
135 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
136 }
137 
138 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
139 	     unsigned long offset, size_t size, enum dma_data_direction dir,
140 	     unsigned long attrs)
141 {
142 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
143 }
144 
145 /**
146  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
147  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
148  * @handle: DMA address of buffer
149  * @size: size of buffer (same as passed to dma_map_page)
150  * @dir: DMA transfer direction (same as passed to dma_map_page)
151  *
152  * Unmap a page streaming mode DMA translation.  The handle and size
153  * must match what was provided in the previous dma_map_page() call.
154  * All other usages are undefined.
155  *
156  * After this call, reads by the CPU to the buffer are guaranteed to see
157  * whatever the device wrote there.
158  */
159 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
160 		size_t size, enum dma_data_direction dir, unsigned long attrs)
161 {
162 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
163 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
164 				      handle & ~PAGE_MASK, size, dir);
165 }
166 
167 static void arm_dma_sync_single_for_cpu(struct device *dev,
168 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
169 {
170 	unsigned int offset = handle & (PAGE_SIZE - 1);
171 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
172 	__dma_page_dev_to_cpu(page, offset, size, dir);
173 }
174 
175 static void arm_dma_sync_single_for_device(struct device *dev,
176 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
177 {
178 	unsigned int offset = handle & (PAGE_SIZE - 1);
179 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
180 	__dma_page_cpu_to_dev(page, offset, size, dir);
181 }
182 
183 const struct dma_map_ops arm_dma_ops = {
184 	.alloc			= arm_dma_alloc,
185 	.free			= arm_dma_free,
186 	.mmap			= arm_dma_mmap,
187 	.get_sgtable		= arm_dma_get_sgtable,
188 	.map_page		= arm_dma_map_page,
189 	.unmap_page		= arm_dma_unmap_page,
190 	.map_sg			= arm_dma_map_sg,
191 	.unmap_sg		= arm_dma_unmap_sg,
192 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
193 	.sync_single_for_device	= arm_dma_sync_single_for_device,
194 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
195 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
196 };
197 EXPORT_SYMBOL(arm_dma_ops);
198 
199 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
200 	dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
201 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
202 				  dma_addr_t handle, unsigned long attrs);
203 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
204 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
205 		 unsigned long attrs);
206 
207 const struct dma_map_ops arm_coherent_dma_ops = {
208 	.alloc			= arm_coherent_dma_alloc,
209 	.free			= arm_coherent_dma_free,
210 	.mmap			= arm_coherent_dma_mmap,
211 	.get_sgtable		= arm_dma_get_sgtable,
212 	.map_page		= arm_coherent_dma_map_page,
213 	.map_sg			= arm_dma_map_sg,
214 };
215 EXPORT_SYMBOL(arm_coherent_dma_ops);
216 
217 static int __dma_supported(struct device *dev, u64 mask, bool warn)
218 {
219 	unsigned long max_dma_pfn;
220 
221 	/*
222 	 * If the mask allows for more memory than we can address,
223 	 * and we actually have that much memory, then we must
224 	 * indicate that DMA to this device is not supported.
225 	 */
226 	if (sizeof(mask) != sizeof(dma_addr_t) &&
227 	    mask > (dma_addr_t)~0 &&
228 	    dma_to_pfn(dev, ~0) < max_pfn - 1) {
229 		if (warn) {
230 			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
231 				 mask);
232 			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
233 		}
234 		return 0;
235 	}
236 
237 	max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
238 
239 	/*
240 	 * Translate the device's DMA mask to a PFN limit.  This
241 	 * PFN number includes the page which we can DMA to.
242 	 */
243 	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
244 		if (warn)
245 			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
246 				 mask,
247 				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
248 				 max_dma_pfn + 1);
249 		return 0;
250 	}
251 
252 	return 1;
253 }
254 
255 static u64 get_coherent_dma_mask(struct device *dev)
256 {
257 	u64 mask = (u64)DMA_BIT_MASK(32);
258 
259 	if (dev) {
260 		mask = dev->coherent_dma_mask;
261 
262 		/*
263 		 * Sanity check the DMA mask - it must be non-zero, and
264 		 * must be able to be satisfied by a DMA allocation.
265 		 */
266 		if (mask == 0) {
267 			dev_warn(dev, "coherent DMA mask is unset\n");
268 			return 0;
269 		}
270 
271 		if (!__dma_supported(dev, mask, true))
272 			return 0;
273 	}
274 
275 	return mask;
276 }
277 
278 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
279 {
280 	/*
281 	 * Ensure that the allocated pages are zeroed, and that any data
282 	 * lurking in the kernel direct-mapped region is invalidated.
283 	 */
284 	if (PageHighMem(page)) {
285 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
286 		phys_addr_t end = base + size;
287 		while (size > 0) {
288 			void *ptr = kmap_atomic(page);
289 			memset(ptr, 0, PAGE_SIZE);
290 			if (coherent_flag != COHERENT)
291 				dmac_flush_range(ptr, ptr + PAGE_SIZE);
292 			kunmap_atomic(ptr);
293 			page++;
294 			size -= PAGE_SIZE;
295 		}
296 		if (coherent_flag != COHERENT)
297 			outer_flush_range(base, end);
298 	} else {
299 		void *ptr = page_address(page);
300 		memset(ptr, 0, size);
301 		if (coherent_flag != COHERENT) {
302 			dmac_flush_range(ptr, ptr + size);
303 			outer_flush_range(__pa(ptr), __pa(ptr) + size);
304 		}
305 	}
306 }
307 
308 /*
309  * Allocate a DMA buffer for 'dev' of size 'size' using the
310  * specified gfp mask.  Note that 'size' must be page aligned.
311  */
312 static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
313 				       gfp_t gfp, int coherent_flag)
314 {
315 	unsigned long order = get_order(size);
316 	struct page *page, *p, *e;
317 
318 	page = alloc_pages(gfp, order);
319 	if (!page)
320 		return NULL;
321 
322 	/*
323 	 * Now split the huge page and free the excess pages
324 	 */
325 	split_page(page, order);
326 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
327 		__free_page(p);
328 
329 	__dma_clear_buffer(page, size, coherent_flag);
330 
331 	return page;
332 }
333 
334 /*
335  * Free a DMA buffer.  'size' must be page aligned.
336  */
337 static void __dma_free_buffer(struct page *page, size_t size)
338 {
339 	struct page *e = page + (size >> PAGE_SHIFT);
340 
341 	while (page < e) {
342 		__free_page(page);
343 		page++;
344 	}
345 }
346 
347 #ifdef CONFIG_MMU
348 
349 static void *__alloc_from_contiguous(struct device *dev, size_t size,
350 				     pgprot_t prot, struct page **ret_page,
351 				     const void *caller, bool want_vaddr,
352 				     int coherent_flag, gfp_t gfp);
353 
354 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
355 				 pgprot_t prot, struct page **ret_page,
356 				 const void *caller, bool want_vaddr);
357 
358 static void *
359 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
360 	const void *caller)
361 {
362 	/*
363 	 * DMA allocation can be mapped to user space, so lets
364 	 * set VM_USERMAP flags too.
365 	 */
366 	return dma_common_contiguous_remap(page, size,
367 			VM_ARM_DMA_CONSISTENT | VM_USERMAP,
368 			prot, caller);
369 }
370 
371 static void __dma_free_remap(void *cpu_addr, size_t size)
372 {
373 	dma_common_free_remap(cpu_addr, size,
374 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
375 }
376 
377 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
378 static struct gen_pool *atomic_pool;
379 
380 static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
381 
382 static int __init early_coherent_pool(char *p)
383 {
384 	atomic_pool_size = memparse(p, &p);
385 	return 0;
386 }
387 early_param("coherent_pool", early_coherent_pool);
388 
389 void __init init_dma_coherent_pool_size(unsigned long size)
390 {
391 	/*
392 	 * Catch any attempt to set the pool size too late.
393 	 */
394 	BUG_ON(atomic_pool);
395 
396 	/*
397 	 * Set architecture specific coherent pool size only if
398 	 * it has not been changed by kernel command line parameter.
399 	 */
400 	if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
401 		atomic_pool_size = size;
402 }
403 
404 /*
405  * Initialise the coherent pool for atomic allocations.
406  */
407 static int __init atomic_pool_init(void)
408 {
409 	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
410 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
411 	struct page *page;
412 	void *ptr;
413 
414 	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
415 	if (!atomic_pool)
416 		goto out;
417 	/*
418 	 * The atomic pool is only used for non-coherent allocations
419 	 * so we must pass NORMAL for coherent_flag.
420 	 */
421 	if (dev_get_cma_area(NULL))
422 		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
423 				      &page, atomic_pool_init, true, NORMAL,
424 				      GFP_KERNEL);
425 	else
426 		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
427 					   &page, atomic_pool_init, true);
428 	if (ptr) {
429 		int ret;
430 
431 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
432 					page_to_phys(page),
433 					atomic_pool_size, -1);
434 		if (ret)
435 			goto destroy_genpool;
436 
437 		gen_pool_set_algo(atomic_pool,
438 				gen_pool_first_fit_order_align,
439 				(void *)PAGE_SHIFT);
440 		pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
441 		       atomic_pool_size / 1024);
442 		return 0;
443 	}
444 
445 destroy_genpool:
446 	gen_pool_destroy(atomic_pool);
447 	atomic_pool = NULL;
448 out:
449 	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
450 	       atomic_pool_size / 1024);
451 	return -ENOMEM;
452 }
453 /*
454  * CMA is activated by core_initcall, so we must be called after it.
455  */
456 postcore_initcall(atomic_pool_init);
457 
458 struct dma_contig_early_reserve {
459 	phys_addr_t base;
460 	unsigned long size;
461 };
462 
463 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
464 
465 static int dma_mmu_remap_num __initdata;
466 
467 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
468 {
469 	dma_mmu_remap[dma_mmu_remap_num].base = base;
470 	dma_mmu_remap[dma_mmu_remap_num].size = size;
471 	dma_mmu_remap_num++;
472 }
473 
474 void __init dma_contiguous_remap(void)
475 {
476 	int i;
477 	for (i = 0; i < dma_mmu_remap_num; i++) {
478 		phys_addr_t start = dma_mmu_remap[i].base;
479 		phys_addr_t end = start + dma_mmu_remap[i].size;
480 		struct map_desc map;
481 		unsigned long addr;
482 
483 		if (end > arm_lowmem_limit)
484 			end = arm_lowmem_limit;
485 		if (start >= end)
486 			continue;
487 
488 		map.pfn = __phys_to_pfn(start);
489 		map.virtual = __phys_to_virt(start);
490 		map.length = end - start;
491 		map.type = MT_MEMORY_DMA_READY;
492 
493 		/*
494 		 * Clear previous low-memory mapping to ensure that the
495 		 * TLB does not see any conflicting entries, then flush
496 		 * the TLB of the old entries before creating new mappings.
497 		 *
498 		 * This ensures that any speculatively loaded TLB entries
499 		 * (even though they may be rare) can not cause any problems,
500 		 * and ensures that this code is architecturally compliant.
501 		 */
502 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
503 		     addr += PMD_SIZE)
504 			pmd_clear(pmd_off_k(addr));
505 
506 		flush_tlb_kernel_range(__phys_to_virt(start),
507 				       __phys_to_virt(end));
508 
509 		iotable_init(&map, 1);
510 	}
511 }
512 
513 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
514 			    void *data)
515 {
516 	struct page *page = virt_to_page(addr);
517 	pgprot_t prot = *(pgprot_t *)data;
518 
519 	set_pte_ext(pte, mk_pte(page, prot), 0);
520 	return 0;
521 }
522 
523 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
524 {
525 	unsigned long start = (unsigned long) page_address(page);
526 	unsigned end = start + size;
527 
528 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
529 	flush_tlb_kernel_range(start, end);
530 }
531 
532 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
533 				 pgprot_t prot, struct page **ret_page,
534 				 const void *caller, bool want_vaddr)
535 {
536 	struct page *page;
537 	void *ptr = NULL;
538 	/*
539 	 * __alloc_remap_buffer is only called when the device is
540 	 * non-coherent
541 	 */
542 	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
543 	if (!page)
544 		return NULL;
545 	if (!want_vaddr)
546 		goto out;
547 
548 	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
549 	if (!ptr) {
550 		__dma_free_buffer(page, size);
551 		return NULL;
552 	}
553 
554  out:
555 	*ret_page = page;
556 	return ptr;
557 }
558 
559 static void *__alloc_from_pool(size_t size, struct page **ret_page)
560 {
561 	unsigned long val;
562 	void *ptr = NULL;
563 
564 	if (!atomic_pool) {
565 		WARN(1, "coherent pool not initialised!\n");
566 		return NULL;
567 	}
568 
569 	val = gen_pool_alloc(atomic_pool, size);
570 	if (val) {
571 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
572 
573 		*ret_page = phys_to_page(phys);
574 		ptr = (void *)val;
575 	}
576 
577 	return ptr;
578 }
579 
580 static bool __in_atomic_pool(void *start, size_t size)
581 {
582 	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
583 }
584 
585 static int __free_from_pool(void *start, size_t size)
586 {
587 	if (!__in_atomic_pool(start, size))
588 		return 0;
589 
590 	gen_pool_free(atomic_pool, (unsigned long)start, size);
591 
592 	return 1;
593 }
594 
595 static void *__alloc_from_contiguous(struct device *dev, size_t size,
596 				     pgprot_t prot, struct page **ret_page,
597 				     const void *caller, bool want_vaddr,
598 				     int coherent_flag, gfp_t gfp)
599 {
600 	unsigned long order = get_order(size);
601 	size_t count = size >> PAGE_SHIFT;
602 	struct page *page;
603 	void *ptr = NULL;
604 
605 	page = dma_alloc_from_contiguous(dev, count, order, gfp);
606 	if (!page)
607 		return NULL;
608 
609 	__dma_clear_buffer(page, size, coherent_flag);
610 
611 	if (!want_vaddr)
612 		goto out;
613 
614 	if (PageHighMem(page)) {
615 		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
616 		if (!ptr) {
617 			dma_release_from_contiguous(dev, page, count);
618 			return NULL;
619 		}
620 	} else {
621 		__dma_remap(page, size, prot);
622 		ptr = page_address(page);
623 	}
624 
625  out:
626 	*ret_page = page;
627 	return ptr;
628 }
629 
630 static void __free_from_contiguous(struct device *dev, struct page *page,
631 				   void *cpu_addr, size_t size, bool want_vaddr)
632 {
633 	if (want_vaddr) {
634 		if (PageHighMem(page))
635 			__dma_free_remap(cpu_addr, size);
636 		else
637 			__dma_remap(page, size, PAGE_KERNEL);
638 	}
639 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
640 }
641 
642 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
643 {
644 	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
645 			pgprot_writecombine(prot) :
646 			pgprot_dmacoherent(prot);
647 	return prot;
648 }
649 
650 #define nommu() 0
651 
652 #else	/* !CONFIG_MMU */
653 
654 #define nommu() 1
655 
656 #define __get_dma_pgprot(attrs, prot)				__pgprot(0)
657 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv)	NULL
658 #define __alloc_from_pool(size, ret_page)			NULL
659 #define __alloc_from_contiguous(dev, size, prot, ret, c, wv, coherent_flag, gfp)	NULL
660 #define __free_from_pool(cpu_addr, size)			do { } while (0)
661 #define __free_from_contiguous(dev, page, cpu_addr, size, wv)	do { } while (0)
662 #define __dma_free_remap(cpu_addr, size)			do { } while (0)
663 
664 #endif	/* CONFIG_MMU */
665 
666 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
667 				   struct page **ret_page)
668 {
669 	struct page *page;
670 	/* __alloc_simple_buffer is only called when the device is coherent */
671 	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
672 	if (!page)
673 		return NULL;
674 
675 	*ret_page = page;
676 	return page_address(page);
677 }
678 
679 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
680 				    struct page **ret_page)
681 {
682 	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
683 				     ret_page);
684 }
685 
686 static void simple_allocator_free(struct arm_dma_free_args *args)
687 {
688 	__dma_free_buffer(args->page, args->size);
689 }
690 
691 static struct arm_dma_allocator simple_allocator = {
692 	.alloc = simple_allocator_alloc,
693 	.free = simple_allocator_free,
694 };
695 
696 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
697 				 struct page **ret_page)
698 {
699 	return __alloc_from_contiguous(args->dev, args->size, args->prot,
700 				       ret_page, args->caller,
701 				       args->want_vaddr, args->coherent_flag,
702 				       args->gfp);
703 }
704 
705 static void cma_allocator_free(struct arm_dma_free_args *args)
706 {
707 	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
708 			       args->size, args->want_vaddr);
709 }
710 
711 static struct arm_dma_allocator cma_allocator = {
712 	.alloc = cma_allocator_alloc,
713 	.free = cma_allocator_free,
714 };
715 
716 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
717 				  struct page **ret_page)
718 {
719 	return __alloc_from_pool(args->size, ret_page);
720 }
721 
722 static void pool_allocator_free(struct arm_dma_free_args *args)
723 {
724 	__free_from_pool(args->cpu_addr, args->size);
725 }
726 
727 static struct arm_dma_allocator pool_allocator = {
728 	.alloc = pool_allocator_alloc,
729 	.free = pool_allocator_free,
730 };
731 
732 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
733 				   struct page **ret_page)
734 {
735 	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
736 				    args->prot, ret_page, args->caller,
737 				    args->want_vaddr);
738 }
739 
740 static void remap_allocator_free(struct arm_dma_free_args *args)
741 {
742 	if (args->want_vaddr)
743 		__dma_free_remap(args->cpu_addr, args->size);
744 
745 	__dma_free_buffer(args->page, args->size);
746 }
747 
748 static struct arm_dma_allocator remap_allocator = {
749 	.alloc = remap_allocator_alloc,
750 	.free = remap_allocator_free,
751 };
752 
753 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
754 			 gfp_t gfp, pgprot_t prot, bool is_coherent,
755 			 unsigned long attrs, const void *caller)
756 {
757 	u64 mask = get_coherent_dma_mask(dev);
758 	struct page *page = NULL;
759 	void *addr;
760 	bool allowblock, cma;
761 	struct arm_dma_buffer *buf;
762 	struct arm_dma_alloc_args args = {
763 		.dev = dev,
764 		.size = PAGE_ALIGN(size),
765 		.gfp = gfp,
766 		.prot = prot,
767 		.caller = caller,
768 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
769 		.coherent_flag = is_coherent ? COHERENT : NORMAL,
770 	};
771 
772 #ifdef CONFIG_DMA_API_DEBUG
773 	u64 limit = (mask + 1) & ~mask;
774 	if (limit && size >= limit) {
775 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
776 			size, mask);
777 		return NULL;
778 	}
779 #endif
780 
781 	if (!mask)
782 		return NULL;
783 
784 	buf = kzalloc(sizeof(*buf),
785 		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
786 	if (!buf)
787 		return NULL;
788 
789 	if (mask < 0xffffffffULL)
790 		gfp |= GFP_DMA;
791 
792 	/*
793 	 * Following is a work-around (a.k.a. hack) to prevent pages
794 	 * with __GFP_COMP being passed to split_page() which cannot
795 	 * handle them.  The real problem is that this flag probably
796 	 * should be 0 on ARM as it is not supported on this
797 	 * platform; see CONFIG_HUGETLBFS.
798 	 */
799 	gfp &= ~(__GFP_COMP);
800 	args.gfp = gfp;
801 
802 	*handle = DMA_ERROR_CODE;
803 	allowblock = gfpflags_allow_blocking(gfp);
804 	cma = allowblock ? dev_get_cma_area(dev) : false;
805 
806 	if (cma)
807 		buf->allocator = &cma_allocator;
808 	else if (nommu() || is_coherent)
809 		buf->allocator = &simple_allocator;
810 	else if (allowblock)
811 		buf->allocator = &remap_allocator;
812 	else
813 		buf->allocator = &pool_allocator;
814 
815 	addr = buf->allocator->alloc(&args, &page);
816 
817 	if (page) {
818 		unsigned long flags;
819 
820 		*handle = pfn_to_dma(dev, page_to_pfn(page));
821 		buf->virt = args.want_vaddr ? addr : page;
822 
823 		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
824 		list_add(&buf->list, &arm_dma_bufs);
825 		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
826 	} else {
827 		kfree(buf);
828 	}
829 
830 	return args.want_vaddr ? addr : page;
831 }
832 
833 /*
834  * Allocate DMA-coherent memory space and return both the kernel remapped
835  * virtual and bus address for that space.
836  */
837 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
838 		    gfp_t gfp, unsigned long attrs)
839 {
840 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
841 
842 	return __dma_alloc(dev, size, handle, gfp, prot, false,
843 			   attrs, __builtin_return_address(0));
844 }
845 
846 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
847 	dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
848 {
849 	return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
850 			   attrs, __builtin_return_address(0));
851 }
852 
853 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
854 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
855 		 unsigned long attrs)
856 {
857 	int ret = -ENXIO;
858 #ifdef CONFIG_MMU
859 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
860 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
861 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
862 	unsigned long off = vma->vm_pgoff;
863 
864 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
865 		return ret;
866 
867 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
868 		ret = remap_pfn_range(vma, vma->vm_start,
869 				      pfn + off,
870 				      vma->vm_end - vma->vm_start,
871 				      vma->vm_page_prot);
872 	}
873 #else
874 	ret = vm_iomap_memory(vma, vma->vm_start,
875 			      (vma->vm_end - vma->vm_start));
876 #endif	/* CONFIG_MMU */
877 
878 	return ret;
879 }
880 
881 /*
882  * Create userspace mapping for the DMA-coherent memory.
883  */
884 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
885 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
886 		 unsigned long attrs)
887 {
888 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
889 }
890 
891 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
892 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
893 		 unsigned long attrs)
894 {
895 #ifdef CONFIG_MMU
896 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
897 #endif	/* CONFIG_MMU */
898 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
899 }
900 
901 /*
902  * Free a buffer as defined by the above mapping.
903  */
904 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
905 			   dma_addr_t handle, unsigned long attrs,
906 			   bool is_coherent)
907 {
908 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
909 	struct arm_dma_buffer *buf;
910 	struct arm_dma_free_args args = {
911 		.dev = dev,
912 		.size = PAGE_ALIGN(size),
913 		.cpu_addr = cpu_addr,
914 		.page = page,
915 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
916 	};
917 
918 	buf = arm_dma_buffer_find(cpu_addr);
919 	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
920 		return;
921 
922 	buf->allocator->free(&args);
923 	kfree(buf);
924 }
925 
926 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
927 		  dma_addr_t handle, unsigned long attrs)
928 {
929 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
930 }
931 
932 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
933 				  dma_addr_t handle, unsigned long attrs)
934 {
935 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
936 }
937 
938 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
939 		 void *cpu_addr, dma_addr_t handle, size_t size,
940 		 unsigned long attrs)
941 {
942 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
943 	int ret;
944 
945 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
946 	if (unlikely(ret))
947 		return ret;
948 
949 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
950 	return 0;
951 }
952 
953 static void dma_cache_maint_page(struct page *page, unsigned long offset,
954 	size_t size, enum dma_data_direction dir,
955 	void (*op)(const void *, size_t, int))
956 {
957 	unsigned long pfn;
958 	size_t left = size;
959 
960 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
961 	offset %= PAGE_SIZE;
962 
963 	/*
964 	 * A single sg entry may refer to multiple physically contiguous
965 	 * pages.  But we still need to process highmem pages individually.
966 	 * If highmem is not configured then the bulk of this loop gets
967 	 * optimized out.
968 	 */
969 	do {
970 		size_t len = left;
971 		void *vaddr;
972 
973 		page = pfn_to_page(pfn);
974 
975 		if (PageHighMem(page)) {
976 			if (len + offset > PAGE_SIZE)
977 				len = PAGE_SIZE - offset;
978 
979 			if (cache_is_vipt_nonaliasing()) {
980 				vaddr = kmap_atomic(page);
981 				op(vaddr + offset, len, dir);
982 				kunmap_atomic(vaddr);
983 			} else {
984 				vaddr = kmap_high_get(page);
985 				if (vaddr) {
986 					op(vaddr + offset, len, dir);
987 					kunmap_high(page);
988 				}
989 			}
990 		} else {
991 			vaddr = page_address(page) + offset;
992 			op(vaddr, len, dir);
993 		}
994 		offset = 0;
995 		pfn++;
996 		left -= len;
997 	} while (left);
998 }
999 
1000 /*
1001  * Make an area consistent for devices.
1002  * Note: Drivers should NOT use this function directly, as it will break
1003  * platforms with CONFIG_DMABOUNCE.
1004  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
1005  */
1006 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
1007 	size_t size, enum dma_data_direction dir)
1008 {
1009 	phys_addr_t paddr;
1010 
1011 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
1012 
1013 	paddr = page_to_phys(page) + off;
1014 	if (dir == DMA_FROM_DEVICE) {
1015 		outer_inv_range(paddr, paddr + size);
1016 	} else {
1017 		outer_clean_range(paddr, paddr + size);
1018 	}
1019 	/* FIXME: non-speculating: flush on bidirectional mappings? */
1020 }
1021 
1022 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
1023 	size_t size, enum dma_data_direction dir)
1024 {
1025 	phys_addr_t paddr = page_to_phys(page) + off;
1026 
1027 	/* FIXME: non-speculating: not required */
1028 	/* in any case, don't bother invalidating if DMA to device */
1029 	if (dir != DMA_TO_DEVICE) {
1030 		outer_inv_range(paddr, paddr + size);
1031 
1032 		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
1033 	}
1034 
1035 	/*
1036 	 * Mark the D-cache clean for these pages to avoid extra flushing.
1037 	 */
1038 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
1039 		unsigned long pfn;
1040 		size_t left = size;
1041 
1042 		pfn = page_to_pfn(page) + off / PAGE_SIZE;
1043 		off %= PAGE_SIZE;
1044 		if (off) {
1045 			pfn++;
1046 			left -= PAGE_SIZE - off;
1047 		}
1048 		while (left >= PAGE_SIZE) {
1049 			page = pfn_to_page(pfn++);
1050 			set_bit(PG_dcache_clean, &page->flags);
1051 			left -= PAGE_SIZE;
1052 		}
1053 	}
1054 }
1055 
1056 /**
1057  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1058  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1059  * @sg: list of buffers
1060  * @nents: number of buffers to map
1061  * @dir: DMA transfer direction
1062  *
1063  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1064  * This is the scatter-gather version of the dma_map_single interface.
1065  * Here the scatter gather list elements are each tagged with the
1066  * appropriate dma address and length.  They are obtained via
1067  * sg_dma_{address,length}.
1068  *
1069  * Device ownership issues as mentioned for dma_map_single are the same
1070  * here.
1071  */
1072 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1073 		enum dma_data_direction dir, unsigned long attrs)
1074 {
1075 	const struct dma_map_ops *ops = get_dma_ops(dev);
1076 	struct scatterlist *s;
1077 	int i, j;
1078 
1079 	for_each_sg(sg, s, nents, i) {
1080 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1081 		s->dma_length = s->length;
1082 #endif
1083 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1084 						s->length, dir, attrs);
1085 		if (dma_mapping_error(dev, s->dma_address))
1086 			goto bad_mapping;
1087 	}
1088 	return nents;
1089 
1090  bad_mapping:
1091 	for_each_sg(sg, s, i, j)
1092 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1093 	return 0;
1094 }
1095 
1096 /**
1097  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1098  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1099  * @sg: list of buffers
1100  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1101  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1102  *
1103  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1104  * rules concerning calls here are the same as for dma_unmap_single().
1105  */
1106 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1107 		enum dma_data_direction dir, unsigned long attrs)
1108 {
1109 	const struct dma_map_ops *ops = get_dma_ops(dev);
1110 	struct scatterlist *s;
1111 
1112 	int i;
1113 
1114 	for_each_sg(sg, s, nents, i)
1115 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1116 }
1117 
1118 /**
1119  * arm_dma_sync_sg_for_cpu
1120  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1121  * @sg: list of buffers
1122  * @nents: number of buffers to map (returned from dma_map_sg)
1123  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1124  */
1125 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1126 			int nents, enum dma_data_direction dir)
1127 {
1128 	const struct dma_map_ops *ops = get_dma_ops(dev);
1129 	struct scatterlist *s;
1130 	int i;
1131 
1132 	for_each_sg(sg, s, nents, i)
1133 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1134 					 dir);
1135 }
1136 
1137 /**
1138  * arm_dma_sync_sg_for_device
1139  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1140  * @sg: list of buffers
1141  * @nents: number of buffers to map (returned from dma_map_sg)
1142  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1143  */
1144 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1145 			int nents, enum dma_data_direction dir)
1146 {
1147 	const struct dma_map_ops *ops = get_dma_ops(dev);
1148 	struct scatterlist *s;
1149 	int i;
1150 
1151 	for_each_sg(sg, s, nents, i)
1152 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1153 					    dir);
1154 }
1155 
1156 /*
1157  * Return whether the given device DMA address mask can be supported
1158  * properly.  For example, if your device can only drive the low 24-bits
1159  * during bus mastering, then you would pass 0x00ffffff as the mask
1160  * to this function.
1161  */
1162 int dma_supported(struct device *dev, u64 mask)
1163 {
1164 	return __dma_supported(dev, mask, false);
1165 }
1166 EXPORT_SYMBOL(dma_supported);
1167 
1168 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
1169 
1170 static int __init dma_debug_do_init(void)
1171 {
1172 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1173 	return 0;
1174 }
1175 core_initcall(dma_debug_do_init);
1176 
1177 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1178 
1179 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1180 {
1181 	int prot = 0;
1182 
1183 	if (attrs & DMA_ATTR_PRIVILEGED)
1184 		prot |= IOMMU_PRIV;
1185 
1186 	switch (dir) {
1187 	case DMA_BIDIRECTIONAL:
1188 		return prot | IOMMU_READ | IOMMU_WRITE;
1189 	case DMA_TO_DEVICE:
1190 		return prot | IOMMU_READ;
1191 	case DMA_FROM_DEVICE:
1192 		return prot | IOMMU_WRITE;
1193 	default:
1194 		return prot;
1195 	}
1196 }
1197 
1198 /* IOMMU */
1199 
1200 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1201 
1202 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1203 				      size_t size)
1204 {
1205 	unsigned int order = get_order(size);
1206 	unsigned int align = 0;
1207 	unsigned int count, start;
1208 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1209 	unsigned long flags;
1210 	dma_addr_t iova;
1211 	int i;
1212 
1213 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1214 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1215 
1216 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1217 	align = (1 << order) - 1;
1218 
1219 	spin_lock_irqsave(&mapping->lock, flags);
1220 	for (i = 0; i < mapping->nr_bitmaps; i++) {
1221 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1222 				mapping->bits, 0, count, align);
1223 
1224 		if (start > mapping->bits)
1225 			continue;
1226 
1227 		bitmap_set(mapping->bitmaps[i], start, count);
1228 		break;
1229 	}
1230 
1231 	/*
1232 	 * No unused range found. Try to extend the existing mapping
1233 	 * and perform a second attempt to reserve an IO virtual
1234 	 * address range of size bytes.
1235 	 */
1236 	if (i == mapping->nr_bitmaps) {
1237 		if (extend_iommu_mapping(mapping)) {
1238 			spin_unlock_irqrestore(&mapping->lock, flags);
1239 			return DMA_ERROR_CODE;
1240 		}
1241 
1242 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1243 				mapping->bits, 0, count, align);
1244 
1245 		if (start > mapping->bits) {
1246 			spin_unlock_irqrestore(&mapping->lock, flags);
1247 			return DMA_ERROR_CODE;
1248 		}
1249 
1250 		bitmap_set(mapping->bitmaps[i], start, count);
1251 	}
1252 	spin_unlock_irqrestore(&mapping->lock, flags);
1253 
1254 	iova = mapping->base + (mapping_size * i);
1255 	iova += start << PAGE_SHIFT;
1256 
1257 	return iova;
1258 }
1259 
1260 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1261 			       dma_addr_t addr, size_t size)
1262 {
1263 	unsigned int start, count;
1264 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1265 	unsigned long flags;
1266 	dma_addr_t bitmap_base;
1267 	u32 bitmap_index;
1268 
1269 	if (!size)
1270 		return;
1271 
1272 	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1273 	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1274 
1275 	bitmap_base = mapping->base + mapping_size * bitmap_index;
1276 
1277 	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1278 
1279 	if (addr + size > bitmap_base + mapping_size) {
1280 		/*
1281 		 * The address range to be freed reaches into the iova
1282 		 * range of the next bitmap. This should not happen as
1283 		 * we don't allow this in __alloc_iova (at the
1284 		 * moment).
1285 		 */
1286 		BUG();
1287 	} else
1288 		count = size >> PAGE_SHIFT;
1289 
1290 	spin_lock_irqsave(&mapping->lock, flags);
1291 	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1292 	spin_unlock_irqrestore(&mapping->lock, flags);
1293 }
1294 
1295 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1296 static const int iommu_order_array[] = { 9, 8, 4, 0 };
1297 
1298 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1299 					  gfp_t gfp, unsigned long attrs,
1300 					  int coherent_flag)
1301 {
1302 	struct page **pages;
1303 	int count = size >> PAGE_SHIFT;
1304 	int array_size = count * sizeof(struct page *);
1305 	int i = 0;
1306 	int order_idx = 0;
1307 
1308 	if (array_size <= PAGE_SIZE)
1309 		pages = kzalloc(array_size, GFP_KERNEL);
1310 	else
1311 		pages = vzalloc(array_size);
1312 	if (!pages)
1313 		return NULL;
1314 
1315 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1316 	{
1317 		unsigned long order = get_order(size);
1318 		struct page *page;
1319 
1320 		page = dma_alloc_from_contiguous(dev, count, order, gfp);
1321 		if (!page)
1322 			goto error;
1323 
1324 		__dma_clear_buffer(page, size, coherent_flag);
1325 
1326 		for (i = 0; i < count; i++)
1327 			pages[i] = page + i;
1328 
1329 		return pages;
1330 	}
1331 
1332 	/* Go straight to 4K chunks if caller says it's OK. */
1333 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1334 		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1335 
1336 	/*
1337 	 * IOMMU can map any pages, so himem can also be used here
1338 	 */
1339 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1340 
1341 	while (count) {
1342 		int j, order;
1343 
1344 		order = iommu_order_array[order_idx];
1345 
1346 		/* Drop down when we get small */
1347 		if (__fls(count) < order) {
1348 			order_idx++;
1349 			continue;
1350 		}
1351 
1352 		if (order) {
1353 			/* See if it's easy to allocate a high-order chunk */
1354 			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1355 
1356 			/* Go down a notch at first sign of pressure */
1357 			if (!pages[i]) {
1358 				order_idx++;
1359 				continue;
1360 			}
1361 		} else {
1362 			pages[i] = alloc_pages(gfp, 0);
1363 			if (!pages[i])
1364 				goto error;
1365 		}
1366 
1367 		if (order) {
1368 			split_page(pages[i], order);
1369 			j = 1 << order;
1370 			while (--j)
1371 				pages[i + j] = pages[i] + j;
1372 		}
1373 
1374 		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1375 		i += 1 << order;
1376 		count -= 1 << order;
1377 	}
1378 
1379 	return pages;
1380 error:
1381 	while (i--)
1382 		if (pages[i])
1383 			__free_pages(pages[i], 0);
1384 	kvfree(pages);
1385 	return NULL;
1386 }
1387 
1388 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1389 			       size_t size, unsigned long attrs)
1390 {
1391 	int count = size >> PAGE_SHIFT;
1392 	int i;
1393 
1394 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1395 		dma_release_from_contiguous(dev, pages[0], count);
1396 	} else {
1397 		for (i = 0; i < count; i++)
1398 			if (pages[i])
1399 				__free_pages(pages[i], 0);
1400 	}
1401 
1402 	kvfree(pages);
1403 	return 0;
1404 }
1405 
1406 /*
1407  * Create a CPU mapping for a specified pages
1408  */
1409 static void *
1410 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1411 		    const void *caller)
1412 {
1413 	return dma_common_pages_remap(pages, size,
1414 			VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1415 }
1416 
1417 /*
1418  * Create a mapping in device IO address space for specified pages
1419  */
1420 static dma_addr_t
1421 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1422 		       unsigned long attrs)
1423 {
1424 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1425 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1426 	dma_addr_t dma_addr, iova;
1427 	int i;
1428 
1429 	dma_addr = __alloc_iova(mapping, size);
1430 	if (dma_addr == DMA_ERROR_CODE)
1431 		return dma_addr;
1432 
1433 	iova = dma_addr;
1434 	for (i = 0; i < count; ) {
1435 		int ret;
1436 
1437 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1438 		phys_addr_t phys = page_to_phys(pages[i]);
1439 		unsigned int len, j;
1440 
1441 		for (j = i + 1; j < count; j++, next_pfn++)
1442 			if (page_to_pfn(pages[j]) != next_pfn)
1443 				break;
1444 
1445 		len = (j - i) << PAGE_SHIFT;
1446 		ret = iommu_map(mapping->domain, iova, phys, len,
1447 				__dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1448 		if (ret < 0)
1449 			goto fail;
1450 		iova += len;
1451 		i = j;
1452 	}
1453 	return dma_addr;
1454 fail:
1455 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1456 	__free_iova(mapping, dma_addr, size);
1457 	return DMA_ERROR_CODE;
1458 }
1459 
1460 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1461 {
1462 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1463 
1464 	/*
1465 	 * add optional in-page offset from iova to size and align
1466 	 * result to page size
1467 	 */
1468 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1469 	iova &= PAGE_MASK;
1470 
1471 	iommu_unmap(mapping->domain, iova, size);
1472 	__free_iova(mapping, iova, size);
1473 	return 0;
1474 }
1475 
1476 static struct page **__atomic_get_pages(void *addr)
1477 {
1478 	struct page *page;
1479 	phys_addr_t phys;
1480 
1481 	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1482 	page = phys_to_page(phys);
1483 
1484 	return (struct page **)page;
1485 }
1486 
1487 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1488 {
1489 	struct vm_struct *area;
1490 
1491 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1492 		return __atomic_get_pages(cpu_addr);
1493 
1494 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1495 		return cpu_addr;
1496 
1497 	area = find_vm_area(cpu_addr);
1498 	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1499 		return area->pages;
1500 	return NULL;
1501 }
1502 
1503 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1504 				  dma_addr_t *handle, int coherent_flag,
1505 				  unsigned long attrs)
1506 {
1507 	struct page *page;
1508 	void *addr;
1509 
1510 	if (coherent_flag  == COHERENT)
1511 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
1512 	else
1513 		addr = __alloc_from_pool(size, &page);
1514 	if (!addr)
1515 		return NULL;
1516 
1517 	*handle = __iommu_create_mapping(dev, &page, size, attrs);
1518 	if (*handle == DMA_ERROR_CODE)
1519 		goto err_mapping;
1520 
1521 	return addr;
1522 
1523 err_mapping:
1524 	__free_from_pool(addr, size);
1525 	return NULL;
1526 }
1527 
1528 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1529 			dma_addr_t handle, size_t size, int coherent_flag)
1530 {
1531 	__iommu_remove_mapping(dev, handle, size);
1532 	if (coherent_flag == COHERENT)
1533 		__dma_free_buffer(virt_to_page(cpu_addr), size);
1534 	else
1535 		__free_from_pool(cpu_addr, size);
1536 }
1537 
1538 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1539 	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1540 	    int coherent_flag)
1541 {
1542 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1543 	struct page **pages;
1544 	void *addr = NULL;
1545 
1546 	*handle = DMA_ERROR_CODE;
1547 	size = PAGE_ALIGN(size);
1548 
1549 	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
1550 		return __iommu_alloc_simple(dev, size, gfp, handle,
1551 					    coherent_flag, attrs);
1552 
1553 	/*
1554 	 * Following is a work-around (a.k.a. hack) to prevent pages
1555 	 * with __GFP_COMP being passed to split_page() which cannot
1556 	 * handle them.  The real problem is that this flag probably
1557 	 * should be 0 on ARM as it is not supported on this
1558 	 * platform; see CONFIG_HUGETLBFS.
1559 	 */
1560 	gfp &= ~(__GFP_COMP);
1561 
1562 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1563 	if (!pages)
1564 		return NULL;
1565 
1566 	*handle = __iommu_create_mapping(dev, pages, size, attrs);
1567 	if (*handle == DMA_ERROR_CODE)
1568 		goto err_buffer;
1569 
1570 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1571 		return pages;
1572 
1573 	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1574 				   __builtin_return_address(0));
1575 	if (!addr)
1576 		goto err_mapping;
1577 
1578 	return addr;
1579 
1580 err_mapping:
1581 	__iommu_remove_mapping(dev, *handle, size);
1582 err_buffer:
1583 	__iommu_free_buffer(dev, pages, size, attrs);
1584 	return NULL;
1585 }
1586 
1587 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1588 	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1589 {
1590 	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1591 }
1592 
1593 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1594 		    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1595 {
1596 	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1597 }
1598 
1599 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1600 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1601 		    unsigned long attrs)
1602 {
1603 	unsigned long uaddr = vma->vm_start;
1604 	unsigned long usize = vma->vm_end - vma->vm_start;
1605 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1606 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1607 	unsigned long off = vma->vm_pgoff;
1608 
1609 	if (!pages)
1610 		return -ENXIO;
1611 
1612 	if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1613 		return -ENXIO;
1614 
1615 	pages += off;
1616 
1617 	do {
1618 		int ret = vm_insert_page(vma, uaddr, *pages++);
1619 		if (ret) {
1620 			pr_err("Remapping memory failed: %d\n", ret);
1621 			return ret;
1622 		}
1623 		uaddr += PAGE_SIZE;
1624 		usize -= PAGE_SIZE;
1625 	} while (usize > 0);
1626 
1627 	return 0;
1628 }
1629 static int arm_iommu_mmap_attrs(struct device *dev,
1630 		struct vm_area_struct *vma, void *cpu_addr,
1631 		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1632 {
1633 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1634 
1635 	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1636 }
1637 
1638 static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1639 		struct vm_area_struct *vma, void *cpu_addr,
1640 		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1641 {
1642 	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1643 }
1644 
1645 /*
1646  * free a page as defined by the above mapping.
1647  * Must not be called with IRQs disabled.
1648  */
1649 void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1650 	dma_addr_t handle, unsigned long attrs, int coherent_flag)
1651 {
1652 	struct page **pages;
1653 	size = PAGE_ALIGN(size);
1654 
1655 	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1656 		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1657 		return;
1658 	}
1659 
1660 	pages = __iommu_get_pages(cpu_addr, attrs);
1661 	if (!pages) {
1662 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1663 		return;
1664 	}
1665 
1666 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) {
1667 		dma_common_free_remap(cpu_addr, size,
1668 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1669 	}
1670 
1671 	__iommu_remove_mapping(dev, handle, size);
1672 	__iommu_free_buffer(dev, pages, size, attrs);
1673 }
1674 
1675 void arm_iommu_free_attrs(struct device *dev, size_t size,
1676 		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1677 {
1678 	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1679 }
1680 
1681 void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1682 		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1683 {
1684 	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1685 }
1686 
1687 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1688 				 void *cpu_addr, dma_addr_t dma_addr,
1689 				 size_t size, unsigned long attrs)
1690 {
1691 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1692 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1693 
1694 	if (!pages)
1695 		return -ENXIO;
1696 
1697 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1698 					 GFP_KERNEL);
1699 }
1700 
1701 /*
1702  * Map a part of the scatter-gather list into contiguous io address space
1703  */
1704 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1705 			  size_t size, dma_addr_t *handle,
1706 			  enum dma_data_direction dir, unsigned long attrs,
1707 			  bool is_coherent)
1708 {
1709 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1710 	dma_addr_t iova, iova_base;
1711 	int ret = 0;
1712 	unsigned int count;
1713 	struct scatterlist *s;
1714 	int prot;
1715 
1716 	size = PAGE_ALIGN(size);
1717 	*handle = DMA_ERROR_CODE;
1718 
1719 	iova_base = iova = __alloc_iova(mapping, size);
1720 	if (iova == DMA_ERROR_CODE)
1721 		return -ENOMEM;
1722 
1723 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1724 		phys_addr_t phys = page_to_phys(sg_page(s));
1725 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1726 
1727 		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1728 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1729 
1730 		prot = __dma_info_to_prot(dir, attrs);
1731 
1732 		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1733 		if (ret < 0)
1734 			goto fail;
1735 		count += len >> PAGE_SHIFT;
1736 		iova += len;
1737 	}
1738 	*handle = iova_base;
1739 
1740 	return 0;
1741 fail:
1742 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1743 	__free_iova(mapping, iova_base, size);
1744 	return ret;
1745 }
1746 
1747 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1748 		     enum dma_data_direction dir, unsigned long attrs,
1749 		     bool is_coherent)
1750 {
1751 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1752 	int i, count = 0;
1753 	unsigned int offset = s->offset;
1754 	unsigned int size = s->offset + s->length;
1755 	unsigned int max = dma_get_max_seg_size(dev);
1756 
1757 	for (i = 1; i < nents; i++) {
1758 		s = sg_next(s);
1759 
1760 		s->dma_address = DMA_ERROR_CODE;
1761 		s->dma_length = 0;
1762 
1763 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1764 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1765 			    dir, attrs, is_coherent) < 0)
1766 				goto bad_mapping;
1767 
1768 			dma->dma_address += offset;
1769 			dma->dma_length = size - offset;
1770 
1771 			size = offset = s->offset;
1772 			start = s;
1773 			dma = sg_next(dma);
1774 			count += 1;
1775 		}
1776 		size += s->length;
1777 	}
1778 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1779 		is_coherent) < 0)
1780 		goto bad_mapping;
1781 
1782 	dma->dma_address += offset;
1783 	dma->dma_length = size - offset;
1784 
1785 	return count+1;
1786 
1787 bad_mapping:
1788 	for_each_sg(sg, s, count, i)
1789 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1790 	return 0;
1791 }
1792 
1793 /**
1794  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1795  * @dev: valid struct device pointer
1796  * @sg: list of buffers
1797  * @nents: number of buffers to map
1798  * @dir: DMA transfer direction
1799  *
1800  * Map a set of i/o coherent buffers described by scatterlist in streaming
1801  * mode for DMA. The scatter gather list elements are merged together (if
1802  * possible) and tagged with the appropriate dma address and length. They are
1803  * obtained via sg_dma_{address,length}.
1804  */
1805 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1806 		int nents, enum dma_data_direction dir, unsigned long attrs)
1807 {
1808 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1809 }
1810 
1811 /**
1812  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1813  * @dev: valid struct device pointer
1814  * @sg: list of buffers
1815  * @nents: number of buffers to map
1816  * @dir: DMA transfer direction
1817  *
1818  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1819  * The scatter gather list elements are merged together (if possible) and
1820  * tagged with the appropriate dma address and length. They are obtained via
1821  * sg_dma_{address,length}.
1822  */
1823 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1824 		int nents, enum dma_data_direction dir, unsigned long attrs)
1825 {
1826 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1827 }
1828 
1829 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1830 		int nents, enum dma_data_direction dir,
1831 		unsigned long attrs, bool is_coherent)
1832 {
1833 	struct scatterlist *s;
1834 	int i;
1835 
1836 	for_each_sg(sg, s, nents, i) {
1837 		if (sg_dma_len(s))
1838 			__iommu_remove_mapping(dev, sg_dma_address(s),
1839 					       sg_dma_len(s));
1840 		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1841 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1842 					      s->length, dir);
1843 	}
1844 }
1845 
1846 /**
1847  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1848  * @dev: valid struct device pointer
1849  * @sg: list of buffers
1850  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1851  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1852  *
1853  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1854  * rules concerning calls here are the same as for dma_unmap_single().
1855  */
1856 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1857 		int nents, enum dma_data_direction dir,
1858 		unsigned long attrs)
1859 {
1860 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1861 }
1862 
1863 /**
1864  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1865  * @dev: valid struct device pointer
1866  * @sg: list of buffers
1867  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1868  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1869  *
1870  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1871  * rules concerning calls here are the same as for dma_unmap_single().
1872  */
1873 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1874 			enum dma_data_direction dir,
1875 			unsigned long attrs)
1876 {
1877 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1878 }
1879 
1880 /**
1881  * arm_iommu_sync_sg_for_cpu
1882  * @dev: valid struct device pointer
1883  * @sg: list of buffers
1884  * @nents: number of buffers to map (returned from dma_map_sg)
1885  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1886  */
1887 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1888 			int nents, enum dma_data_direction dir)
1889 {
1890 	struct scatterlist *s;
1891 	int i;
1892 
1893 	for_each_sg(sg, s, nents, i)
1894 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1895 
1896 }
1897 
1898 /**
1899  * arm_iommu_sync_sg_for_device
1900  * @dev: valid struct device pointer
1901  * @sg: list of buffers
1902  * @nents: number of buffers to map (returned from dma_map_sg)
1903  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1904  */
1905 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1906 			int nents, enum dma_data_direction dir)
1907 {
1908 	struct scatterlist *s;
1909 	int i;
1910 
1911 	for_each_sg(sg, s, nents, i)
1912 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1913 }
1914 
1915 
1916 /**
1917  * arm_coherent_iommu_map_page
1918  * @dev: valid struct device pointer
1919  * @page: page that buffer resides in
1920  * @offset: offset into page for start of buffer
1921  * @size: size of buffer to map
1922  * @dir: DMA transfer direction
1923  *
1924  * Coherent IOMMU aware version of arm_dma_map_page()
1925  */
1926 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1927 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1928 	     unsigned long attrs)
1929 {
1930 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1931 	dma_addr_t dma_addr;
1932 	int ret, prot, len = PAGE_ALIGN(size + offset);
1933 
1934 	dma_addr = __alloc_iova(mapping, len);
1935 	if (dma_addr == DMA_ERROR_CODE)
1936 		return dma_addr;
1937 
1938 	prot = __dma_info_to_prot(dir, attrs);
1939 
1940 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1941 	if (ret < 0)
1942 		goto fail;
1943 
1944 	return dma_addr + offset;
1945 fail:
1946 	__free_iova(mapping, dma_addr, len);
1947 	return DMA_ERROR_CODE;
1948 }
1949 
1950 /**
1951  * arm_iommu_map_page
1952  * @dev: valid struct device pointer
1953  * @page: page that buffer resides in
1954  * @offset: offset into page for start of buffer
1955  * @size: size of buffer to map
1956  * @dir: DMA transfer direction
1957  *
1958  * IOMMU aware version of arm_dma_map_page()
1959  */
1960 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1961 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1962 	     unsigned long attrs)
1963 {
1964 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1965 		__dma_page_cpu_to_dev(page, offset, size, dir);
1966 
1967 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1968 }
1969 
1970 /**
1971  * arm_coherent_iommu_unmap_page
1972  * @dev: valid struct device pointer
1973  * @handle: DMA address of buffer
1974  * @size: size of buffer (same as passed to dma_map_page)
1975  * @dir: DMA transfer direction (same as passed to dma_map_page)
1976  *
1977  * Coherent IOMMU aware version of arm_dma_unmap_page()
1978  */
1979 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1980 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1981 {
1982 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1983 	dma_addr_t iova = handle & PAGE_MASK;
1984 	int offset = handle & ~PAGE_MASK;
1985 	int len = PAGE_ALIGN(size + offset);
1986 
1987 	if (!iova)
1988 		return;
1989 
1990 	iommu_unmap(mapping->domain, iova, len);
1991 	__free_iova(mapping, iova, len);
1992 }
1993 
1994 /**
1995  * arm_iommu_unmap_page
1996  * @dev: valid struct device pointer
1997  * @handle: DMA address of buffer
1998  * @size: size of buffer (same as passed to dma_map_page)
1999  * @dir: DMA transfer direction (same as passed to dma_map_page)
2000  *
2001  * IOMMU aware version of arm_dma_unmap_page()
2002  */
2003 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
2004 		size_t size, enum dma_data_direction dir, unsigned long attrs)
2005 {
2006 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2007 	dma_addr_t iova = handle & PAGE_MASK;
2008 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2009 	int offset = handle & ~PAGE_MASK;
2010 	int len = PAGE_ALIGN(size + offset);
2011 
2012 	if (!iova)
2013 		return;
2014 
2015 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
2016 		__dma_page_dev_to_cpu(page, offset, size, dir);
2017 
2018 	iommu_unmap(mapping->domain, iova, len);
2019 	__free_iova(mapping, iova, len);
2020 }
2021 
2022 /**
2023  * arm_iommu_map_resource - map a device resource for DMA
2024  * @dev: valid struct device pointer
2025  * @phys_addr: physical address of resource
2026  * @size: size of resource to map
2027  * @dir: DMA transfer direction
2028  */
2029 static dma_addr_t arm_iommu_map_resource(struct device *dev,
2030 		phys_addr_t phys_addr, size_t size,
2031 		enum dma_data_direction dir, unsigned long attrs)
2032 {
2033 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2034 	dma_addr_t dma_addr;
2035 	int ret, prot;
2036 	phys_addr_t addr = phys_addr & PAGE_MASK;
2037 	unsigned int offset = phys_addr & ~PAGE_MASK;
2038 	size_t len = PAGE_ALIGN(size + offset);
2039 
2040 	dma_addr = __alloc_iova(mapping, len);
2041 	if (dma_addr == DMA_ERROR_CODE)
2042 		return dma_addr;
2043 
2044 	prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
2045 
2046 	ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
2047 	if (ret < 0)
2048 		goto fail;
2049 
2050 	return dma_addr + offset;
2051 fail:
2052 	__free_iova(mapping, dma_addr, len);
2053 	return DMA_ERROR_CODE;
2054 }
2055 
2056 /**
2057  * arm_iommu_unmap_resource - unmap a device DMA resource
2058  * @dev: valid struct device pointer
2059  * @dma_handle: DMA address to resource
2060  * @size: size of resource to map
2061  * @dir: DMA transfer direction
2062  */
2063 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
2064 		size_t size, enum dma_data_direction dir,
2065 		unsigned long attrs)
2066 {
2067 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2068 	dma_addr_t iova = dma_handle & PAGE_MASK;
2069 	unsigned int offset = dma_handle & ~PAGE_MASK;
2070 	size_t len = PAGE_ALIGN(size + offset);
2071 
2072 	if (!iova)
2073 		return;
2074 
2075 	iommu_unmap(mapping->domain, iova, len);
2076 	__free_iova(mapping, iova, len);
2077 }
2078 
2079 static void arm_iommu_sync_single_for_cpu(struct device *dev,
2080 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
2081 {
2082 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2083 	dma_addr_t iova = handle & PAGE_MASK;
2084 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2085 	unsigned int offset = handle & ~PAGE_MASK;
2086 
2087 	if (!iova)
2088 		return;
2089 
2090 	__dma_page_dev_to_cpu(page, offset, size, dir);
2091 }
2092 
2093 static void arm_iommu_sync_single_for_device(struct device *dev,
2094 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
2095 {
2096 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2097 	dma_addr_t iova = handle & PAGE_MASK;
2098 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2099 	unsigned int offset = handle & ~PAGE_MASK;
2100 
2101 	if (!iova)
2102 		return;
2103 
2104 	__dma_page_cpu_to_dev(page, offset, size, dir);
2105 }
2106 
2107 const struct dma_map_ops iommu_ops = {
2108 	.alloc		= arm_iommu_alloc_attrs,
2109 	.free		= arm_iommu_free_attrs,
2110 	.mmap		= arm_iommu_mmap_attrs,
2111 	.get_sgtable	= arm_iommu_get_sgtable,
2112 
2113 	.map_page		= arm_iommu_map_page,
2114 	.unmap_page		= arm_iommu_unmap_page,
2115 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
2116 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
2117 
2118 	.map_sg			= arm_iommu_map_sg,
2119 	.unmap_sg		= arm_iommu_unmap_sg,
2120 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
2121 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
2122 
2123 	.map_resource		= arm_iommu_map_resource,
2124 	.unmap_resource		= arm_iommu_unmap_resource,
2125 };
2126 
2127 const struct dma_map_ops iommu_coherent_ops = {
2128 	.alloc		= arm_coherent_iommu_alloc_attrs,
2129 	.free		= arm_coherent_iommu_free_attrs,
2130 	.mmap		= arm_coherent_iommu_mmap_attrs,
2131 	.get_sgtable	= arm_iommu_get_sgtable,
2132 
2133 	.map_page	= arm_coherent_iommu_map_page,
2134 	.unmap_page	= arm_coherent_iommu_unmap_page,
2135 
2136 	.map_sg		= arm_coherent_iommu_map_sg,
2137 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
2138 
2139 	.map_resource	= arm_iommu_map_resource,
2140 	.unmap_resource	= arm_iommu_unmap_resource,
2141 };
2142 
2143 /**
2144  * arm_iommu_create_mapping
2145  * @bus: pointer to the bus holding the client device (for IOMMU calls)
2146  * @base: start address of the valid IO address space
2147  * @size: maximum size of the valid IO address space
2148  *
2149  * Creates a mapping structure which holds information about used/unused
2150  * IO address ranges, which is required to perform memory allocation and
2151  * mapping with IOMMU aware functions.
2152  *
2153  * The client device need to be attached to the mapping with
2154  * arm_iommu_attach_device function.
2155  */
2156 struct dma_iommu_mapping *
2157 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2158 {
2159 	unsigned int bits = size >> PAGE_SHIFT;
2160 	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2161 	struct dma_iommu_mapping *mapping;
2162 	int extensions = 1;
2163 	int err = -ENOMEM;
2164 
2165 	/* currently only 32-bit DMA address space is supported */
2166 	if (size > DMA_BIT_MASK(32) + 1)
2167 		return ERR_PTR(-ERANGE);
2168 
2169 	if (!bitmap_size)
2170 		return ERR_PTR(-EINVAL);
2171 
2172 	if (bitmap_size > PAGE_SIZE) {
2173 		extensions = bitmap_size / PAGE_SIZE;
2174 		bitmap_size = PAGE_SIZE;
2175 	}
2176 
2177 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2178 	if (!mapping)
2179 		goto err;
2180 
2181 	mapping->bitmap_size = bitmap_size;
2182 	mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
2183 				GFP_KERNEL);
2184 	if (!mapping->bitmaps)
2185 		goto err2;
2186 
2187 	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2188 	if (!mapping->bitmaps[0])
2189 		goto err3;
2190 
2191 	mapping->nr_bitmaps = 1;
2192 	mapping->extensions = extensions;
2193 	mapping->base = base;
2194 	mapping->bits = BITS_PER_BYTE * bitmap_size;
2195 
2196 	spin_lock_init(&mapping->lock);
2197 
2198 	mapping->domain = iommu_domain_alloc(bus);
2199 	if (!mapping->domain)
2200 		goto err4;
2201 
2202 	kref_init(&mapping->kref);
2203 	return mapping;
2204 err4:
2205 	kfree(mapping->bitmaps[0]);
2206 err3:
2207 	kfree(mapping->bitmaps);
2208 err2:
2209 	kfree(mapping);
2210 err:
2211 	return ERR_PTR(err);
2212 }
2213 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2214 
2215 static void release_iommu_mapping(struct kref *kref)
2216 {
2217 	int i;
2218 	struct dma_iommu_mapping *mapping =
2219 		container_of(kref, struct dma_iommu_mapping, kref);
2220 
2221 	iommu_domain_free(mapping->domain);
2222 	for (i = 0; i < mapping->nr_bitmaps; i++)
2223 		kfree(mapping->bitmaps[i]);
2224 	kfree(mapping->bitmaps);
2225 	kfree(mapping);
2226 }
2227 
2228 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2229 {
2230 	int next_bitmap;
2231 
2232 	if (mapping->nr_bitmaps >= mapping->extensions)
2233 		return -EINVAL;
2234 
2235 	next_bitmap = mapping->nr_bitmaps;
2236 	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2237 						GFP_ATOMIC);
2238 	if (!mapping->bitmaps[next_bitmap])
2239 		return -ENOMEM;
2240 
2241 	mapping->nr_bitmaps++;
2242 
2243 	return 0;
2244 }
2245 
2246 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2247 {
2248 	if (mapping)
2249 		kref_put(&mapping->kref, release_iommu_mapping);
2250 }
2251 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2252 
2253 static int __arm_iommu_attach_device(struct device *dev,
2254 				     struct dma_iommu_mapping *mapping)
2255 {
2256 	int err;
2257 
2258 	err = iommu_attach_device(mapping->domain, dev);
2259 	if (err)
2260 		return err;
2261 
2262 	kref_get(&mapping->kref);
2263 	to_dma_iommu_mapping(dev) = mapping;
2264 
2265 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2266 	return 0;
2267 }
2268 
2269 /**
2270  * arm_iommu_attach_device
2271  * @dev: valid struct device pointer
2272  * @mapping: io address space mapping structure (returned from
2273  *	arm_iommu_create_mapping)
2274  *
2275  * Attaches specified io address space mapping to the provided device.
2276  * This replaces the dma operations (dma_map_ops pointer) with the
2277  * IOMMU aware version.
2278  *
2279  * More than one client might be attached to the same io address space
2280  * mapping.
2281  */
2282 int arm_iommu_attach_device(struct device *dev,
2283 			    struct dma_iommu_mapping *mapping)
2284 {
2285 	int err;
2286 
2287 	err = __arm_iommu_attach_device(dev, mapping);
2288 	if (err)
2289 		return err;
2290 
2291 	set_dma_ops(dev, &iommu_ops);
2292 	return 0;
2293 }
2294 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2295 
2296 static void __arm_iommu_detach_device(struct device *dev)
2297 {
2298 	struct dma_iommu_mapping *mapping;
2299 
2300 	mapping = to_dma_iommu_mapping(dev);
2301 	if (!mapping) {
2302 		dev_warn(dev, "Not attached\n");
2303 		return;
2304 	}
2305 
2306 	iommu_detach_device(mapping->domain, dev);
2307 	kref_put(&mapping->kref, release_iommu_mapping);
2308 	to_dma_iommu_mapping(dev) = NULL;
2309 
2310 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2311 }
2312 
2313 /**
2314  * arm_iommu_detach_device
2315  * @dev: valid struct device pointer
2316  *
2317  * Detaches the provided device from a previously attached map.
2318  * This voids the dma operations (dma_map_ops pointer)
2319  */
2320 void arm_iommu_detach_device(struct device *dev)
2321 {
2322 	__arm_iommu_detach_device(dev);
2323 	set_dma_ops(dev, NULL);
2324 }
2325 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2326 
2327 static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2328 {
2329 	return coherent ? &iommu_coherent_ops : &iommu_ops;
2330 }
2331 
2332 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2333 				    const struct iommu_ops *iommu)
2334 {
2335 	struct dma_iommu_mapping *mapping;
2336 
2337 	if (!iommu)
2338 		return false;
2339 
2340 	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2341 	if (IS_ERR(mapping)) {
2342 		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2343 				size, dev_name(dev));
2344 		return false;
2345 	}
2346 
2347 	if (__arm_iommu_attach_device(dev, mapping)) {
2348 		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2349 				dev_name(dev));
2350 		arm_iommu_release_mapping(mapping);
2351 		return false;
2352 	}
2353 
2354 	return true;
2355 }
2356 
2357 static void arm_teardown_iommu_dma_ops(struct device *dev)
2358 {
2359 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2360 
2361 	if (!mapping)
2362 		return;
2363 
2364 	__arm_iommu_detach_device(dev);
2365 	arm_iommu_release_mapping(mapping);
2366 }
2367 
2368 #else
2369 
2370 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2371 				    const struct iommu_ops *iommu)
2372 {
2373 	return false;
2374 }
2375 
2376 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2377 
2378 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2379 
2380 #endif	/* CONFIG_ARM_DMA_USE_IOMMU */
2381 
2382 static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2383 {
2384 	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2385 }
2386 
2387 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2388 			const struct iommu_ops *iommu, bool coherent)
2389 {
2390 	const struct dma_map_ops *dma_ops;
2391 
2392 	dev->archdata.dma_coherent = coherent;
2393 	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2394 		dma_ops = arm_get_iommu_dma_map_ops(coherent);
2395 	else
2396 		dma_ops = arm_get_dma_map_ops(coherent);
2397 
2398 	set_dma_ops(dev, dma_ops);
2399 }
2400 
2401 void arch_teardown_dma_ops(struct device *dev)
2402 {
2403 	arm_teardown_iommu_dma_ops(dev);
2404 }
2405