xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision e3b9f1e8)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/bootmem.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/genalloc.h>
16 #include <linux/gfp.h>
17 #include <linux/errno.h>
18 #include <linux/list.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-contiguous.h>
23 #include <linux/highmem.h>
24 #include <linux/memblock.h>
25 #include <linux/slab.h>
26 #include <linux/iommu.h>
27 #include <linux/io.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sizes.h>
30 #include <linux/cma.h>
31 
32 #include <asm/memory.h>
33 #include <asm/highmem.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mach/arch.h>
37 #include <asm/dma-iommu.h>
38 #include <asm/mach/map.h>
39 #include <asm/system_info.h>
40 #include <asm/dma-contiguous.h>
41 
42 #include "dma.h"
43 #include "mm.h"
44 
45 struct arm_dma_alloc_args {
46 	struct device *dev;
47 	size_t size;
48 	gfp_t gfp;
49 	pgprot_t prot;
50 	const void *caller;
51 	bool want_vaddr;
52 	int coherent_flag;
53 };
54 
55 struct arm_dma_free_args {
56 	struct device *dev;
57 	size_t size;
58 	void *cpu_addr;
59 	struct page *page;
60 	bool want_vaddr;
61 };
62 
63 #define NORMAL	    0
64 #define COHERENT    1
65 
66 struct arm_dma_allocator {
67 	void *(*alloc)(struct arm_dma_alloc_args *args,
68 		       struct page **ret_page);
69 	void (*free)(struct arm_dma_free_args *args);
70 };
71 
72 struct arm_dma_buffer {
73 	struct list_head list;
74 	void *virt;
75 	struct arm_dma_allocator *allocator;
76 };
77 
78 static LIST_HEAD(arm_dma_bufs);
79 static DEFINE_SPINLOCK(arm_dma_bufs_lock);
80 
81 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
82 {
83 	struct arm_dma_buffer *buf, *found = NULL;
84 	unsigned long flags;
85 
86 	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
87 	list_for_each_entry(buf, &arm_dma_bufs, list) {
88 		if (buf->virt == virt) {
89 			list_del(&buf->list);
90 			found = buf;
91 			break;
92 		}
93 	}
94 	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
95 	return found;
96 }
97 
98 /*
99  * The DMA API is built upon the notion of "buffer ownership".  A buffer
100  * is either exclusively owned by the CPU (and therefore may be accessed
101  * by it) or exclusively owned by the DMA device.  These helper functions
102  * represent the transitions between these two ownership states.
103  *
104  * Note, however, that on later ARMs, this notion does not work due to
105  * speculative prefetches.  We model our approach on the assumption that
106  * the CPU does do speculative prefetches, which means we clean caches
107  * before transfers and delay cache invalidation until transfer completion.
108  *
109  */
110 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
111 		size_t, enum dma_data_direction);
112 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
113 		size_t, enum dma_data_direction);
114 
115 /**
116  * arm_dma_map_page - map a portion of a page for streaming DMA
117  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
118  * @page: page that buffer resides in
119  * @offset: offset into page for start of buffer
120  * @size: size of buffer to map
121  * @dir: DMA transfer direction
122  *
123  * Ensure that any data held in the cache is appropriately discarded
124  * or written back.
125  *
126  * The device owns this memory once this call has completed.  The CPU
127  * can regain ownership by calling dma_unmap_page().
128  */
129 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
130 	     unsigned long offset, size_t size, enum dma_data_direction dir,
131 	     unsigned long attrs)
132 {
133 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
134 		__dma_page_cpu_to_dev(page, offset, size, dir);
135 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
136 }
137 
138 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
139 	     unsigned long offset, size_t size, enum dma_data_direction dir,
140 	     unsigned long attrs)
141 {
142 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
143 }
144 
145 /**
146  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
147  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
148  * @handle: DMA address of buffer
149  * @size: size of buffer (same as passed to dma_map_page)
150  * @dir: DMA transfer direction (same as passed to dma_map_page)
151  *
152  * Unmap a page streaming mode DMA translation.  The handle and size
153  * must match what was provided in the previous dma_map_page() call.
154  * All other usages are undefined.
155  *
156  * After this call, reads by the CPU to the buffer are guaranteed to see
157  * whatever the device wrote there.
158  */
159 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
160 		size_t size, enum dma_data_direction dir, unsigned long attrs)
161 {
162 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
163 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
164 				      handle & ~PAGE_MASK, size, dir);
165 }
166 
167 static void arm_dma_sync_single_for_cpu(struct device *dev,
168 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
169 {
170 	unsigned int offset = handle & (PAGE_SIZE - 1);
171 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
172 	__dma_page_dev_to_cpu(page, offset, size, dir);
173 }
174 
175 static void arm_dma_sync_single_for_device(struct device *dev,
176 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
177 {
178 	unsigned int offset = handle & (PAGE_SIZE - 1);
179 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
180 	__dma_page_cpu_to_dev(page, offset, size, dir);
181 }
182 
183 static int arm_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
184 {
185 	return dma_addr == ARM_MAPPING_ERROR;
186 }
187 
188 const struct dma_map_ops arm_dma_ops = {
189 	.alloc			= arm_dma_alloc,
190 	.free			= arm_dma_free,
191 	.mmap			= arm_dma_mmap,
192 	.get_sgtable		= arm_dma_get_sgtable,
193 	.map_page		= arm_dma_map_page,
194 	.unmap_page		= arm_dma_unmap_page,
195 	.map_sg			= arm_dma_map_sg,
196 	.unmap_sg		= arm_dma_unmap_sg,
197 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
198 	.sync_single_for_device	= arm_dma_sync_single_for_device,
199 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
200 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
201 	.mapping_error		= arm_dma_mapping_error,
202 	.dma_supported		= arm_dma_supported,
203 };
204 EXPORT_SYMBOL(arm_dma_ops);
205 
206 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
207 	dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
208 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
209 				  dma_addr_t handle, unsigned long attrs);
210 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
211 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
212 		 unsigned long attrs);
213 
214 const struct dma_map_ops arm_coherent_dma_ops = {
215 	.alloc			= arm_coherent_dma_alloc,
216 	.free			= arm_coherent_dma_free,
217 	.mmap			= arm_coherent_dma_mmap,
218 	.get_sgtable		= arm_dma_get_sgtable,
219 	.map_page		= arm_coherent_dma_map_page,
220 	.map_sg			= arm_dma_map_sg,
221 	.mapping_error		= arm_dma_mapping_error,
222 	.dma_supported		= arm_dma_supported,
223 };
224 EXPORT_SYMBOL(arm_coherent_dma_ops);
225 
226 static int __dma_supported(struct device *dev, u64 mask, bool warn)
227 {
228 	unsigned long max_dma_pfn;
229 
230 	/*
231 	 * If the mask allows for more memory than we can address,
232 	 * and we actually have that much memory, then we must
233 	 * indicate that DMA to this device is not supported.
234 	 */
235 	if (sizeof(mask) != sizeof(dma_addr_t) &&
236 	    mask > (dma_addr_t)~0 &&
237 	    dma_to_pfn(dev, ~0) < max_pfn - 1) {
238 		if (warn) {
239 			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
240 				 mask);
241 			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
242 		}
243 		return 0;
244 	}
245 
246 	max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
247 
248 	/*
249 	 * Translate the device's DMA mask to a PFN limit.  This
250 	 * PFN number includes the page which we can DMA to.
251 	 */
252 	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
253 		if (warn)
254 			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
255 				 mask,
256 				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
257 				 max_dma_pfn + 1);
258 		return 0;
259 	}
260 
261 	return 1;
262 }
263 
264 static u64 get_coherent_dma_mask(struct device *dev)
265 {
266 	u64 mask = (u64)DMA_BIT_MASK(32);
267 
268 	if (dev) {
269 		mask = dev->coherent_dma_mask;
270 
271 		/*
272 		 * Sanity check the DMA mask - it must be non-zero, and
273 		 * must be able to be satisfied by a DMA allocation.
274 		 */
275 		if (mask == 0) {
276 			dev_warn(dev, "coherent DMA mask is unset\n");
277 			return 0;
278 		}
279 
280 		if (!__dma_supported(dev, mask, true))
281 			return 0;
282 	}
283 
284 	return mask;
285 }
286 
287 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
288 {
289 	/*
290 	 * Ensure that the allocated pages are zeroed, and that any data
291 	 * lurking in the kernel direct-mapped region is invalidated.
292 	 */
293 	if (PageHighMem(page)) {
294 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
295 		phys_addr_t end = base + size;
296 		while (size > 0) {
297 			void *ptr = kmap_atomic(page);
298 			memset(ptr, 0, PAGE_SIZE);
299 			if (coherent_flag != COHERENT)
300 				dmac_flush_range(ptr, ptr + PAGE_SIZE);
301 			kunmap_atomic(ptr);
302 			page++;
303 			size -= PAGE_SIZE;
304 		}
305 		if (coherent_flag != COHERENT)
306 			outer_flush_range(base, end);
307 	} else {
308 		void *ptr = page_address(page);
309 		memset(ptr, 0, size);
310 		if (coherent_flag != COHERENT) {
311 			dmac_flush_range(ptr, ptr + size);
312 			outer_flush_range(__pa(ptr), __pa(ptr) + size);
313 		}
314 	}
315 }
316 
317 /*
318  * Allocate a DMA buffer for 'dev' of size 'size' using the
319  * specified gfp mask.  Note that 'size' must be page aligned.
320  */
321 static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
322 				       gfp_t gfp, int coherent_flag)
323 {
324 	unsigned long order = get_order(size);
325 	struct page *page, *p, *e;
326 
327 	page = alloc_pages(gfp, order);
328 	if (!page)
329 		return NULL;
330 
331 	/*
332 	 * Now split the huge page and free the excess pages
333 	 */
334 	split_page(page, order);
335 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
336 		__free_page(p);
337 
338 	__dma_clear_buffer(page, size, coherent_flag);
339 
340 	return page;
341 }
342 
343 /*
344  * Free a DMA buffer.  'size' must be page aligned.
345  */
346 static void __dma_free_buffer(struct page *page, size_t size)
347 {
348 	struct page *e = page + (size >> PAGE_SHIFT);
349 
350 	while (page < e) {
351 		__free_page(page);
352 		page++;
353 	}
354 }
355 
356 static void *__alloc_from_contiguous(struct device *dev, size_t size,
357 				     pgprot_t prot, struct page **ret_page,
358 				     const void *caller, bool want_vaddr,
359 				     int coherent_flag, gfp_t gfp);
360 
361 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
362 				 pgprot_t prot, struct page **ret_page,
363 				 const void *caller, bool want_vaddr);
364 
365 static void *
366 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
367 	const void *caller)
368 {
369 	/*
370 	 * DMA allocation can be mapped to user space, so lets
371 	 * set VM_USERMAP flags too.
372 	 */
373 	return dma_common_contiguous_remap(page, size,
374 			VM_ARM_DMA_CONSISTENT | VM_USERMAP,
375 			prot, caller);
376 }
377 
378 static void __dma_free_remap(void *cpu_addr, size_t size)
379 {
380 	dma_common_free_remap(cpu_addr, size,
381 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
382 }
383 
384 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
385 static struct gen_pool *atomic_pool __ro_after_init;
386 
387 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
388 
389 static int __init early_coherent_pool(char *p)
390 {
391 	atomic_pool_size = memparse(p, &p);
392 	return 0;
393 }
394 early_param("coherent_pool", early_coherent_pool);
395 
396 /*
397  * Initialise the coherent pool for atomic allocations.
398  */
399 static int __init atomic_pool_init(void)
400 {
401 	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
402 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
403 	struct page *page;
404 	void *ptr;
405 
406 	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
407 	if (!atomic_pool)
408 		goto out;
409 	/*
410 	 * The atomic pool is only used for non-coherent allocations
411 	 * so we must pass NORMAL for coherent_flag.
412 	 */
413 	if (dev_get_cma_area(NULL))
414 		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
415 				      &page, atomic_pool_init, true, NORMAL,
416 				      GFP_KERNEL);
417 	else
418 		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
419 					   &page, atomic_pool_init, true);
420 	if (ptr) {
421 		int ret;
422 
423 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
424 					page_to_phys(page),
425 					atomic_pool_size, -1);
426 		if (ret)
427 			goto destroy_genpool;
428 
429 		gen_pool_set_algo(atomic_pool,
430 				gen_pool_first_fit_order_align,
431 				NULL);
432 		pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
433 		       atomic_pool_size / 1024);
434 		return 0;
435 	}
436 
437 destroy_genpool:
438 	gen_pool_destroy(atomic_pool);
439 	atomic_pool = NULL;
440 out:
441 	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
442 	       atomic_pool_size / 1024);
443 	return -ENOMEM;
444 }
445 /*
446  * CMA is activated by core_initcall, so we must be called after it.
447  */
448 postcore_initcall(atomic_pool_init);
449 
450 struct dma_contig_early_reserve {
451 	phys_addr_t base;
452 	unsigned long size;
453 };
454 
455 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
456 
457 static int dma_mmu_remap_num __initdata;
458 
459 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
460 {
461 	dma_mmu_remap[dma_mmu_remap_num].base = base;
462 	dma_mmu_remap[dma_mmu_remap_num].size = size;
463 	dma_mmu_remap_num++;
464 }
465 
466 void __init dma_contiguous_remap(void)
467 {
468 	int i;
469 	for (i = 0; i < dma_mmu_remap_num; i++) {
470 		phys_addr_t start = dma_mmu_remap[i].base;
471 		phys_addr_t end = start + dma_mmu_remap[i].size;
472 		struct map_desc map;
473 		unsigned long addr;
474 
475 		if (end > arm_lowmem_limit)
476 			end = arm_lowmem_limit;
477 		if (start >= end)
478 			continue;
479 
480 		map.pfn = __phys_to_pfn(start);
481 		map.virtual = __phys_to_virt(start);
482 		map.length = end - start;
483 		map.type = MT_MEMORY_DMA_READY;
484 
485 		/*
486 		 * Clear previous low-memory mapping to ensure that the
487 		 * TLB does not see any conflicting entries, then flush
488 		 * the TLB of the old entries before creating new mappings.
489 		 *
490 		 * This ensures that any speculatively loaded TLB entries
491 		 * (even though they may be rare) can not cause any problems,
492 		 * and ensures that this code is architecturally compliant.
493 		 */
494 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
495 		     addr += PMD_SIZE)
496 			pmd_clear(pmd_off_k(addr));
497 
498 		flush_tlb_kernel_range(__phys_to_virt(start),
499 				       __phys_to_virt(end));
500 
501 		iotable_init(&map, 1);
502 	}
503 }
504 
505 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
506 			    void *data)
507 {
508 	struct page *page = virt_to_page(addr);
509 	pgprot_t prot = *(pgprot_t *)data;
510 
511 	set_pte_ext(pte, mk_pte(page, prot), 0);
512 	return 0;
513 }
514 
515 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
516 {
517 	unsigned long start = (unsigned long) page_address(page);
518 	unsigned end = start + size;
519 
520 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
521 	flush_tlb_kernel_range(start, end);
522 }
523 
524 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
525 				 pgprot_t prot, struct page **ret_page,
526 				 const void *caller, bool want_vaddr)
527 {
528 	struct page *page;
529 	void *ptr = NULL;
530 	/*
531 	 * __alloc_remap_buffer is only called when the device is
532 	 * non-coherent
533 	 */
534 	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
535 	if (!page)
536 		return NULL;
537 	if (!want_vaddr)
538 		goto out;
539 
540 	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
541 	if (!ptr) {
542 		__dma_free_buffer(page, size);
543 		return NULL;
544 	}
545 
546  out:
547 	*ret_page = page;
548 	return ptr;
549 }
550 
551 static void *__alloc_from_pool(size_t size, struct page **ret_page)
552 {
553 	unsigned long val;
554 	void *ptr = NULL;
555 
556 	if (!atomic_pool) {
557 		WARN(1, "coherent pool not initialised!\n");
558 		return NULL;
559 	}
560 
561 	val = gen_pool_alloc(atomic_pool, size);
562 	if (val) {
563 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
564 
565 		*ret_page = phys_to_page(phys);
566 		ptr = (void *)val;
567 	}
568 
569 	return ptr;
570 }
571 
572 static bool __in_atomic_pool(void *start, size_t size)
573 {
574 	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
575 }
576 
577 static int __free_from_pool(void *start, size_t size)
578 {
579 	if (!__in_atomic_pool(start, size))
580 		return 0;
581 
582 	gen_pool_free(atomic_pool, (unsigned long)start, size);
583 
584 	return 1;
585 }
586 
587 static void *__alloc_from_contiguous(struct device *dev, size_t size,
588 				     pgprot_t prot, struct page **ret_page,
589 				     const void *caller, bool want_vaddr,
590 				     int coherent_flag, gfp_t gfp)
591 {
592 	unsigned long order = get_order(size);
593 	size_t count = size >> PAGE_SHIFT;
594 	struct page *page;
595 	void *ptr = NULL;
596 
597 	page = dma_alloc_from_contiguous(dev, count, order, gfp);
598 	if (!page)
599 		return NULL;
600 
601 	__dma_clear_buffer(page, size, coherent_flag);
602 
603 	if (!want_vaddr)
604 		goto out;
605 
606 	if (PageHighMem(page)) {
607 		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
608 		if (!ptr) {
609 			dma_release_from_contiguous(dev, page, count);
610 			return NULL;
611 		}
612 	} else {
613 		__dma_remap(page, size, prot);
614 		ptr = page_address(page);
615 	}
616 
617  out:
618 	*ret_page = page;
619 	return ptr;
620 }
621 
622 static void __free_from_contiguous(struct device *dev, struct page *page,
623 				   void *cpu_addr, size_t size, bool want_vaddr)
624 {
625 	if (want_vaddr) {
626 		if (PageHighMem(page))
627 			__dma_free_remap(cpu_addr, size);
628 		else
629 			__dma_remap(page, size, PAGE_KERNEL);
630 	}
631 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
632 }
633 
634 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
635 {
636 	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
637 			pgprot_writecombine(prot) :
638 			pgprot_dmacoherent(prot);
639 	return prot;
640 }
641 
642 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
643 				   struct page **ret_page)
644 {
645 	struct page *page;
646 	/* __alloc_simple_buffer is only called when the device is coherent */
647 	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
648 	if (!page)
649 		return NULL;
650 
651 	*ret_page = page;
652 	return page_address(page);
653 }
654 
655 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
656 				    struct page **ret_page)
657 {
658 	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
659 				     ret_page);
660 }
661 
662 static void simple_allocator_free(struct arm_dma_free_args *args)
663 {
664 	__dma_free_buffer(args->page, args->size);
665 }
666 
667 static struct arm_dma_allocator simple_allocator = {
668 	.alloc = simple_allocator_alloc,
669 	.free = simple_allocator_free,
670 };
671 
672 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
673 				 struct page **ret_page)
674 {
675 	return __alloc_from_contiguous(args->dev, args->size, args->prot,
676 				       ret_page, args->caller,
677 				       args->want_vaddr, args->coherent_flag,
678 				       args->gfp);
679 }
680 
681 static void cma_allocator_free(struct arm_dma_free_args *args)
682 {
683 	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
684 			       args->size, args->want_vaddr);
685 }
686 
687 static struct arm_dma_allocator cma_allocator = {
688 	.alloc = cma_allocator_alloc,
689 	.free = cma_allocator_free,
690 };
691 
692 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
693 				  struct page **ret_page)
694 {
695 	return __alloc_from_pool(args->size, ret_page);
696 }
697 
698 static void pool_allocator_free(struct arm_dma_free_args *args)
699 {
700 	__free_from_pool(args->cpu_addr, args->size);
701 }
702 
703 static struct arm_dma_allocator pool_allocator = {
704 	.alloc = pool_allocator_alloc,
705 	.free = pool_allocator_free,
706 };
707 
708 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
709 				   struct page **ret_page)
710 {
711 	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
712 				    args->prot, ret_page, args->caller,
713 				    args->want_vaddr);
714 }
715 
716 static void remap_allocator_free(struct arm_dma_free_args *args)
717 {
718 	if (args->want_vaddr)
719 		__dma_free_remap(args->cpu_addr, args->size);
720 
721 	__dma_free_buffer(args->page, args->size);
722 }
723 
724 static struct arm_dma_allocator remap_allocator = {
725 	.alloc = remap_allocator_alloc,
726 	.free = remap_allocator_free,
727 };
728 
729 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
730 			 gfp_t gfp, pgprot_t prot, bool is_coherent,
731 			 unsigned long attrs, const void *caller)
732 {
733 	u64 mask = get_coherent_dma_mask(dev);
734 	struct page *page = NULL;
735 	void *addr;
736 	bool allowblock, cma;
737 	struct arm_dma_buffer *buf;
738 	struct arm_dma_alloc_args args = {
739 		.dev = dev,
740 		.size = PAGE_ALIGN(size),
741 		.gfp = gfp,
742 		.prot = prot,
743 		.caller = caller,
744 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
745 		.coherent_flag = is_coherent ? COHERENT : NORMAL,
746 	};
747 
748 #ifdef CONFIG_DMA_API_DEBUG
749 	u64 limit = (mask + 1) & ~mask;
750 	if (limit && size >= limit) {
751 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
752 			size, mask);
753 		return NULL;
754 	}
755 #endif
756 
757 	if (!mask)
758 		return NULL;
759 
760 	buf = kzalloc(sizeof(*buf),
761 		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
762 	if (!buf)
763 		return NULL;
764 
765 	if (mask < 0xffffffffULL)
766 		gfp |= GFP_DMA;
767 
768 	/*
769 	 * Following is a work-around (a.k.a. hack) to prevent pages
770 	 * with __GFP_COMP being passed to split_page() which cannot
771 	 * handle them.  The real problem is that this flag probably
772 	 * should be 0 on ARM as it is not supported on this
773 	 * platform; see CONFIG_HUGETLBFS.
774 	 */
775 	gfp &= ~(__GFP_COMP);
776 	args.gfp = gfp;
777 
778 	*handle = ARM_MAPPING_ERROR;
779 	allowblock = gfpflags_allow_blocking(gfp);
780 	cma = allowblock ? dev_get_cma_area(dev) : false;
781 
782 	if (cma)
783 		buf->allocator = &cma_allocator;
784 	else if (is_coherent)
785 		buf->allocator = &simple_allocator;
786 	else if (allowblock)
787 		buf->allocator = &remap_allocator;
788 	else
789 		buf->allocator = &pool_allocator;
790 
791 	addr = buf->allocator->alloc(&args, &page);
792 
793 	if (page) {
794 		unsigned long flags;
795 
796 		*handle = pfn_to_dma(dev, page_to_pfn(page));
797 		buf->virt = args.want_vaddr ? addr : page;
798 
799 		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
800 		list_add(&buf->list, &arm_dma_bufs);
801 		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
802 	} else {
803 		kfree(buf);
804 	}
805 
806 	return args.want_vaddr ? addr : page;
807 }
808 
809 /*
810  * Allocate DMA-coherent memory space and return both the kernel remapped
811  * virtual and bus address for that space.
812  */
813 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
814 		    gfp_t gfp, unsigned long attrs)
815 {
816 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
817 
818 	return __dma_alloc(dev, size, handle, gfp, prot, false,
819 			   attrs, __builtin_return_address(0));
820 }
821 
822 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
823 	dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
824 {
825 	return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
826 			   attrs, __builtin_return_address(0));
827 }
828 
829 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
830 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
831 		 unsigned long attrs)
832 {
833 	int ret;
834 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
835 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
836 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
837 	unsigned long off = vma->vm_pgoff;
838 
839 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
840 		return ret;
841 
842 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
843 		ret = remap_pfn_range(vma, vma->vm_start,
844 				      pfn + off,
845 				      vma->vm_end - vma->vm_start,
846 				      vma->vm_page_prot);
847 	}
848 
849 	return ret;
850 }
851 
852 /*
853  * Create userspace mapping for the DMA-coherent memory.
854  */
855 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
856 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
857 		 unsigned long attrs)
858 {
859 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
860 }
861 
862 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
863 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
864 		 unsigned long attrs)
865 {
866 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
867 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
868 }
869 
870 /*
871  * Free a buffer as defined by the above mapping.
872  */
873 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
874 			   dma_addr_t handle, unsigned long attrs,
875 			   bool is_coherent)
876 {
877 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
878 	struct arm_dma_buffer *buf;
879 	struct arm_dma_free_args args = {
880 		.dev = dev,
881 		.size = PAGE_ALIGN(size),
882 		.cpu_addr = cpu_addr,
883 		.page = page,
884 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
885 	};
886 
887 	buf = arm_dma_buffer_find(cpu_addr);
888 	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
889 		return;
890 
891 	buf->allocator->free(&args);
892 	kfree(buf);
893 }
894 
895 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
896 		  dma_addr_t handle, unsigned long attrs)
897 {
898 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
899 }
900 
901 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
902 				  dma_addr_t handle, unsigned long attrs)
903 {
904 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
905 }
906 
907 /*
908  * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
909  * that the intention is to allow exporting memory allocated via the
910  * coherent DMA APIs through the dma_buf API, which only accepts a
911  * scattertable.  This presents a couple of problems:
912  * 1. Not all memory allocated via the coherent DMA APIs is backed by
913  *    a struct page
914  * 2. Passing coherent DMA memory into the streaming APIs is not allowed
915  *    as we will try to flush the memory through a different alias to that
916  *    actually being used (and the flushes are redundant.)
917  */
918 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
919 		 void *cpu_addr, dma_addr_t handle, size_t size,
920 		 unsigned long attrs)
921 {
922 	unsigned long pfn = dma_to_pfn(dev, handle);
923 	struct page *page;
924 	int ret;
925 
926 	/* If the PFN is not valid, we do not have a struct page */
927 	if (!pfn_valid(pfn))
928 		return -ENXIO;
929 
930 	page = pfn_to_page(pfn);
931 
932 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
933 	if (unlikely(ret))
934 		return ret;
935 
936 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
937 	return 0;
938 }
939 
940 static void dma_cache_maint_page(struct page *page, unsigned long offset,
941 	size_t size, enum dma_data_direction dir,
942 	void (*op)(const void *, size_t, int))
943 {
944 	unsigned long pfn;
945 	size_t left = size;
946 
947 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
948 	offset %= PAGE_SIZE;
949 
950 	/*
951 	 * A single sg entry may refer to multiple physically contiguous
952 	 * pages.  But we still need to process highmem pages individually.
953 	 * If highmem is not configured then the bulk of this loop gets
954 	 * optimized out.
955 	 */
956 	do {
957 		size_t len = left;
958 		void *vaddr;
959 
960 		page = pfn_to_page(pfn);
961 
962 		if (PageHighMem(page)) {
963 			if (len + offset > PAGE_SIZE)
964 				len = PAGE_SIZE - offset;
965 
966 			if (cache_is_vipt_nonaliasing()) {
967 				vaddr = kmap_atomic(page);
968 				op(vaddr + offset, len, dir);
969 				kunmap_atomic(vaddr);
970 			} else {
971 				vaddr = kmap_high_get(page);
972 				if (vaddr) {
973 					op(vaddr + offset, len, dir);
974 					kunmap_high(page);
975 				}
976 			}
977 		} else {
978 			vaddr = page_address(page) + offset;
979 			op(vaddr, len, dir);
980 		}
981 		offset = 0;
982 		pfn++;
983 		left -= len;
984 	} while (left);
985 }
986 
987 /*
988  * Make an area consistent for devices.
989  * Note: Drivers should NOT use this function directly, as it will break
990  * platforms with CONFIG_DMABOUNCE.
991  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
992  */
993 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
994 	size_t size, enum dma_data_direction dir)
995 {
996 	phys_addr_t paddr;
997 
998 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
999 
1000 	paddr = page_to_phys(page) + off;
1001 	if (dir == DMA_FROM_DEVICE) {
1002 		outer_inv_range(paddr, paddr + size);
1003 	} else {
1004 		outer_clean_range(paddr, paddr + size);
1005 	}
1006 	/* FIXME: non-speculating: flush on bidirectional mappings? */
1007 }
1008 
1009 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
1010 	size_t size, enum dma_data_direction dir)
1011 {
1012 	phys_addr_t paddr = page_to_phys(page) + off;
1013 
1014 	/* FIXME: non-speculating: not required */
1015 	/* in any case, don't bother invalidating if DMA to device */
1016 	if (dir != DMA_TO_DEVICE) {
1017 		outer_inv_range(paddr, paddr + size);
1018 
1019 		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
1020 	}
1021 
1022 	/*
1023 	 * Mark the D-cache clean for these pages to avoid extra flushing.
1024 	 */
1025 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
1026 		unsigned long pfn;
1027 		size_t left = size;
1028 
1029 		pfn = page_to_pfn(page) + off / PAGE_SIZE;
1030 		off %= PAGE_SIZE;
1031 		if (off) {
1032 			pfn++;
1033 			left -= PAGE_SIZE - off;
1034 		}
1035 		while (left >= PAGE_SIZE) {
1036 			page = pfn_to_page(pfn++);
1037 			set_bit(PG_dcache_clean, &page->flags);
1038 			left -= PAGE_SIZE;
1039 		}
1040 	}
1041 }
1042 
1043 /**
1044  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1045  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1046  * @sg: list of buffers
1047  * @nents: number of buffers to map
1048  * @dir: DMA transfer direction
1049  *
1050  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1051  * This is the scatter-gather version of the dma_map_single interface.
1052  * Here the scatter gather list elements are each tagged with the
1053  * appropriate dma address and length.  They are obtained via
1054  * sg_dma_{address,length}.
1055  *
1056  * Device ownership issues as mentioned for dma_map_single are the same
1057  * here.
1058  */
1059 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1060 		enum dma_data_direction dir, unsigned long attrs)
1061 {
1062 	const struct dma_map_ops *ops = get_dma_ops(dev);
1063 	struct scatterlist *s;
1064 	int i, j;
1065 
1066 	for_each_sg(sg, s, nents, i) {
1067 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1068 		s->dma_length = s->length;
1069 #endif
1070 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1071 						s->length, dir, attrs);
1072 		if (dma_mapping_error(dev, s->dma_address))
1073 			goto bad_mapping;
1074 	}
1075 	return nents;
1076 
1077  bad_mapping:
1078 	for_each_sg(sg, s, i, j)
1079 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1080 	return 0;
1081 }
1082 
1083 /**
1084  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1085  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1086  * @sg: list of buffers
1087  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1088  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1089  *
1090  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1091  * rules concerning calls here are the same as for dma_unmap_single().
1092  */
1093 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1094 		enum dma_data_direction dir, unsigned long attrs)
1095 {
1096 	const struct dma_map_ops *ops = get_dma_ops(dev);
1097 	struct scatterlist *s;
1098 
1099 	int i;
1100 
1101 	for_each_sg(sg, s, nents, i)
1102 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1103 }
1104 
1105 /**
1106  * arm_dma_sync_sg_for_cpu
1107  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1108  * @sg: list of buffers
1109  * @nents: number of buffers to map (returned from dma_map_sg)
1110  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1111  */
1112 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1113 			int nents, enum dma_data_direction dir)
1114 {
1115 	const struct dma_map_ops *ops = get_dma_ops(dev);
1116 	struct scatterlist *s;
1117 	int i;
1118 
1119 	for_each_sg(sg, s, nents, i)
1120 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1121 					 dir);
1122 }
1123 
1124 /**
1125  * arm_dma_sync_sg_for_device
1126  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1127  * @sg: list of buffers
1128  * @nents: number of buffers to map (returned from dma_map_sg)
1129  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1130  */
1131 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1132 			int nents, enum dma_data_direction dir)
1133 {
1134 	const struct dma_map_ops *ops = get_dma_ops(dev);
1135 	struct scatterlist *s;
1136 	int i;
1137 
1138 	for_each_sg(sg, s, nents, i)
1139 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1140 					    dir);
1141 }
1142 
1143 /*
1144  * Return whether the given device DMA address mask can be supported
1145  * properly.  For example, if your device can only drive the low 24-bits
1146  * during bus mastering, then you would pass 0x00ffffff as the mask
1147  * to this function.
1148  */
1149 int arm_dma_supported(struct device *dev, u64 mask)
1150 {
1151 	return __dma_supported(dev, mask, false);
1152 }
1153 
1154 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
1155 
1156 static int __init dma_debug_do_init(void)
1157 {
1158 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1159 	return 0;
1160 }
1161 core_initcall(dma_debug_do_init);
1162 
1163 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1164 
1165 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1166 {
1167 	int prot = 0;
1168 
1169 	if (attrs & DMA_ATTR_PRIVILEGED)
1170 		prot |= IOMMU_PRIV;
1171 
1172 	switch (dir) {
1173 	case DMA_BIDIRECTIONAL:
1174 		return prot | IOMMU_READ | IOMMU_WRITE;
1175 	case DMA_TO_DEVICE:
1176 		return prot | IOMMU_READ;
1177 	case DMA_FROM_DEVICE:
1178 		return prot | IOMMU_WRITE;
1179 	default:
1180 		return prot;
1181 	}
1182 }
1183 
1184 /* IOMMU */
1185 
1186 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1187 
1188 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1189 				      size_t size)
1190 {
1191 	unsigned int order = get_order(size);
1192 	unsigned int align = 0;
1193 	unsigned int count, start;
1194 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1195 	unsigned long flags;
1196 	dma_addr_t iova;
1197 	int i;
1198 
1199 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1200 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1201 
1202 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1203 	align = (1 << order) - 1;
1204 
1205 	spin_lock_irqsave(&mapping->lock, flags);
1206 	for (i = 0; i < mapping->nr_bitmaps; i++) {
1207 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1208 				mapping->bits, 0, count, align);
1209 
1210 		if (start > mapping->bits)
1211 			continue;
1212 
1213 		bitmap_set(mapping->bitmaps[i], start, count);
1214 		break;
1215 	}
1216 
1217 	/*
1218 	 * No unused range found. Try to extend the existing mapping
1219 	 * and perform a second attempt to reserve an IO virtual
1220 	 * address range of size bytes.
1221 	 */
1222 	if (i == mapping->nr_bitmaps) {
1223 		if (extend_iommu_mapping(mapping)) {
1224 			spin_unlock_irqrestore(&mapping->lock, flags);
1225 			return ARM_MAPPING_ERROR;
1226 		}
1227 
1228 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1229 				mapping->bits, 0, count, align);
1230 
1231 		if (start > mapping->bits) {
1232 			spin_unlock_irqrestore(&mapping->lock, flags);
1233 			return ARM_MAPPING_ERROR;
1234 		}
1235 
1236 		bitmap_set(mapping->bitmaps[i], start, count);
1237 	}
1238 	spin_unlock_irqrestore(&mapping->lock, flags);
1239 
1240 	iova = mapping->base + (mapping_size * i);
1241 	iova += start << PAGE_SHIFT;
1242 
1243 	return iova;
1244 }
1245 
1246 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1247 			       dma_addr_t addr, size_t size)
1248 {
1249 	unsigned int start, count;
1250 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1251 	unsigned long flags;
1252 	dma_addr_t bitmap_base;
1253 	u32 bitmap_index;
1254 
1255 	if (!size)
1256 		return;
1257 
1258 	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1259 	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1260 
1261 	bitmap_base = mapping->base + mapping_size * bitmap_index;
1262 
1263 	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1264 
1265 	if (addr + size > bitmap_base + mapping_size) {
1266 		/*
1267 		 * The address range to be freed reaches into the iova
1268 		 * range of the next bitmap. This should not happen as
1269 		 * we don't allow this in __alloc_iova (at the
1270 		 * moment).
1271 		 */
1272 		BUG();
1273 	} else
1274 		count = size >> PAGE_SHIFT;
1275 
1276 	spin_lock_irqsave(&mapping->lock, flags);
1277 	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1278 	spin_unlock_irqrestore(&mapping->lock, flags);
1279 }
1280 
1281 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1282 static const int iommu_order_array[] = { 9, 8, 4, 0 };
1283 
1284 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1285 					  gfp_t gfp, unsigned long attrs,
1286 					  int coherent_flag)
1287 {
1288 	struct page **pages;
1289 	int count = size >> PAGE_SHIFT;
1290 	int array_size = count * sizeof(struct page *);
1291 	int i = 0;
1292 	int order_idx = 0;
1293 
1294 	if (array_size <= PAGE_SIZE)
1295 		pages = kzalloc(array_size, GFP_KERNEL);
1296 	else
1297 		pages = vzalloc(array_size);
1298 	if (!pages)
1299 		return NULL;
1300 
1301 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1302 	{
1303 		unsigned long order = get_order(size);
1304 		struct page *page;
1305 
1306 		page = dma_alloc_from_contiguous(dev, count, order, gfp);
1307 		if (!page)
1308 			goto error;
1309 
1310 		__dma_clear_buffer(page, size, coherent_flag);
1311 
1312 		for (i = 0; i < count; i++)
1313 			pages[i] = page + i;
1314 
1315 		return pages;
1316 	}
1317 
1318 	/* Go straight to 4K chunks if caller says it's OK. */
1319 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1320 		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1321 
1322 	/*
1323 	 * IOMMU can map any pages, so himem can also be used here
1324 	 */
1325 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1326 
1327 	while (count) {
1328 		int j, order;
1329 
1330 		order = iommu_order_array[order_idx];
1331 
1332 		/* Drop down when we get small */
1333 		if (__fls(count) < order) {
1334 			order_idx++;
1335 			continue;
1336 		}
1337 
1338 		if (order) {
1339 			/* See if it's easy to allocate a high-order chunk */
1340 			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1341 
1342 			/* Go down a notch at first sign of pressure */
1343 			if (!pages[i]) {
1344 				order_idx++;
1345 				continue;
1346 			}
1347 		} else {
1348 			pages[i] = alloc_pages(gfp, 0);
1349 			if (!pages[i])
1350 				goto error;
1351 		}
1352 
1353 		if (order) {
1354 			split_page(pages[i], order);
1355 			j = 1 << order;
1356 			while (--j)
1357 				pages[i + j] = pages[i] + j;
1358 		}
1359 
1360 		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1361 		i += 1 << order;
1362 		count -= 1 << order;
1363 	}
1364 
1365 	return pages;
1366 error:
1367 	while (i--)
1368 		if (pages[i])
1369 			__free_pages(pages[i], 0);
1370 	kvfree(pages);
1371 	return NULL;
1372 }
1373 
1374 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1375 			       size_t size, unsigned long attrs)
1376 {
1377 	int count = size >> PAGE_SHIFT;
1378 	int i;
1379 
1380 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1381 		dma_release_from_contiguous(dev, pages[0], count);
1382 	} else {
1383 		for (i = 0; i < count; i++)
1384 			if (pages[i])
1385 				__free_pages(pages[i], 0);
1386 	}
1387 
1388 	kvfree(pages);
1389 	return 0;
1390 }
1391 
1392 /*
1393  * Create a CPU mapping for a specified pages
1394  */
1395 static void *
1396 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1397 		    const void *caller)
1398 {
1399 	return dma_common_pages_remap(pages, size,
1400 			VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1401 }
1402 
1403 /*
1404  * Create a mapping in device IO address space for specified pages
1405  */
1406 static dma_addr_t
1407 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1408 		       unsigned long attrs)
1409 {
1410 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1411 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1412 	dma_addr_t dma_addr, iova;
1413 	int i;
1414 
1415 	dma_addr = __alloc_iova(mapping, size);
1416 	if (dma_addr == ARM_MAPPING_ERROR)
1417 		return dma_addr;
1418 
1419 	iova = dma_addr;
1420 	for (i = 0; i < count; ) {
1421 		int ret;
1422 
1423 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1424 		phys_addr_t phys = page_to_phys(pages[i]);
1425 		unsigned int len, j;
1426 
1427 		for (j = i + 1; j < count; j++, next_pfn++)
1428 			if (page_to_pfn(pages[j]) != next_pfn)
1429 				break;
1430 
1431 		len = (j - i) << PAGE_SHIFT;
1432 		ret = iommu_map(mapping->domain, iova, phys, len,
1433 				__dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1434 		if (ret < 0)
1435 			goto fail;
1436 		iova += len;
1437 		i = j;
1438 	}
1439 	return dma_addr;
1440 fail:
1441 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1442 	__free_iova(mapping, dma_addr, size);
1443 	return ARM_MAPPING_ERROR;
1444 }
1445 
1446 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1447 {
1448 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1449 
1450 	/*
1451 	 * add optional in-page offset from iova to size and align
1452 	 * result to page size
1453 	 */
1454 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1455 	iova &= PAGE_MASK;
1456 
1457 	iommu_unmap(mapping->domain, iova, size);
1458 	__free_iova(mapping, iova, size);
1459 	return 0;
1460 }
1461 
1462 static struct page **__atomic_get_pages(void *addr)
1463 {
1464 	struct page *page;
1465 	phys_addr_t phys;
1466 
1467 	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1468 	page = phys_to_page(phys);
1469 
1470 	return (struct page **)page;
1471 }
1472 
1473 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1474 {
1475 	struct vm_struct *area;
1476 
1477 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1478 		return __atomic_get_pages(cpu_addr);
1479 
1480 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1481 		return cpu_addr;
1482 
1483 	area = find_vm_area(cpu_addr);
1484 	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1485 		return area->pages;
1486 	return NULL;
1487 }
1488 
1489 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1490 				  dma_addr_t *handle, int coherent_flag,
1491 				  unsigned long attrs)
1492 {
1493 	struct page *page;
1494 	void *addr;
1495 
1496 	if (coherent_flag  == COHERENT)
1497 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
1498 	else
1499 		addr = __alloc_from_pool(size, &page);
1500 	if (!addr)
1501 		return NULL;
1502 
1503 	*handle = __iommu_create_mapping(dev, &page, size, attrs);
1504 	if (*handle == ARM_MAPPING_ERROR)
1505 		goto err_mapping;
1506 
1507 	return addr;
1508 
1509 err_mapping:
1510 	__free_from_pool(addr, size);
1511 	return NULL;
1512 }
1513 
1514 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1515 			dma_addr_t handle, size_t size, int coherent_flag)
1516 {
1517 	__iommu_remove_mapping(dev, handle, size);
1518 	if (coherent_flag == COHERENT)
1519 		__dma_free_buffer(virt_to_page(cpu_addr), size);
1520 	else
1521 		__free_from_pool(cpu_addr, size);
1522 }
1523 
1524 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1525 	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1526 	    int coherent_flag)
1527 {
1528 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1529 	struct page **pages;
1530 	void *addr = NULL;
1531 
1532 	*handle = ARM_MAPPING_ERROR;
1533 	size = PAGE_ALIGN(size);
1534 
1535 	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
1536 		return __iommu_alloc_simple(dev, size, gfp, handle,
1537 					    coherent_flag, attrs);
1538 
1539 	/*
1540 	 * Following is a work-around (a.k.a. hack) to prevent pages
1541 	 * with __GFP_COMP being passed to split_page() which cannot
1542 	 * handle them.  The real problem is that this flag probably
1543 	 * should be 0 on ARM as it is not supported on this
1544 	 * platform; see CONFIG_HUGETLBFS.
1545 	 */
1546 	gfp &= ~(__GFP_COMP);
1547 
1548 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1549 	if (!pages)
1550 		return NULL;
1551 
1552 	*handle = __iommu_create_mapping(dev, pages, size, attrs);
1553 	if (*handle == ARM_MAPPING_ERROR)
1554 		goto err_buffer;
1555 
1556 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1557 		return pages;
1558 
1559 	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1560 				   __builtin_return_address(0));
1561 	if (!addr)
1562 		goto err_mapping;
1563 
1564 	return addr;
1565 
1566 err_mapping:
1567 	__iommu_remove_mapping(dev, *handle, size);
1568 err_buffer:
1569 	__iommu_free_buffer(dev, pages, size, attrs);
1570 	return NULL;
1571 }
1572 
1573 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1574 	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1575 {
1576 	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1577 }
1578 
1579 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1580 		    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1581 {
1582 	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1583 }
1584 
1585 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1586 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1587 		    unsigned long attrs)
1588 {
1589 	unsigned long uaddr = vma->vm_start;
1590 	unsigned long usize = vma->vm_end - vma->vm_start;
1591 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1592 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1593 	unsigned long off = vma->vm_pgoff;
1594 
1595 	if (!pages)
1596 		return -ENXIO;
1597 
1598 	if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1599 		return -ENXIO;
1600 
1601 	pages += off;
1602 
1603 	do {
1604 		int ret = vm_insert_page(vma, uaddr, *pages++);
1605 		if (ret) {
1606 			pr_err("Remapping memory failed: %d\n", ret);
1607 			return ret;
1608 		}
1609 		uaddr += PAGE_SIZE;
1610 		usize -= PAGE_SIZE;
1611 	} while (usize > 0);
1612 
1613 	return 0;
1614 }
1615 static int arm_iommu_mmap_attrs(struct device *dev,
1616 		struct vm_area_struct *vma, void *cpu_addr,
1617 		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1618 {
1619 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1620 
1621 	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1622 }
1623 
1624 static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1625 		struct vm_area_struct *vma, void *cpu_addr,
1626 		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1627 {
1628 	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1629 }
1630 
1631 /*
1632  * free a page as defined by the above mapping.
1633  * Must not be called with IRQs disabled.
1634  */
1635 void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1636 	dma_addr_t handle, unsigned long attrs, int coherent_flag)
1637 {
1638 	struct page **pages;
1639 	size = PAGE_ALIGN(size);
1640 
1641 	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1642 		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1643 		return;
1644 	}
1645 
1646 	pages = __iommu_get_pages(cpu_addr, attrs);
1647 	if (!pages) {
1648 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1649 		return;
1650 	}
1651 
1652 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) {
1653 		dma_common_free_remap(cpu_addr, size,
1654 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1655 	}
1656 
1657 	__iommu_remove_mapping(dev, handle, size);
1658 	__iommu_free_buffer(dev, pages, size, attrs);
1659 }
1660 
1661 void arm_iommu_free_attrs(struct device *dev, size_t size,
1662 		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1663 {
1664 	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1665 }
1666 
1667 void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1668 		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1669 {
1670 	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1671 }
1672 
1673 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1674 				 void *cpu_addr, dma_addr_t dma_addr,
1675 				 size_t size, unsigned long attrs)
1676 {
1677 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1678 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1679 
1680 	if (!pages)
1681 		return -ENXIO;
1682 
1683 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1684 					 GFP_KERNEL);
1685 }
1686 
1687 /*
1688  * Map a part of the scatter-gather list into contiguous io address space
1689  */
1690 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1691 			  size_t size, dma_addr_t *handle,
1692 			  enum dma_data_direction dir, unsigned long attrs,
1693 			  bool is_coherent)
1694 {
1695 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1696 	dma_addr_t iova, iova_base;
1697 	int ret = 0;
1698 	unsigned int count;
1699 	struct scatterlist *s;
1700 	int prot;
1701 
1702 	size = PAGE_ALIGN(size);
1703 	*handle = ARM_MAPPING_ERROR;
1704 
1705 	iova_base = iova = __alloc_iova(mapping, size);
1706 	if (iova == ARM_MAPPING_ERROR)
1707 		return -ENOMEM;
1708 
1709 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1710 		phys_addr_t phys = page_to_phys(sg_page(s));
1711 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1712 
1713 		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1714 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1715 
1716 		prot = __dma_info_to_prot(dir, attrs);
1717 
1718 		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1719 		if (ret < 0)
1720 			goto fail;
1721 		count += len >> PAGE_SHIFT;
1722 		iova += len;
1723 	}
1724 	*handle = iova_base;
1725 
1726 	return 0;
1727 fail:
1728 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1729 	__free_iova(mapping, iova_base, size);
1730 	return ret;
1731 }
1732 
1733 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1734 		     enum dma_data_direction dir, unsigned long attrs,
1735 		     bool is_coherent)
1736 {
1737 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1738 	int i, count = 0;
1739 	unsigned int offset = s->offset;
1740 	unsigned int size = s->offset + s->length;
1741 	unsigned int max = dma_get_max_seg_size(dev);
1742 
1743 	for (i = 1; i < nents; i++) {
1744 		s = sg_next(s);
1745 
1746 		s->dma_address = ARM_MAPPING_ERROR;
1747 		s->dma_length = 0;
1748 
1749 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1750 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1751 			    dir, attrs, is_coherent) < 0)
1752 				goto bad_mapping;
1753 
1754 			dma->dma_address += offset;
1755 			dma->dma_length = size - offset;
1756 
1757 			size = offset = s->offset;
1758 			start = s;
1759 			dma = sg_next(dma);
1760 			count += 1;
1761 		}
1762 		size += s->length;
1763 	}
1764 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1765 		is_coherent) < 0)
1766 		goto bad_mapping;
1767 
1768 	dma->dma_address += offset;
1769 	dma->dma_length = size - offset;
1770 
1771 	return count+1;
1772 
1773 bad_mapping:
1774 	for_each_sg(sg, s, count, i)
1775 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1776 	return 0;
1777 }
1778 
1779 /**
1780  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1781  * @dev: valid struct device pointer
1782  * @sg: list of buffers
1783  * @nents: number of buffers to map
1784  * @dir: DMA transfer direction
1785  *
1786  * Map a set of i/o coherent buffers described by scatterlist in streaming
1787  * mode for DMA. The scatter gather list elements are merged together (if
1788  * possible) and tagged with the appropriate dma address and length. They are
1789  * obtained via sg_dma_{address,length}.
1790  */
1791 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1792 		int nents, enum dma_data_direction dir, unsigned long attrs)
1793 {
1794 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1795 }
1796 
1797 /**
1798  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1799  * @dev: valid struct device pointer
1800  * @sg: list of buffers
1801  * @nents: number of buffers to map
1802  * @dir: DMA transfer direction
1803  *
1804  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1805  * The scatter gather list elements are merged together (if possible) and
1806  * tagged with the appropriate dma address and length. They are obtained via
1807  * sg_dma_{address,length}.
1808  */
1809 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1810 		int nents, enum dma_data_direction dir, unsigned long attrs)
1811 {
1812 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1813 }
1814 
1815 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1816 		int nents, enum dma_data_direction dir,
1817 		unsigned long attrs, bool is_coherent)
1818 {
1819 	struct scatterlist *s;
1820 	int i;
1821 
1822 	for_each_sg(sg, s, nents, i) {
1823 		if (sg_dma_len(s))
1824 			__iommu_remove_mapping(dev, sg_dma_address(s),
1825 					       sg_dma_len(s));
1826 		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1827 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1828 					      s->length, dir);
1829 	}
1830 }
1831 
1832 /**
1833  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1834  * @dev: valid struct device pointer
1835  * @sg: list of buffers
1836  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1837  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1838  *
1839  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1840  * rules concerning calls here are the same as for dma_unmap_single().
1841  */
1842 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1843 		int nents, enum dma_data_direction dir,
1844 		unsigned long attrs)
1845 {
1846 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1847 }
1848 
1849 /**
1850  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1851  * @dev: valid struct device pointer
1852  * @sg: list of buffers
1853  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1854  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1855  *
1856  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1857  * rules concerning calls here are the same as for dma_unmap_single().
1858  */
1859 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1860 			enum dma_data_direction dir,
1861 			unsigned long attrs)
1862 {
1863 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1864 }
1865 
1866 /**
1867  * arm_iommu_sync_sg_for_cpu
1868  * @dev: valid struct device pointer
1869  * @sg: list of buffers
1870  * @nents: number of buffers to map (returned from dma_map_sg)
1871  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1872  */
1873 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1874 			int nents, enum dma_data_direction dir)
1875 {
1876 	struct scatterlist *s;
1877 	int i;
1878 
1879 	for_each_sg(sg, s, nents, i)
1880 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1881 
1882 }
1883 
1884 /**
1885  * arm_iommu_sync_sg_for_device
1886  * @dev: valid struct device pointer
1887  * @sg: list of buffers
1888  * @nents: number of buffers to map (returned from dma_map_sg)
1889  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1890  */
1891 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1892 			int nents, enum dma_data_direction dir)
1893 {
1894 	struct scatterlist *s;
1895 	int i;
1896 
1897 	for_each_sg(sg, s, nents, i)
1898 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1899 }
1900 
1901 
1902 /**
1903  * arm_coherent_iommu_map_page
1904  * @dev: valid struct device pointer
1905  * @page: page that buffer resides in
1906  * @offset: offset into page for start of buffer
1907  * @size: size of buffer to map
1908  * @dir: DMA transfer direction
1909  *
1910  * Coherent IOMMU aware version of arm_dma_map_page()
1911  */
1912 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1913 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1914 	     unsigned long attrs)
1915 {
1916 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1917 	dma_addr_t dma_addr;
1918 	int ret, prot, len = PAGE_ALIGN(size + offset);
1919 
1920 	dma_addr = __alloc_iova(mapping, len);
1921 	if (dma_addr == ARM_MAPPING_ERROR)
1922 		return dma_addr;
1923 
1924 	prot = __dma_info_to_prot(dir, attrs);
1925 
1926 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1927 	if (ret < 0)
1928 		goto fail;
1929 
1930 	return dma_addr + offset;
1931 fail:
1932 	__free_iova(mapping, dma_addr, len);
1933 	return ARM_MAPPING_ERROR;
1934 }
1935 
1936 /**
1937  * arm_iommu_map_page
1938  * @dev: valid struct device pointer
1939  * @page: page that buffer resides in
1940  * @offset: offset into page for start of buffer
1941  * @size: size of buffer to map
1942  * @dir: DMA transfer direction
1943  *
1944  * IOMMU aware version of arm_dma_map_page()
1945  */
1946 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1947 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1948 	     unsigned long attrs)
1949 {
1950 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1951 		__dma_page_cpu_to_dev(page, offset, size, dir);
1952 
1953 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1954 }
1955 
1956 /**
1957  * arm_coherent_iommu_unmap_page
1958  * @dev: valid struct device pointer
1959  * @handle: DMA address of buffer
1960  * @size: size of buffer (same as passed to dma_map_page)
1961  * @dir: DMA transfer direction (same as passed to dma_map_page)
1962  *
1963  * Coherent IOMMU aware version of arm_dma_unmap_page()
1964  */
1965 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1966 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1967 {
1968 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1969 	dma_addr_t iova = handle & PAGE_MASK;
1970 	int offset = handle & ~PAGE_MASK;
1971 	int len = PAGE_ALIGN(size + offset);
1972 
1973 	if (!iova)
1974 		return;
1975 
1976 	iommu_unmap(mapping->domain, iova, len);
1977 	__free_iova(mapping, iova, len);
1978 }
1979 
1980 /**
1981  * arm_iommu_unmap_page
1982  * @dev: valid struct device pointer
1983  * @handle: DMA address of buffer
1984  * @size: size of buffer (same as passed to dma_map_page)
1985  * @dir: DMA transfer direction (same as passed to dma_map_page)
1986  *
1987  * IOMMU aware version of arm_dma_unmap_page()
1988  */
1989 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1990 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1991 {
1992 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1993 	dma_addr_t iova = handle & PAGE_MASK;
1994 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1995 	int offset = handle & ~PAGE_MASK;
1996 	int len = PAGE_ALIGN(size + offset);
1997 
1998 	if (!iova)
1999 		return;
2000 
2001 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
2002 		__dma_page_dev_to_cpu(page, offset, size, dir);
2003 
2004 	iommu_unmap(mapping->domain, iova, len);
2005 	__free_iova(mapping, iova, len);
2006 }
2007 
2008 /**
2009  * arm_iommu_map_resource - map a device resource for DMA
2010  * @dev: valid struct device pointer
2011  * @phys_addr: physical address of resource
2012  * @size: size of resource to map
2013  * @dir: DMA transfer direction
2014  */
2015 static dma_addr_t arm_iommu_map_resource(struct device *dev,
2016 		phys_addr_t phys_addr, size_t size,
2017 		enum dma_data_direction dir, unsigned long attrs)
2018 {
2019 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2020 	dma_addr_t dma_addr;
2021 	int ret, prot;
2022 	phys_addr_t addr = phys_addr & PAGE_MASK;
2023 	unsigned int offset = phys_addr & ~PAGE_MASK;
2024 	size_t len = PAGE_ALIGN(size + offset);
2025 
2026 	dma_addr = __alloc_iova(mapping, len);
2027 	if (dma_addr == ARM_MAPPING_ERROR)
2028 		return dma_addr;
2029 
2030 	prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
2031 
2032 	ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
2033 	if (ret < 0)
2034 		goto fail;
2035 
2036 	return dma_addr + offset;
2037 fail:
2038 	__free_iova(mapping, dma_addr, len);
2039 	return ARM_MAPPING_ERROR;
2040 }
2041 
2042 /**
2043  * arm_iommu_unmap_resource - unmap a device DMA resource
2044  * @dev: valid struct device pointer
2045  * @dma_handle: DMA address to resource
2046  * @size: size of resource to map
2047  * @dir: DMA transfer direction
2048  */
2049 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
2050 		size_t size, enum dma_data_direction dir,
2051 		unsigned long attrs)
2052 {
2053 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2054 	dma_addr_t iova = dma_handle & PAGE_MASK;
2055 	unsigned int offset = dma_handle & ~PAGE_MASK;
2056 	size_t len = PAGE_ALIGN(size + offset);
2057 
2058 	if (!iova)
2059 		return;
2060 
2061 	iommu_unmap(mapping->domain, iova, len);
2062 	__free_iova(mapping, iova, len);
2063 }
2064 
2065 static void arm_iommu_sync_single_for_cpu(struct device *dev,
2066 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
2067 {
2068 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2069 	dma_addr_t iova = handle & PAGE_MASK;
2070 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2071 	unsigned int offset = handle & ~PAGE_MASK;
2072 
2073 	if (!iova)
2074 		return;
2075 
2076 	__dma_page_dev_to_cpu(page, offset, size, dir);
2077 }
2078 
2079 static void arm_iommu_sync_single_for_device(struct device *dev,
2080 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
2081 {
2082 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2083 	dma_addr_t iova = handle & PAGE_MASK;
2084 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2085 	unsigned int offset = handle & ~PAGE_MASK;
2086 
2087 	if (!iova)
2088 		return;
2089 
2090 	__dma_page_cpu_to_dev(page, offset, size, dir);
2091 }
2092 
2093 const struct dma_map_ops iommu_ops = {
2094 	.alloc		= arm_iommu_alloc_attrs,
2095 	.free		= arm_iommu_free_attrs,
2096 	.mmap		= arm_iommu_mmap_attrs,
2097 	.get_sgtable	= arm_iommu_get_sgtable,
2098 
2099 	.map_page		= arm_iommu_map_page,
2100 	.unmap_page		= arm_iommu_unmap_page,
2101 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
2102 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
2103 
2104 	.map_sg			= arm_iommu_map_sg,
2105 	.unmap_sg		= arm_iommu_unmap_sg,
2106 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
2107 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
2108 
2109 	.map_resource		= arm_iommu_map_resource,
2110 	.unmap_resource		= arm_iommu_unmap_resource,
2111 
2112 	.mapping_error		= arm_dma_mapping_error,
2113 	.dma_supported		= arm_dma_supported,
2114 };
2115 
2116 const struct dma_map_ops iommu_coherent_ops = {
2117 	.alloc		= arm_coherent_iommu_alloc_attrs,
2118 	.free		= arm_coherent_iommu_free_attrs,
2119 	.mmap		= arm_coherent_iommu_mmap_attrs,
2120 	.get_sgtable	= arm_iommu_get_sgtable,
2121 
2122 	.map_page	= arm_coherent_iommu_map_page,
2123 	.unmap_page	= arm_coherent_iommu_unmap_page,
2124 
2125 	.map_sg		= arm_coherent_iommu_map_sg,
2126 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
2127 
2128 	.map_resource	= arm_iommu_map_resource,
2129 	.unmap_resource	= arm_iommu_unmap_resource,
2130 
2131 	.mapping_error		= arm_dma_mapping_error,
2132 	.dma_supported		= arm_dma_supported,
2133 };
2134 
2135 /**
2136  * arm_iommu_create_mapping
2137  * @bus: pointer to the bus holding the client device (for IOMMU calls)
2138  * @base: start address of the valid IO address space
2139  * @size: maximum size of the valid IO address space
2140  *
2141  * Creates a mapping structure which holds information about used/unused
2142  * IO address ranges, which is required to perform memory allocation and
2143  * mapping with IOMMU aware functions.
2144  *
2145  * The client device need to be attached to the mapping with
2146  * arm_iommu_attach_device function.
2147  */
2148 struct dma_iommu_mapping *
2149 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2150 {
2151 	unsigned int bits = size >> PAGE_SHIFT;
2152 	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2153 	struct dma_iommu_mapping *mapping;
2154 	int extensions = 1;
2155 	int err = -ENOMEM;
2156 
2157 	/* currently only 32-bit DMA address space is supported */
2158 	if (size > DMA_BIT_MASK(32) + 1)
2159 		return ERR_PTR(-ERANGE);
2160 
2161 	if (!bitmap_size)
2162 		return ERR_PTR(-EINVAL);
2163 
2164 	if (bitmap_size > PAGE_SIZE) {
2165 		extensions = bitmap_size / PAGE_SIZE;
2166 		bitmap_size = PAGE_SIZE;
2167 	}
2168 
2169 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2170 	if (!mapping)
2171 		goto err;
2172 
2173 	mapping->bitmap_size = bitmap_size;
2174 	mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
2175 				GFP_KERNEL);
2176 	if (!mapping->bitmaps)
2177 		goto err2;
2178 
2179 	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2180 	if (!mapping->bitmaps[0])
2181 		goto err3;
2182 
2183 	mapping->nr_bitmaps = 1;
2184 	mapping->extensions = extensions;
2185 	mapping->base = base;
2186 	mapping->bits = BITS_PER_BYTE * bitmap_size;
2187 
2188 	spin_lock_init(&mapping->lock);
2189 
2190 	mapping->domain = iommu_domain_alloc(bus);
2191 	if (!mapping->domain)
2192 		goto err4;
2193 
2194 	kref_init(&mapping->kref);
2195 	return mapping;
2196 err4:
2197 	kfree(mapping->bitmaps[0]);
2198 err3:
2199 	kfree(mapping->bitmaps);
2200 err2:
2201 	kfree(mapping);
2202 err:
2203 	return ERR_PTR(err);
2204 }
2205 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2206 
2207 static void release_iommu_mapping(struct kref *kref)
2208 {
2209 	int i;
2210 	struct dma_iommu_mapping *mapping =
2211 		container_of(kref, struct dma_iommu_mapping, kref);
2212 
2213 	iommu_domain_free(mapping->domain);
2214 	for (i = 0; i < mapping->nr_bitmaps; i++)
2215 		kfree(mapping->bitmaps[i]);
2216 	kfree(mapping->bitmaps);
2217 	kfree(mapping);
2218 }
2219 
2220 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2221 {
2222 	int next_bitmap;
2223 
2224 	if (mapping->nr_bitmaps >= mapping->extensions)
2225 		return -EINVAL;
2226 
2227 	next_bitmap = mapping->nr_bitmaps;
2228 	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2229 						GFP_ATOMIC);
2230 	if (!mapping->bitmaps[next_bitmap])
2231 		return -ENOMEM;
2232 
2233 	mapping->nr_bitmaps++;
2234 
2235 	return 0;
2236 }
2237 
2238 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2239 {
2240 	if (mapping)
2241 		kref_put(&mapping->kref, release_iommu_mapping);
2242 }
2243 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2244 
2245 static int __arm_iommu_attach_device(struct device *dev,
2246 				     struct dma_iommu_mapping *mapping)
2247 {
2248 	int err;
2249 
2250 	err = iommu_attach_device(mapping->domain, dev);
2251 	if (err)
2252 		return err;
2253 
2254 	kref_get(&mapping->kref);
2255 	to_dma_iommu_mapping(dev) = mapping;
2256 
2257 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2258 	return 0;
2259 }
2260 
2261 /**
2262  * arm_iommu_attach_device
2263  * @dev: valid struct device pointer
2264  * @mapping: io address space mapping structure (returned from
2265  *	arm_iommu_create_mapping)
2266  *
2267  * Attaches specified io address space mapping to the provided device.
2268  * This replaces the dma operations (dma_map_ops pointer) with the
2269  * IOMMU aware version.
2270  *
2271  * More than one client might be attached to the same io address space
2272  * mapping.
2273  */
2274 int arm_iommu_attach_device(struct device *dev,
2275 			    struct dma_iommu_mapping *mapping)
2276 {
2277 	int err;
2278 
2279 	err = __arm_iommu_attach_device(dev, mapping);
2280 	if (err)
2281 		return err;
2282 
2283 	set_dma_ops(dev, &iommu_ops);
2284 	return 0;
2285 }
2286 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2287 
2288 /**
2289  * arm_iommu_detach_device
2290  * @dev: valid struct device pointer
2291  *
2292  * Detaches the provided device from a previously attached map.
2293  * This voids the dma operations (dma_map_ops pointer)
2294  */
2295 void arm_iommu_detach_device(struct device *dev)
2296 {
2297 	struct dma_iommu_mapping *mapping;
2298 
2299 	mapping = to_dma_iommu_mapping(dev);
2300 	if (!mapping) {
2301 		dev_warn(dev, "Not attached\n");
2302 		return;
2303 	}
2304 
2305 	iommu_detach_device(mapping->domain, dev);
2306 	kref_put(&mapping->kref, release_iommu_mapping);
2307 	to_dma_iommu_mapping(dev) = NULL;
2308 	set_dma_ops(dev, NULL);
2309 
2310 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2311 }
2312 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2313 
2314 static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2315 {
2316 	return coherent ? &iommu_coherent_ops : &iommu_ops;
2317 }
2318 
2319 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2320 				    const struct iommu_ops *iommu)
2321 {
2322 	struct dma_iommu_mapping *mapping;
2323 
2324 	if (!iommu)
2325 		return false;
2326 
2327 	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2328 	if (IS_ERR(mapping)) {
2329 		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2330 				size, dev_name(dev));
2331 		return false;
2332 	}
2333 
2334 	if (__arm_iommu_attach_device(dev, mapping)) {
2335 		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2336 				dev_name(dev));
2337 		arm_iommu_release_mapping(mapping);
2338 		return false;
2339 	}
2340 
2341 	return true;
2342 }
2343 
2344 static void arm_teardown_iommu_dma_ops(struct device *dev)
2345 {
2346 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2347 
2348 	if (!mapping)
2349 		return;
2350 
2351 	arm_iommu_detach_device(dev);
2352 	arm_iommu_release_mapping(mapping);
2353 }
2354 
2355 #else
2356 
2357 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2358 				    const struct iommu_ops *iommu)
2359 {
2360 	return false;
2361 }
2362 
2363 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2364 
2365 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2366 
2367 #endif	/* CONFIG_ARM_DMA_USE_IOMMU */
2368 
2369 static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2370 {
2371 	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2372 }
2373 
2374 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2375 			const struct iommu_ops *iommu, bool coherent)
2376 {
2377 	const struct dma_map_ops *dma_ops;
2378 
2379 	dev->archdata.dma_coherent = coherent;
2380 
2381 	/*
2382 	 * Don't override the dma_ops if they have already been set. Ideally
2383 	 * this should be the only location where dma_ops are set, remove this
2384 	 * check when all other callers of set_dma_ops will have disappeared.
2385 	 */
2386 	if (dev->dma_ops)
2387 		return;
2388 
2389 	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2390 		dma_ops = arm_get_iommu_dma_map_ops(coherent);
2391 	else
2392 		dma_ops = arm_get_dma_map_ops(coherent);
2393 
2394 	set_dma_ops(dev, dma_ops);
2395 
2396 #ifdef CONFIG_XEN
2397 	if (xen_initial_domain()) {
2398 		dev->archdata.dev_dma_ops = dev->dma_ops;
2399 		dev->dma_ops = xen_dma_ops;
2400 	}
2401 #endif
2402 	dev->archdata.dma_ops_setup = true;
2403 }
2404 
2405 void arch_teardown_dma_ops(struct device *dev)
2406 {
2407 	if (!dev->archdata.dma_ops_setup)
2408 		return;
2409 
2410 	arm_teardown_iommu_dma_ops(dev);
2411 }
2412