1 /* 2 * linux/arch/arm/mm/dma-mapping.c 3 * 4 * Copyright (C) 2000-2004 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * DMA uncached mapping support. 11 */ 12 #include <linux/module.h> 13 #include <linux/mm.h> 14 #include <linux/gfp.h> 15 #include <linux/errno.h> 16 #include <linux/list.h> 17 #include <linux/init.h> 18 #include <linux/device.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/dma-contiguous.h> 21 #include <linux/highmem.h> 22 #include <linux/memblock.h> 23 #include <linux/slab.h> 24 #include <linux/iommu.h> 25 #include <linux/io.h> 26 #include <linux/vmalloc.h> 27 #include <linux/sizes.h> 28 29 #include <asm/memory.h> 30 #include <asm/highmem.h> 31 #include <asm/cacheflush.h> 32 #include <asm/tlbflush.h> 33 #include <asm/mach/arch.h> 34 #include <asm/dma-iommu.h> 35 #include <asm/mach/map.h> 36 #include <asm/system_info.h> 37 #include <asm/dma-contiguous.h> 38 39 #include "mm.h" 40 41 /* 42 * The DMA API is built upon the notion of "buffer ownership". A buffer 43 * is either exclusively owned by the CPU (and therefore may be accessed 44 * by it) or exclusively owned by the DMA device. These helper functions 45 * represent the transitions between these two ownership states. 46 * 47 * Note, however, that on later ARMs, this notion does not work due to 48 * speculative prefetches. We model our approach on the assumption that 49 * the CPU does do speculative prefetches, which means we clean caches 50 * before transfers and delay cache invalidation until transfer completion. 51 * 52 */ 53 static void __dma_page_cpu_to_dev(struct page *, unsigned long, 54 size_t, enum dma_data_direction); 55 static void __dma_page_dev_to_cpu(struct page *, unsigned long, 56 size_t, enum dma_data_direction); 57 58 /** 59 * arm_dma_map_page - map a portion of a page for streaming DMA 60 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 61 * @page: page that buffer resides in 62 * @offset: offset into page for start of buffer 63 * @size: size of buffer to map 64 * @dir: DMA transfer direction 65 * 66 * Ensure that any data held in the cache is appropriately discarded 67 * or written back. 68 * 69 * The device owns this memory once this call has completed. The CPU 70 * can regain ownership by calling dma_unmap_page(). 71 */ 72 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page, 73 unsigned long offset, size_t size, enum dma_data_direction dir, 74 struct dma_attrs *attrs) 75 { 76 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 77 __dma_page_cpu_to_dev(page, offset, size, dir); 78 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 79 } 80 81 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page, 82 unsigned long offset, size_t size, enum dma_data_direction dir, 83 struct dma_attrs *attrs) 84 { 85 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 86 } 87 88 /** 89 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page() 90 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 91 * @handle: DMA address of buffer 92 * @size: size of buffer (same as passed to dma_map_page) 93 * @dir: DMA transfer direction (same as passed to dma_map_page) 94 * 95 * Unmap a page streaming mode DMA translation. The handle and size 96 * must match what was provided in the previous dma_map_page() call. 97 * All other usages are undefined. 98 * 99 * After this call, reads by the CPU to the buffer are guaranteed to see 100 * whatever the device wrote there. 101 */ 102 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle, 103 size_t size, enum dma_data_direction dir, 104 struct dma_attrs *attrs) 105 { 106 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 107 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)), 108 handle & ~PAGE_MASK, size, dir); 109 } 110 111 static void arm_dma_sync_single_for_cpu(struct device *dev, 112 dma_addr_t handle, size_t size, enum dma_data_direction dir) 113 { 114 unsigned int offset = handle & (PAGE_SIZE - 1); 115 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 116 __dma_page_dev_to_cpu(page, offset, size, dir); 117 } 118 119 static void arm_dma_sync_single_for_device(struct device *dev, 120 dma_addr_t handle, size_t size, enum dma_data_direction dir) 121 { 122 unsigned int offset = handle & (PAGE_SIZE - 1); 123 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 124 __dma_page_cpu_to_dev(page, offset, size, dir); 125 } 126 127 struct dma_map_ops arm_dma_ops = { 128 .alloc = arm_dma_alloc, 129 .free = arm_dma_free, 130 .mmap = arm_dma_mmap, 131 .get_sgtable = arm_dma_get_sgtable, 132 .map_page = arm_dma_map_page, 133 .unmap_page = arm_dma_unmap_page, 134 .map_sg = arm_dma_map_sg, 135 .unmap_sg = arm_dma_unmap_sg, 136 .sync_single_for_cpu = arm_dma_sync_single_for_cpu, 137 .sync_single_for_device = arm_dma_sync_single_for_device, 138 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu, 139 .sync_sg_for_device = arm_dma_sync_sg_for_device, 140 .set_dma_mask = arm_dma_set_mask, 141 }; 142 EXPORT_SYMBOL(arm_dma_ops); 143 144 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 145 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs); 146 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 147 dma_addr_t handle, struct dma_attrs *attrs); 148 149 struct dma_map_ops arm_coherent_dma_ops = { 150 .alloc = arm_coherent_dma_alloc, 151 .free = arm_coherent_dma_free, 152 .mmap = arm_dma_mmap, 153 .get_sgtable = arm_dma_get_sgtable, 154 .map_page = arm_coherent_dma_map_page, 155 .map_sg = arm_dma_map_sg, 156 .set_dma_mask = arm_dma_set_mask, 157 }; 158 EXPORT_SYMBOL(arm_coherent_dma_ops); 159 160 static u64 get_coherent_dma_mask(struct device *dev) 161 { 162 u64 mask = (u64)arm_dma_limit; 163 164 if (dev) { 165 mask = dev->coherent_dma_mask; 166 167 /* 168 * Sanity check the DMA mask - it must be non-zero, and 169 * must be able to be satisfied by a DMA allocation. 170 */ 171 if (mask == 0) { 172 dev_warn(dev, "coherent DMA mask is unset\n"); 173 return 0; 174 } 175 176 if ((~mask) & (u64)arm_dma_limit) { 177 dev_warn(dev, "coherent DMA mask %#llx is smaller " 178 "than system GFP_DMA mask %#llx\n", 179 mask, (u64)arm_dma_limit); 180 return 0; 181 } 182 } 183 184 return mask; 185 } 186 187 static void __dma_clear_buffer(struct page *page, size_t size) 188 { 189 /* 190 * Ensure that the allocated pages are zeroed, and that any data 191 * lurking in the kernel direct-mapped region is invalidated. 192 */ 193 if (PageHighMem(page)) { 194 phys_addr_t base = __pfn_to_phys(page_to_pfn(page)); 195 phys_addr_t end = base + size; 196 while (size > 0) { 197 void *ptr = kmap_atomic(page); 198 memset(ptr, 0, PAGE_SIZE); 199 dmac_flush_range(ptr, ptr + PAGE_SIZE); 200 kunmap_atomic(ptr); 201 page++; 202 size -= PAGE_SIZE; 203 } 204 outer_flush_range(base, end); 205 } else { 206 void *ptr = page_address(page); 207 memset(ptr, 0, size); 208 dmac_flush_range(ptr, ptr + size); 209 outer_flush_range(__pa(ptr), __pa(ptr) + size); 210 } 211 } 212 213 /* 214 * Allocate a DMA buffer for 'dev' of size 'size' using the 215 * specified gfp mask. Note that 'size' must be page aligned. 216 */ 217 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp) 218 { 219 unsigned long order = get_order(size); 220 struct page *page, *p, *e; 221 222 page = alloc_pages(gfp, order); 223 if (!page) 224 return NULL; 225 226 /* 227 * Now split the huge page and free the excess pages 228 */ 229 split_page(page, order); 230 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) 231 __free_page(p); 232 233 __dma_clear_buffer(page, size); 234 235 return page; 236 } 237 238 /* 239 * Free a DMA buffer. 'size' must be page aligned. 240 */ 241 static void __dma_free_buffer(struct page *page, size_t size) 242 { 243 struct page *e = page + (size >> PAGE_SHIFT); 244 245 while (page < e) { 246 __free_page(page); 247 page++; 248 } 249 } 250 251 #ifdef CONFIG_MMU 252 #ifdef CONFIG_HUGETLB_PAGE 253 #warning ARM Coherent DMA allocator does not (yet) support huge TLB 254 #endif 255 256 static void *__alloc_from_contiguous(struct device *dev, size_t size, 257 pgprot_t prot, struct page **ret_page, 258 const void *caller); 259 260 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 261 pgprot_t prot, struct page **ret_page, 262 const void *caller); 263 264 static void * 265 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot, 266 const void *caller) 267 { 268 struct vm_struct *area; 269 unsigned long addr; 270 271 /* 272 * DMA allocation can be mapped to user space, so lets 273 * set VM_USERMAP flags too. 274 */ 275 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP, 276 caller); 277 if (!area) 278 return NULL; 279 addr = (unsigned long)area->addr; 280 area->phys_addr = __pfn_to_phys(page_to_pfn(page)); 281 282 if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) { 283 vunmap((void *)addr); 284 return NULL; 285 } 286 return (void *)addr; 287 } 288 289 static void __dma_free_remap(void *cpu_addr, size_t size) 290 { 291 unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP; 292 struct vm_struct *area = find_vm_area(cpu_addr); 293 if (!area || (area->flags & flags) != flags) { 294 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 295 return; 296 } 297 unmap_kernel_range((unsigned long)cpu_addr, size); 298 vunmap(cpu_addr); 299 } 300 301 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K 302 303 struct dma_pool { 304 size_t size; 305 spinlock_t lock; 306 unsigned long *bitmap; 307 unsigned long nr_pages; 308 void *vaddr; 309 struct page **pages; 310 }; 311 312 static struct dma_pool atomic_pool = { 313 .size = DEFAULT_DMA_COHERENT_POOL_SIZE, 314 }; 315 316 static int __init early_coherent_pool(char *p) 317 { 318 atomic_pool.size = memparse(p, &p); 319 return 0; 320 } 321 early_param("coherent_pool", early_coherent_pool); 322 323 void __init init_dma_coherent_pool_size(unsigned long size) 324 { 325 /* 326 * Catch any attempt to set the pool size too late. 327 */ 328 BUG_ON(atomic_pool.vaddr); 329 330 /* 331 * Set architecture specific coherent pool size only if 332 * it has not been changed by kernel command line parameter. 333 */ 334 if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE) 335 atomic_pool.size = size; 336 } 337 338 /* 339 * Initialise the coherent pool for atomic allocations. 340 */ 341 static int __init atomic_pool_init(void) 342 { 343 struct dma_pool *pool = &atomic_pool; 344 pgprot_t prot = pgprot_dmacoherent(pgprot_kernel); 345 gfp_t gfp = GFP_KERNEL | GFP_DMA; 346 unsigned long nr_pages = pool->size >> PAGE_SHIFT; 347 unsigned long *bitmap; 348 struct page *page; 349 struct page **pages; 350 void *ptr; 351 int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long); 352 353 bitmap = kzalloc(bitmap_size, GFP_KERNEL); 354 if (!bitmap) 355 goto no_bitmap; 356 357 pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL); 358 if (!pages) 359 goto no_pages; 360 361 if (IS_ENABLED(CONFIG_DMA_CMA)) 362 ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page, 363 atomic_pool_init); 364 else 365 ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page, 366 atomic_pool_init); 367 if (ptr) { 368 int i; 369 370 for (i = 0; i < nr_pages; i++) 371 pages[i] = page + i; 372 373 spin_lock_init(&pool->lock); 374 pool->vaddr = ptr; 375 pool->pages = pages; 376 pool->bitmap = bitmap; 377 pool->nr_pages = nr_pages; 378 pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n", 379 (unsigned)pool->size / 1024); 380 return 0; 381 } 382 383 kfree(pages); 384 no_pages: 385 kfree(bitmap); 386 no_bitmap: 387 pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n", 388 (unsigned)pool->size / 1024); 389 return -ENOMEM; 390 } 391 /* 392 * CMA is activated by core_initcall, so we must be called after it. 393 */ 394 postcore_initcall(atomic_pool_init); 395 396 struct dma_contig_early_reserve { 397 phys_addr_t base; 398 unsigned long size; 399 }; 400 401 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata; 402 403 static int dma_mmu_remap_num __initdata; 404 405 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) 406 { 407 dma_mmu_remap[dma_mmu_remap_num].base = base; 408 dma_mmu_remap[dma_mmu_remap_num].size = size; 409 dma_mmu_remap_num++; 410 } 411 412 void __init dma_contiguous_remap(void) 413 { 414 int i; 415 for (i = 0; i < dma_mmu_remap_num; i++) { 416 phys_addr_t start = dma_mmu_remap[i].base; 417 phys_addr_t end = start + dma_mmu_remap[i].size; 418 struct map_desc map; 419 unsigned long addr; 420 421 if (end > arm_lowmem_limit) 422 end = arm_lowmem_limit; 423 if (start >= end) 424 continue; 425 426 map.pfn = __phys_to_pfn(start); 427 map.virtual = __phys_to_virt(start); 428 map.length = end - start; 429 map.type = MT_MEMORY_DMA_READY; 430 431 /* 432 * Clear previous low-memory mapping 433 */ 434 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end); 435 addr += PMD_SIZE) 436 pmd_clear(pmd_off_k(addr)); 437 438 iotable_init(&map, 1); 439 } 440 } 441 442 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr, 443 void *data) 444 { 445 struct page *page = virt_to_page(addr); 446 pgprot_t prot = *(pgprot_t *)data; 447 448 set_pte_ext(pte, mk_pte(page, prot), 0); 449 return 0; 450 } 451 452 static void __dma_remap(struct page *page, size_t size, pgprot_t prot) 453 { 454 unsigned long start = (unsigned long) page_address(page); 455 unsigned end = start + size; 456 457 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot); 458 flush_tlb_kernel_range(start, end); 459 } 460 461 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 462 pgprot_t prot, struct page **ret_page, 463 const void *caller) 464 { 465 struct page *page; 466 void *ptr; 467 page = __dma_alloc_buffer(dev, size, gfp); 468 if (!page) 469 return NULL; 470 471 ptr = __dma_alloc_remap(page, size, gfp, prot, caller); 472 if (!ptr) { 473 __dma_free_buffer(page, size); 474 return NULL; 475 } 476 477 *ret_page = page; 478 return ptr; 479 } 480 481 static void *__alloc_from_pool(size_t size, struct page **ret_page) 482 { 483 struct dma_pool *pool = &atomic_pool; 484 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 485 unsigned int pageno; 486 unsigned long flags; 487 void *ptr = NULL; 488 unsigned long align_mask; 489 490 if (!pool->vaddr) { 491 WARN(1, "coherent pool not initialised!\n"); 492 return NULL; 493 } 494 495 /* 496 * Align the region allocation - allocations from pool are rather 497 * small, so align them to their order in pages, minimum is a page 498 * size. This helps reduce fragmentation of the DMA space. 499 */ 500 align_mask = (1 << get_order(size)) - 1; 501 502 spin_lock_irqsave(&pool->lock, flags); 503 pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages, 504 0, count, align_mask); 505 if (pageno < pool->nr_pages) { 506 bitmap_set(pool->bitmap, pageno, count); 507 ptr = pool->vaddr + PAGE_SIZE * pageno; 508 *ret_page = pool->pages[pageno]; 509 } else { 510 pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n" 511 "Please increase it with coherent_pool= kernel parameter!\n", 512 (unsigned)pool->size / 1024); 513 } 514 spin_unlock_irqrestore(&pool->lock, flags); 515 516 return ptr; 517 } 518 519 static bool __in_atomic_pool(void *start, size_t size) 520 { 521 struct dma_pool *pool = &atomic_pool; 522 void *end = start + size; 523 void *pool_start = pool->vaddr; 524 void *pool_end = pool->vaddr + pool->size; 525 526 if (start < pool_start || start >= pool_end) 527 return false; 528 529 if (end <= pool_end) 530 return true; 531 532 WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n", 533 start, end - 1, pool_start, pool_end - 1); 534 535 return false; 536 } 537 538 static int __free_from_pool(void *start, size_t size) 539 { 540 struct dma_pool *pool = &atomic_pool; 541 unsigned long pageno, count; 542 unsigned long flags; 543 544 if (!__in_atomic_pool(start, size)) 545 return 0; 546 547 pageno = (start - pool->vaddr) >> PAGE_SHIFT; 548 count = size >> PAGE_SHIFT; 549 550 spin_lock_irqsave(&pool->lock, flags); 551 bitmap_clear(pool->bitmap, pageno, count); 552 spin_unlock_irqrestore(&pool->lock, flags); 553 554 return 1; 555 } 556 557 static void *__alloc_from_contiguous(struct device *dev, size_t size, 558 pgprot_t prot, struct page **ret_page, 559 const void *caller) 560 { 561 unsigned long order = get_order(size); 562 size_t count = size >> PAGE_SHIFT; 563 struct page *page; 564 void *ptr; 565 566 page = dma_alloc_from_contiguous(dev, count, order); 567 if (!page) 568 return NULL; 569 570 __dma_clear_buffer(page, size); 571 572 if (PageHighMem(page)) { 573 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller); 574 if (!ptr) { 575 dma_release_from_contiguous(dev, page, count); 576 return NULL; 577 } 578 } else { 579 __dma_remap(page, size, prot); 580 ptr = page_address(page); 581 } 582 *ret_page = page; 583 return ptr; 584 } 585 586 static void __free_from_contiguous(struct device *dev, struct page *page, 587 void *cpu_addr, size_t size) 588 { 589 if (PageHighMem(page)) 590 __dma_free_remap(cpu_addr, size); 591 else 592 __dma_remap(page, size, pgprot_kernel); 593 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); 594 } 595 596 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot) 597 { 598 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ? 599 pgprot_writecombine(prot) : 600 pgprot_dmacoherent(prot); 601 return prot; 602 } 603 604 #define nommu() 0 605 606 #else /* !CONFIG_MMU */ 607 608 #define nommu() 1 609 610 #define __get_dma_pgprot(attrs, prot) __pgprot(0) 611 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL 612 #define __alloc_from_pool(size, ret_page) NULL 613 #define __alloc_from_contiguous(dev, size, prot, ret, c) NULL 614 #define __free_from_pool(cpu_addr, size) 0 615 #define __free_from_contiguous(dev, page, cpu_addr, size) do { } while (0) 616 #define __dma_free_remap(cpu_addr, size) do { } while (0) 617 618 #endif /* CONFIG_MMU */ 619 620 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp, 621 struct page **ret_page) 622 { 623 struct page *page; 624 page = __dma_alloc_buffer(dev, size, gfp); 625 if (!page) 626 return NULL; 627 628 *ret_page = page; 629 return page_address(page); 630 } 631 632 633 634 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 635 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller) 636 { 637 u64 mask = get_coherent_dma_mask(dev); 638 struct page *page = NULL; 639 void *addr; 640 641 #ifdef CONFIG_DMA_API_DEBUG 642 u64 limit = (mask + 1) & ~mask; 643 if (limit && size >= limit) { 644 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", 645 size, mask); 646 return NULL; 647 } 648 #endif 649 650 if (!mask) 651 return NULL; 652 653 if (mask < 0xffffffffULL) 654 gfp |= GFP_DMA; 655 656 /* 657 * Following is a work-around (a.k.a. hack) to prevent pages 658 * with __GFP_COMP being passed to split_page() which cannot 659 * handle them. The real problem is that this flag probably 660 * should be 0 on ARM as it is not supported on this 661 * platform; see CONFIG_HUGETLBFS. 662 */ 663 gfp &= ~(__GFP_COMP); 664 665 *handle = DMA_ERROR_CODE; 666 size = PAGE_ALIGN(size); 667 668 if (is_coherent || nommu()) 669 addr = __alloc_simple_buffer(dev, size, gfp, &page); 670 else if (!(gfp & __GFP_WAIT)) 671 addr = __alloc_from_pool(size, &page); 672 else if (!IS_ENABLED(CONFIG_DMA_CMA)) 673 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller); 674 else 675 addr = __alloc_from_contiguous(dev, size, prot, &page, caller); 676 677 if (addr) 678 *handle = pfn_to_dma(dev, page_to_pfn(page)); 679 680 return addr; 681 } 682 683 /* 684 * Allocate DMA-coherent memory space and return both the kernel remapped 685 * virtual and bus address for that space. 686 */ 687 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 688 gfp_t gfp, struct dma_attrs *attrs) 689 { 690 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel); 691 void *memory; 692 693 if (dma_alloc_from_coherent(dev, size, handle, &memory)) 694 return memory; 695 696 return __dma_alloc(dev, size, handle, gfp, prot, false, 697 __builtin_return_address(0)); 698 } 699 700 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 701 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs) 702 { 703 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel); 704 void *memory; 705 706 if (dma_alloc_from_coherent(dev, size, handle, &memory)) 707 return memory; 708 709 return __dma_alloc(dev, size, handle, gfp, prot, true, 710 __builtin_return_address(0)); 711 } 712 713 /* 714 * Create userspace mapping for the DMA-coherent memory. 715 */ 716 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 717 void *cpu_addr, dma_addr_t dma_addr, size_t size, 718 struct dma_attrs *attrs) 719 { 720 int ret = -ENXIO; 721 #ifdef CONFIG_MMU 722 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 723 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 724 unsigned long pfn = dma_to_pfn(dev, dma_addr); 725 unsigned long off = vma->vm_pgoff; 726 727 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 728 729 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) 730 return ret; 731 732 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 733 ret = remap_pfn_range(vma, vma->vm_start, 734 pfn + off, 735 vma->vm_end - vma->vm_start, 736 vma->vm_page_prot); 737 } 738 #endif /* CONFIG_MMU */ 739 740 return ret; 741 } 742 743 /* 744 * Free a buffer as defined by the above mapping. 745 */ 746 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 747 dma_addr_t handle, struct dma_attrs *attrs, 748 bool is_coherent) 749 { 750 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 751 752 if (dma_release_from_coherent(dev, get_order(size), cpu_addr)) 753 return; 754 755 size = PAGE_ALIGN(size); 756 757 if (is_coherent || nommu()) { 758 __dma_free_buffer(page, size); 759 } else if (__free_from_pool(cpu_addr, size)) { 760 return; 761 } else if (!IS_ENABLED(CONFIG_DMA_CMA)) { 762 __dma_free_remap(cpu_addr, size); 763 __dma_free_buffer(page, size); 764 } else { 765 /* 766 * Non-atomic allocations cannot be freed with IRQs disabled 767 */ 768 WARN_ON(irqs_disabled()); 769 __free_from_contiguous(dev, page, cpu_addr, size); 770 } 771 } 772 773 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 774 dma_addr_t handle, struct dma_attrs *attrs) 775 { 776 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false); 777 } 778 779 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 780 dma_addr_t handle, struct dma_attrs *attrs) 781 { 782 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true); 783 } 784 785 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 786 void *cpu_addr, dma_addr_t handle, size_t size, 787 struct dma_attrs *attrs) 788 { 789 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 790 int ret; 791 792 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 793 if (unlikely(ret)) 794 return ret; 795 796 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 797 return 0; 798 } 799 800 static void dma_cache_maint_page(struct page *page, unsigned long offset, 801 size_t size, enum dma_data_direction dir, 802 void (*op)(const void *, size_t, int)) 803 { 804 unsigned long pfn; 805 size_t left = size; 806 807 pfn = page_to_pfn(page) + offset / PAGE_SIZE; 808 offset %= PAGE_SIZE; 809 810 /* 811 * A single sg entry may refer to multiple physically contiguous 812 * pages. But we still need to process highmem pages individually. 813 * If highmem is not configured then the bulk of this loop gets 814 * optimized out. 815 */ 816 do { 817 size_t len = left; 818 void *vaddr; 819 820 page = pfn_to_page(pfn); 821 822 if (PageHighMem(page)) { 823 if (len + offset > PAGE_SIZE) 824 len = PAGE_SIZE - offset; 825 826 if (cache_is_vipt_nonaliasing()) { 827 vaddr = kmap_atomic(page); 828 op(vaddr + offset, len, dir); 829 kunmap_atomic(vaddr); 830 } else { 831 vaddr = kmap_high_get(page); 832 if (vaddr) { 833 op(vaddr + offset, len, dir); 834 kunmap_high(page); 835 } 836 } 837 } else { 838 vaddr = page_address(page) + offset; 839 op(vaddr, len, dir); 840 } 841 offset = 0; 842 pfn++; 843 left -= len; 844 } while (left); 845 } 846 847 /* 848 * Make an area consistent for devices. 849 * Note: Drivers should NOT use this function directly, as it will break 850 * platforms with CONFIG_DMABOUNCE. 851 * Use the driver DMA support - see dma-mapping.h (dma_sync_*) 852 */ 853 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off, 854 size_t size, enum dma_data_direction dir) 855 { 856 unsigned long paddr; 857 858 dma_cache_maint_page(page, off, size, dir, dmac_map_area); 859 860 paddr = page_to_phys(page) + off; 861 if (dir == DMA_FROM_DEVICE) { 862 outer_inv_range(paddr, paddr + size); 863 } else { 864 outer_clean_range(paddr, paddr + size); 865 } 866 /* FIXME: non-speculating: flush on bidirectional mappings? */ 867 } 868 869 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off, 870 size_t size, enum dma_data_direction dir) 871 { 872 unsigned long paddr = page_to_phys(page) + off; 873 874 /* FIXME: non-speculating: not required */ 875 /* don't bother invalidating if DMA to device */ 876 if (dir != DMA_TO_DEVICE) 877 outer_inv_range(paddr, paddr + size); 878 879 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); 880 881 /* 882 * Mark the D-cache clean for these pages to avoid extra flushing. 883 */ 884 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) { 885 unsigned long pfn; 886 size_t left = size; 887 888 pfn = page_to_pfn(page) + off / PAGE_SIZE; 889 off %= PAGE_SIZE; 890 if (off) { 891 pfn++; 892 left -= PAGE_SIZE - off; 893 } 894 while (left >= PAGE_SIZE) { 895 page = pfn_to_page(pfn++); 896 set_bit(PG_dcache_clean, &page->flags); 897 left -= PAGE_SIZE; 898 } 899 } 900 } 901 902 /** 903 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA 904 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 905 * @sg: list of buffers 906 * @nents: number of buffers to map 907 * @dir: DMA transfer direction 908 * 909 * Map a set of buffers described by scatterlist in streaming mode for DMA. 910 * This is the scatter-gather version of the dma_map_single interface. 911 * Here the scatter gather list elements are each tagged with the 912 * appropriate dma address and length. They are obtained via 913 * sg_dma_{address,length}. 914 * 915 * Device ownership issues as mentioned for dma_map_single are the same 916 * here. 917 */ 918 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 919 enum dma_data_direction dir, struct dma_attrs *attrs) 920 { 921 struct dma_map_ops *ops = get_dma_ops(dev); 922 struct scatterlist *s; 923 int i, j; 924 925 for_each_sg(sg, s, nents, i) { 926 #ifdef CONFIG_NEED_SG_DMA_LENGTH 927 s->dma_length = s->length; 928 #endif 929 s->dma_address = ops->map_page(dev, sg_page(s), s->offset, 930 s->length, dir, attrs); 931 if (dma_mapping_error(dev, s->dma_address)) 932 goto bad_mapping; 933 } 934 return nents; 935 936 bad_mapping: 937 for_each_sg(sg, s, i, j) 938 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 939 return 0; 940 } 941 942 /** 943 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 944 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 945 * @sg: list of buffers 946 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 947 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 948 * 949 * Unmap a set of streaming mode DMA translations. Again, CPU access 950 * rules concerning calls here are the same as for dma_unmap_single(). 951 */ 952 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 953 enum dma_data_direction dir, struct dma_attrs *attrs) 954 { 955 struct dma_map_ops *ops = get_dma_ops(dev); 956 struct scatterlist *s; 957 958 int i; 959 960 for_each_sg(sg, s, nents, i) 961 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 962 } 963 964 /** 965 * arm_dma_sync_sg_for_cpu 966 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 967 * @sg: list of buffers 968 * @nents: number of buffers to map (returned from dma_map_sg) 969 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 970 */ 971 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 972 int nents, enum dma_data_direction dir) 973 { 974 struct dma_map_ops *ops = get_dma_ops(dev); 975 struct scatterlist *s; 976 int i; 977 978 for_each_sg(sg, s, nents, i) 979 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length, 980 dir); 981 } 982 983 /** 984 * arm_dma_sync_sg_for_device 985 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 986 * @sg: list of buffers 987 * @nents: number of buffers to map (returned from dma_map_sg) 988 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 989 */ 990 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 991 int nents, enum dma_data_direction dir) 992 { 993 struct dma_map_ops *ops = get_dma_ops(dev); 994 struct scatterlist *s; 995 int i; 996 997 for_each_sg(sg, s, nents, i) 998 ops->sync_single_for_device(dev, sg_dma_address(s), s->length, 999 dir); 1000 } 1001 1002 /* 1003 * Return whether the given device DMA address mask can be supported 1004 * properly. For example, if your device can only drive the low 24-bits 1005 * during bus mastering, then you would pass 0x00ffffff as the mask 1006 * to this function. 1007 */ 1008 int dma_supported(struct device *dev, u64 mask) 1009 { 1010 if (mask < (u64)arm_dma_limit) 1011 return 0; 1012 return 1; 1013 } 1014 EXPORT_SYMBOL(dma_supported); 1015 1016 int arm_dma_set_mask(struct device *dev, u64 dma_mask) 1017 { 1018 if (!dev->dma_mask || !dma_supported(dev, dma_mask)) 1019 return -EIO; 1020 1021 *dev->dma_mask = dma_mask; 1022 1023 return 0; 1024 } 1025 1026 #define PREALLOC_DMA_DEBUG_ENTRIES 4096 1027 1028 static int __init dma_debug_do_init(void) 1029 { 1030 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); 1031 return 0; 1032 } 1033 fs_initcall(dma_debug_do_init); 1034 1035 #ifdef CONFIG_ARM_DMA_USE_IOMMU 1036 1037 /* IOMMU */ 1038 1039 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, 1040 size_t size) 1041 { 1042 unsigned int order = get_order(size); 1043 unsigned int align = 0; 1044 unsigned int count, start; 1045 unsigned long flags; 1046 1047 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT) 1048 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT; 1049 1050 count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) + 1051 (1 << mapping->order) - 1) >> mapping->order; 1052 1053 if (order > mapping->order) 1054 align = (1 << (order - mapping->order)) - 1; 1055 1056 spin_lock_irqsave(&mapping->lock, flags); 1057 start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0, 1058 count, align); 1059 if (start > mapping->bits) { 1060 spin_unlock_irqrestore(&mapping->lock, flags); 1061 return DMA_ERROR_CODE; 1062 } 1063 1064 bitmap_set(mapping->bitmap, start, count); 1065 spin_unlock_irqrestore(&mapping->lock, flags); 1066 1067 return mapping->base + (start << (mapping->order + PAGE_SHIFT)); 1068 } 1069 1070 static inline void __free_iova(struct dma_iommu_mapping *mapping, 1071 dma_addr_t addr, size_t size) 1072 { 1073 unsigned int start = (addr - mapping->base) >> 1074 (mapping->order + PAGE_SHIFT); 1075 unsigned int count = ((size >> PAGE_SHIFT) + 1076 (1 << mapping->order) - 1) >> mapping->order; 1077 unsigned long flags; 1078 1079 spin_lock_irqsave(&mapping->lock, flags); 1080 bitmap_clear(mapping->bitmap, start, count); 1081 spin_unlock_irqrestore(&mapping->lock, flags); 1082 } 1083 1084 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, 1085 gfp_t gfp, struct dma_attrs *attrs) 1086 { 1087 struct page **pages; 1088 int count = size >> PAGE_SHIFT; 1089 int array_size = count * sizeof(struct page *); 1090 int i = 0; 1091 1092 if (array_size <= PAGE_SIZE) 1093 pages = kzalloc(array_size, gfp); 1094 else 1095 pages = vzalloc(array_size); 1096 if (!pages) 1097 return NULL; 1098 1099 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) 1100 { 1101 unsigned long order = get_order(size); 1102 struct page *page; 1103 1104 page = dma_alloc_from_contiguous(dev, count, order); 1105 if (!page) 1106 goto error; 1107 1108 __dma_clear_buffer(page, size); 1109 1110 for (i = 0; i < count; i++) 1111 pages[i] = page + i; 1112 1113 return pages; 1114 } 1115 1116 /* 1117 * IOMMU can map any pages, so himem can also be used here 1118 */ 1119 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 1120 1121 while (count) { 1122 int j, order = __fls(count); 1123 1124 pages[i] = alloc_pages(gfp, order); 1125 while (!pages[i] && order) 1126 pages[i] = alloc_pages(gfp, --order); 1127 if (!pages[i]) 1128 goto error; 1129 1130 if (order) { 1131 split_page(pages[i], order); 1132 j = 1 << order; 1133 while (--j) 1134 pages[i + j] = pages[i] + j; 1135 } 1136 1137 __dma_clear_buffer(pages[i], PAGE_SIZE << order); 1138 i += 1 << order; 1139 count -= 1 << order; 1140 } 1141 1142 return pages; 1143 error: 1144 while (i--) 1145 if (pages[i]) 1146 __free_pages(pages[i], 0); 1147 if (array_size <= PAGE_SIZE) 1148 kfree(pages); 1149 else 1150 vfree(pages); 1151 return NULL; 1152 } 1153 1154 static int __iommu_free_buffer(struct device *dev, struct page **pages, 1155 size_t size, struct dma_attrs *attrs) 1156 { 1157 int count = size >> PAGE_SHIFT; 1158 int array_size = count * sizeof(struct page *); 1159 int i; 1160 1161 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) { 1162 dma_release_from_contiguous(dev, pages[0], count); 1163 } else { 1164 for (i = 0; i < count; i++) 1165 if (pages[i]) 1166 __free_pages(pages[i], 0); 1167 } 1168 1169 if (array_size <= PAGE_SIZE) 1170 kfree(pages); 1171 else 1172 vfree(pages); 1173 return 0; 1174 } 1175 1176 /* 1177 * Create a CPU mapping for a specified pages 1178 */ 1179 static void * 1180 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot, 1181 const void *caller) 1182 { 1183 unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1184 struct vm_struct *area; 1185 unsigned long p; 1186 1187 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP, 1188 caller); 1189 if (!area) 1190 return NULL; 1191 1192 area->pages = pages; 1193 area->nr_pages = nr_pages; 1194 p = (unsigned long)area->addr; 1195 1196 for (i = 0; i < nr_pages; i++) { 1197 phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i])); 1198 if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot)) 1199 goto err; 1200 p += PAGE_SIZE; 1201 } 1202 return area->addr; 1203 err: 1204 unmap_kernel_range((unsigned long)area->addr, size); 1205 vunmap(area->addr); 1206 return NULL; 1207 } 1208 1209 /* 1210 * Create a mapping in device IO address space for specified pages 1211 */ 1212 static dma_addr_t 1213 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size) 1214 { 1215 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1216 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1217 dma_addr_t dma_addr, iova; 1218 int i, ret = DMA_ERROR_CODE; 1219 1220 dma_addr = __alloc_iova(mapping, size); 1221 if (dma_addr == DMA_ERROR_CODE) 1222 return dma_addr; 1223 1224 iova = dma_addr; 1225 for (i = 0; i < count; ) { 1226 unsigned int next_pfn = page_to_pfn(pages[i]) + 1; 1227 phys_addr_t phys = page_to_phys(pages[i]); 1228 unsigned int len, j; 1229 1230 for (j = i + 1; j < count; j++, next_pfn++) 1231 if (page_to_pfn(pages[j]) != next_pfn) 1232 break; 1233 1234 len = (j - i) << PAGE_SHIFT; 1235 ret = iommu_map(mapping->domain, iova, phys, len, 0); 1236 if (ret < 0) 1237 goto fail; 1238 iova += len; 1239 i = j; 1240 } 1241 return dma_addr; 1242 fail: 1243 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); 1244 __free_iova(mapping, dma_addr, size); 1245 return DMA_ERROR_CODE; 1246 } 1247 1248 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) 1249 { 1250 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1251 1252 /* 1253 * add optional in-page offset from iova to size and align 1254 * result to page size 1255 */ 1256 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); 1257 iova &= PAGE_MASK; 1258 1259 iommu_unmap(mapping->domain, iova, size); 1260 __free_iova(mapping, iova, size); 1261 return 0; 1262 } 1263 1264 static struct page **__atomic_get_pages(void *addr) 1265 { 1266 struct dma_pool *pool = &atomic_pool; 1267 struct page **pages = pool->pages; 1268 int offs = (addr - pool->vaddr) >> PAGE_SHIFT; 1269 1270 return pages + offs; 1271 } 1272 1273 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs) 1274 { 1275 struct vm_struct *area; 1276 1277 if (__in_atomic_pool(cpu_addr, PAGE_SIZE)) 1278 return __atomic_get_pages(cpu_addr); 1279 1280 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) 1281 return cpu_addr; 1282 1283 area = find_vm_area(cpu_addr); 1284 if (area && (area->flags & VM_ARM_DMA_CONSISTENT)) 1285 return area->pages; 1286 return NULL; 1287 } 1288 1289 static void *__iommu_alloc_atomic(struct device *dev, size_t size, 1290 dma_addr_t *handle) 1291 { 1292 struct page *page; 1293 void *addr; 1294 1295 addr = __alloc_from_pool(size, &page); 1296 if (!addr) 1297 return NULL; 1298 1299 *handle = __iommu_create_mapping(dev, &page, size); 1300 if (*handle == DMA_ERROR_CODE) 1301 goto err_mapping; 1302 1303 return addr; 1304 1305 err_mapping: 1306 __free_from_pool(addr, size); 1307 return NULL; 1308 } 1309 1310 static void __iommu_free_atomic(struct device *dev, void *cpu_addr, 1311 dma_addr_t handle, size_t size) 1312 { 1313 __iommu_remove_mapping(dev, handle, size); 1314 __free_from_pool(cpu_addr, size); 1315 } 1316 1317 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, 1318 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs) 1319 { 1320 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel); 1321 struct page **pages; 1322 void *addr = NULL; 1323 1324 *handle = DMA_ERROR_CODE; 1325 size = PAGE_ALIGN(size); 1326 1327 if (gfp & GFP_ATOMIC) 1328 return __iommu_alloc_atomic(dev, size, handle); 1329 1330 /* 1331 * Following is a work-around (a.k.a. hack) to prevent pages 1332 * with __GFP_COMP being passed to split_page() which cannot 1333 * handle them. The real problem is that this flag probably 1334 * should be 0 on ARM as it is not supported on this 1335 * platform; see CONFIG_HUGETLBFS. 1336 */ 1337 gfp &= ~(__GFP_COMP); 1338 1339 pages = __iommu_alloc_buffer(dev, size, gfp, attrs); 1340 if (!pages) 1341 return NULL; 1342 1343 *handle = __iommu_create_mapping(dev, pages, size); 1344 if (*handle == DMA_ERROR_CODE) 1345 goto err_buffer; 1346 1347 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) 1348 return pages; 1349 1350 addr = __iommu_alloc_remap(pages, size, gfp, prot, 1351 __builtin_return_address(0)); 1352 if (!addr) 1353 goto err_mapping; 1354 1355 return addr; 1356 1357 err_mapping: 1358 __iommu_remove_mapping(dev, *handle, size); 1359 err_buffer: 1360 __iommu_free_buffer(dev, pages, size, attrs); 1361 return NULL; 1362 } 1363 1364 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 1365 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1366 struct dma_attrs *attrs) 1367 { 1368 unsigned long uaddr = vma->vm_start; 1369 unsigned long usize = vma->vm_end - vma->vm_start; 1370 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1371 1372 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 1373 1374 if (!pages) 1375 return -ENXIO; 1376 1377 do { 1378 int ret = vm_insert_page(vma, uaddr, *pages++); 1379 if (ret) { 1380 pr_err("Remapping memory failed: %d\n", ret); 1381 return ret; 1382 } 1383 uaddr += PAGE_SIZE; 1384 usize -= PAGE_SIZE; 1385 } while (usize > 0); 1386 1387 return 0; 1388 } 1389 1390 /* 1391 * free a page as defined by the above mapping. 1392 * Must not be called with IRQs disabled. 1393 */ 1394 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 1395 dma_addr_t handle, struct dma_attrs *attrs) 1396 { 1397 struct page **pages; 1398 size = PAGE_ALIGN(size); 1399 1400 if (__in_atomic_pool(cpu_addr, size)) { 1401 __iommu_free_atomic(dev, cpu_addr, handle, size); 1402 return; 1403 } 1404 1405 pages = __iommu_get_pages(cpu_addr, attrs); 1406 if (!pages) { 1407 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 1408 return; 1409 } 1410 1411 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) { 1412 unmap_kernel_range((unsigned long)cpu_addr, size); 1413 vunmap(cpu_addr); 1414 } 1415 1416 __iommu_remove_mapping(dev, handle, size); 1417 __iommu_free_buffer(dev, pages, size, attrs); 1418 } 1419 1420 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 1421 void *cpu_addr, dma_addr_t dma_addr, 1422 size_t size, struct dma_attrs *attrs) 1423 { 1424 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1425 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1426 1427 if (!pages) 1428 return -ENXIO; 1429 1430 return sg_alloc_table_from_pages(sgt, pages, count, 0, size, 1431 GFP_KERNEL); 1432 } 1433 1434 /* 1435 * Map a part of the scatter-gather list into contiguous io address space 1436 */ 1437 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg, 1438 size_t size, dma_addr_t *handle, 1439 enum dma_data_direction dir, struct dma_attrs *attrs, 1440 bool is_coherent) 1441 { 1442 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1443 dma_addr_t iova, iova_base; 1444 int ret = 0; 1445 unsigned int count; 1446 struct scatterlist *s; 1447 1448 size = PAGE_ALIGN(size); 1449 *handle = DMA_ERROR_CODE; 1450 1451 iova_base = iova = __alloc_iova(mapping, size); 1452 if (iova == DMA_ERROR_CODE) 1453 return -ENOMEM; 1454 1455 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) { 1456 phys_addr_t phys = page_to_phys(sg_page(s)); 1457 unsigned int len = PAGE_ALIGN(s->offset + s->length); 1458 1459 if (!is_coherent && 1460 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1461 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1462 1463 ret = iommu_map(mapping->domain, iova, phys, len, 0); 1464 if (ret < 0) 1465 goto fail; 1466 count += len >> PAGE_SHIFT; 1467 iova += len; 1468 } 1469 *handle = iova_base; 1470 1471 return 0; 1472 fail: 1473 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE); 1474 __free_iova(mapping, iova_base, size); 1475 return ret; 1476 } 1477 1478 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1479 enum dma_data_direction dir, struct dma_attrs *attrs, 1480 bool is_coherent) 1481 { 1482 struct scatterlist *s = sg, *dma = sg, *start = sg; 1483 int i, count = 0; 1484 unsigned int offset = s->offset; 1485 unsigned int size = s->offset + s->length; 1486 unsigned int max = dma_get_max_seg_size(dev); 1487 1488 for (i = 1; i < nents; i++) { 1489 s = sg_next(s); 1490 1491 s->dma_address = DMA_ERROR_CODE; 1492 s->dma_length = 0; 1493 1494 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { 1495 if (__map_sg_chunk(dev, start, size, &dma->dma_address, 1496 dir, attrs, is_coherent) < 0) 1497 goto bad_mapping; 1498 1499 dma->dma_address += offset; 1500 dma->dma_length = size - offset; 1501 1502 size = offset = s->offset; 1503 start = s; 1504 dma = sg_next(dma); 1505 count += 1; 1506 } 1507 size += s->length; 1508 } 1509 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs, 1510 is_coherent) < 0) 1511 goto bad_mapping; 1512 1513 dma->dma_address += offset; 1514 dma->dma_length = size - offset; 1515 1516 return count+1; 1517 1518 bad_mapping: 1519 for_each_sg(sg, s, count, i) 1520 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); 1521 return 0; 1522 } 1523 1524 /** 1525 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1526 * @dev: valid struct device pointer 1527 * @sg: list of buffers 1528 * @nents: number of buffers to map 1529 * @dir: DMA transfer direction 1530 * 1531 * Map a set of i/o coherent buffers described by scatterlist in streaming 1532 * mode for DMA. The scatter gather list elements are merged together (if 1533 * possible) and tagged with the appropriate dma address and length. They are 1534 * obtained via sg_dma_{address,length}. 1535 */ 1536 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1537 int nents, enum dma_data_direction dir, struct dma_attrs *attrs) 1538 { 1539 return __iommu_map_sg(dev, sg, nents, dir, attrs, true); 1540 } 1541 1542 /** 1543 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1544 * @dev: valid struct device pointer 1545 * @sg: list of buffers 1546 * @nents: number of buffers to map 1547 * @dir: DMA transfer direction 1548 * 1549 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1550 * The scatter gather list elements are merged together (if possible) and 1551 * tagged with the appropriate dma address and length. They are obtained via 1552 * sg_dma_{address,length}. 1553 */ 1554 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1555 int nents, enum dma_data_direction dir, struct dma_attrs *attrs) 1556 { 1557 return __iommu_map_sg(dev, sg, nents, dir, attrs, false); 1558 } 1559 1560 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1561 int nents, enum dma_data_direction dir, struct dma_attrs *attrs, 1562 bool is_coherent) 1563 { 1564 struct scatterlist *s; 1565 int i; 1566 1567 for_each_sg(sg, s, nents, i) { 1568 if (sg_dma_len(s)) 1569 __iommu_remove_mapping(dev, sg_dma_address(s), 1570 sg_dma_len(s)); 1571 if (!is_coherent && 1572 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1573 __dma_page_dev_to_cpu(sg_page(s), s->offset, 1574 s->length, dir); 1575 } 1576 } 1577 1578 /** 1579 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1580 * @dev: valid struct device pointer 1581 * @sg: list of buffers 1582 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1583 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1584 * 1585 * Unmap a set of streaming mode DMA translations. Again, CPU access 1586 * rules concerning calls here are the same as for dma_unmap_single(). 1587 */ 1588 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1589 int nents, enum dma_data_direction dir, struct dma_attrs *attrs) 1590 { 1591 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true); 1592 } 1593 1594 /** 1595 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1596 * @dev: valid struct device pointer 1597 * @sg: list of buffers 1598 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1599 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1600 * 1601 * Unmap a set of streaming mode DMA translations. Again, CPU access 1602 * rules concerning calls here are the same as for dma_unmap_single(). 1603 */ 1604 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1605 enum dma_data_direction dir, struct dma_attrs *attrs) 1606 { 1607 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false); 1608 } 1609 1610 /** 1611 * arm_iommu_sync_sg_for_cpu 1612 * @dev: valid struct device pointer 1613 * @sg: list of buffers 1614 * @nents: number of buffers to map (returned from dma_map_sg) 1615 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1616 */ 1617 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1618 int nents, enum dma_data_direction dir) 1619 { 1620 struct scatterlist *s; 1621 int i; 1622 1623 for_each_sg(sg, s, nents, i) 1624 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); 1625 1626 } 1627 1628 /** 1629 * arm_iommu_sync_sg_for_device 1630 * @dev: valid struct device pointer 1631 * @sg: list of buffers 1632 * @nents: number of buffers to map (returned from dma_map_sg) 1633 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1634 */ 1635 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1636 int nents, enum dma_data_direction dir) 1637 { 1638 struct scatterlist *s; 1639 int i; 1640 1641 for_each_sg(sg, s, nents, i) 1642 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1643 } 1644 1645 1646 /** 1647 * arm_coherent_iommu_map_page 1648 * @dev: valid struct device pointer 1649 * @page: page that buffer resides in 1650 * @offset: offset into page for start of buffer 1651 * @size: size of buffer to map 1652 * @dir: DMA transfer direction 1653 * 1654 * Coherent IOMMU aware version of arm_dma_map_page() 1655 */ 1656 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page, 1657 unsigned long offset, size_t size, enum dma_data_direction dir, 1658 struct dma_attrs *attrs) 1659 { 1660 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1661 dma_addr_t dma_addr; 1662 int ret, prot, len = PAGE_ALIGN(size + offset); 1663 1664 dma_addr = __alloc_iova(mapping, len); 1665 if (dma_addr == DMA_ERROR_CODE) 1666 return dma_addr; 1667 1668 switch (dir) { 1669 case DMA_BIDIRECTIONAL: 1670 prot = IOMMU_READ | IOMMU_WRITE; 1671 break; 1672 case DMA_TO_DEVICE: 1673 prot = IOMMU_READ; 1674 break; 1675 case DMA_FROM_DEVICE: 1676 prot = IOMMU_WRITE; 1677 break; 1678 default: 1679 prot = 0; 1680 } 1681 1682 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot); 1683 if (ret < 0) 1684 goto fail; 1685 1686 return dma_addr + offset; 1687 fail: 1688 __free_iova(mapping, dma_addr, len); 1689 return DMA_ERROR_CODE; 1690 } 1691 1692 /** 1693 * arm_iommu_map_page 1694 * @dev: valid struct device pointer 1695 * @page: page that buffer resides in 1696 * @offset: offset into page for start of buffer 1697 * @size: size of buffer to map 1698 * @dir: DMA transfer direction 1699 * 1700 * IOMMU aware version of arm_dma_map_page() 1701 */ 1702 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page, 1703 unsigned long offset, size_t size, enum dma_data_direction dir, 1704 struct dma_attrs *attrs) 1705 { 1706 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1707 __dma_page_cpu_to_dev(page, offset, size, dir); 1708 1709 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs); 1710 } 1711 1712 /** 1713 * arm_coherent_iommu_unmap_page 1714 * @dev: valid struct device pointer 1715 * @handle: DMA address of buffer 1716 * @size: size of buffer (same as passed to dma_map_page) 1717 * @dir: DMA transfer direction (same as passed to dma_map_page) 1718 * 1719 * Coherent IOMMU aware version of arm_dma_unmap_page() 1720 */ 1721 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1722 size_t size, enum dma_data_direction dir, 1723 struct dma_attrs *attrs) 1724 { 1725 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1726 dma_addr_t iova = handle & PAGE_MASK; 1727 int offset = handle & ~PAGE_MASK; 1728 int len = PAGE_ALIGN(size + offset); 1729 1730 if (!iova) 1731 return; 1732 1733 iommu_unmap(mapping->domain, iova, len); 1734 __free_iova(mapping, iova, len); 1735 } 1736 1737 /** 1738 * arm_iommu_unmap_page 1739 * @dev: valid struct device pointer 1740 * @handle: DMA address of buffer 1741 * @size: size of buffer (same as passed to dma_map_page) 1742 * @dir: DMA transfer direction (same as passed to dma_map_page) 1743 * 1744 * IOMMU aware version of arm_dma_unmap_page() 1745 */ 1746 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1747 size_t size, enum dma_data_direction dir, 1748 struct dma_attrs *attrs) 1749 { 1750 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1751 dma_addr_t iova = handle & PAGE_MASK; 1752 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1753 int offset = handle & ~PAGE_MASK; 1754 int len = PAGE_ALIGN(size + offset); 1755 1756 if (!iova) 1757 return; 1758 1759 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 1760 __dma_page_dev_to_cpu(page, offset, size, dir); 1761 1762 iommu_unmap(mapping->domain, iova, len); 1763 __free_iova(mapping, iova, len); 1764 } 1765 1766 static void arm_iommu_sync_single_for_cpu(struct device *dev, 1767 dma_addr_t handle, size_t size, enum dma_data_direction dir) 1768 { 1769 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1770 dma_addr_t iova = handle & PAGE_MASK; 1771 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1772 unsigned int offset = handle & ~PAGE_MASK; 1773 1774 if (!iova) 1775 return; 1776 1777 __dma_page_dev_to_cpu(page, offset, size, dir); 1778 } 1779 1780 static void arm_iommu_sync_single_for_device(struct device *dev, 1781 dma_addr_t handle, size_t size, enum dma_data_direction dir) 1782 { 1783 struct dma_iommu_mapping *mapping = dev->archdata.mapping; 1784 dma_addr_t iova = handle & PAGE_MASK; 1785 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1786 unsigned int offset = handle & ~PAGE_MASK; 1787 1788 if (!iova) 1789 return; 1790 1791 __dma_page_cpu_to_dev(page, offset, size, dir); 1792 } 1793 1794 struct dma_map_ops iommu_ops = { 1795 .alloc = arm_iommu_alloc_attrs, 1796 .free = arm_iommu_free_attrs, 1797 .mmap = arm_iommu_mmap_attrs, 1798 .get_sgtable = arm_iommu_get_sgtable, 1799 1800 .map_page = arm_iommu_map_page, 1801 .unmap_page = arm_iommu_unmap_page, 1802 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu, 1803 .sync_single_for_device = arm_iommu_sync_single_for_device, 1804 1805 .map_sg = arm_iommu_map_sg, 1806 .unmap_sg = arm_iommu_unmap_sg, 1807 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu, 1808 .sync_sg_for_device = arm_iommu_sync_sg_for_device, 1809 1810 .set_dma_mask = arm_dma_set_mask, 1811 }; 1812 1813 struct dma_map_ops iommu_coherent_ops = { 1814 .alloc = arm_iommu_alloc_attrs, 1815 .free = arm_iommu_free_attrs, 1816 .mmap = arm_iommu_mmap_attrs, 1817 .get_sgtable = arm_iommu_get_sgtable, 1818 1819 .map_page = arm_coherent_iommu_map_page, 1820 .unmap_page = arm_coherent_iommu_unmap_page, 1821 1822 .map_sg = arm_coherent_iommu_map_sg, 1823 .unmap_sg = arm_coherent_iommu_unmap_sg, 1824 1825 .set_dma_mask = arm_dma_set_mask, 1826 }; 1827 1828 /** 1829 * arm_iommu_create_mapping 1830 * @bus: pointer to the bus holding the client device (for IOMMU calls) 1831 * @base: start address of the valid IO address space 1832 * @size: size of the valid IO address space 1833 * @order: accuracy of the IO addresses allocations 1834 * 1835 * Creates a mapping structure which holds information about used/unused 1836 * IO address ranges, which is required to perform memory allocation and 1837 * mapping with IOMMU aware functions. 1838 * 1839 * The client device need to be attached to the mapping with 1840 * arm_iommu_attach_device function. 1841 */ 1842 struct dma_iommu_mapping * 1843 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size, 1844 int order) 1845 { 1846 unsigned int count = size >> (PAGE_SHIFT + order); 1847 unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long); 1848 struct dma_iommu_mapping *mapping; 1849 int err = -ENOMEM; 1850 1851 if (!count) 1852 return ERR_PTR(-EINVAL); 1853 1854 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); 1855 if (!mapping) 1856 goto err; 1857 1858 mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL); 1859 if (!mapping->bitmap) 1860 goto err2; 1861 1862 mapping->base = base; 1863 mapping->bits = BITS_PER_BYTE * bitmap_size; 1864 mapping->order = order; 1865 spin_lock_init(&mapping->lock); 1866 1867 mapping->domain = iommu_domain_alloc(bus); 1868 if (!mapping->domain) 1869 goto err3; 1870 1871 kref_init(&mapping->kref); 1872 return mapping; 1873 err3: 1874 kfree(mapping->bitmap); 1875 err2: 1876 kfree(mapping); 1877 err: 1878 return ERR_PTR(err); 1879 } 1880 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping); 1881 1882 static void release_iommu_mapping(struct kref *kref) 1883 { 1884 struct dma_iommu_mapping *mapping = 1885 container_of(kref, struct dma_iommu_mapping, kref); 1886 1887 iommu_domain_free(mapping->domain); 1888 kfree(mapping->bitmap); 1889 kfree(mapping); 1890 } 1891 1892 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) 1893 { 1894 if (mapping) 1895 kref_put(&mapping->kref, release_iommu_mapping); 1896 } 1897 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping); 1898 1899 /** 1900 * arm_iommu_attach_device 1901 * @dev: valid struct device pointer 1902 * @mapping: io address space mapping structure (returned from 1903 * arm_iommu_create_mapping) 1904 * 1905 * Attaches specified io address space mapping to the provided device, 1906 * this replaces the dma operations (dma_map_ops pointer) with the 1907 * IOMMU aware version. More than one client might be attached to 1908 * the same io address space mapping. 1909 */ 1910 int arm_iommu_attach_device(struct device *dev, 1911 struct dma_iommu_mapping *mapping) 1912 { 1913 int err; 1914 1915 err = iommu_attach_device(mapping->domain, dev); 1916 if (err) 1917 return err; 1918 1919 kref_get(&mapping->kref); 1920 dev->archdata.mapping = mapping; 1921 set_dma_ops(dev, &iommu_ops); 1922 1923 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev)); 1924 return 0; 1925 } 1926 EXPORT_SYMBOL_GPL(arm_iommu_attach_device); 1927 1928 /** 1929 * arm_iommu_detach_device 1930 * @dev: valid struct device pointer 1931 * 1932 * Detaches the provided device from a previously attached map. 1933 * This voids the dma operations (dma_map_ops pointer) 1934 */ 1935 void arm_iommu_detach_device(struct device *dev) 1936 { 1937 struct dma_iommu_mapping *mapping; 1938 1939 mapping = to_dma_iommu_mapping(dev); 1940 if (!mapping) { 1941 dev_warn(dev, "Not attached\n"); 1942 return; 1943 } 1944 1945 iommu_detach_device(mapping->domain, dev); 1946 kref_put(&mapping->kref, release_iommu_mapping); 1947 dev->archdata.mapping = NULL; 1948 set_dma_ops(dev, NULL); 1949 1950 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev)); 1951 } 1952 EXPORT_SYMBOL_GPL(arm_iommu_detach_device); 1953 1954 #endif 1955