xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision df3305156f989339529b3d6744b898d498fb1f7b)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/bootmem.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/genalloc.h>
16 #include <linux/gfp.h>
17 #include <linux/errno.h>
18 #include <linux/list.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-contiguous.h>
23 #include <linux/highmem.h>
24 #include <linux/memblock.h>
25 #include <linux/slab.h>
26 #include <linux/iommu.h>
27 #include <linux/io.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sizes.h>
30 #include <linux/cma.h>
31 
32 #include <asm/memory.h>
33 #include <asm/highmem.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mach/arch.h>
37 #include <asm/dma-iommu.h>
38 #include <asm/mach/map.h>
39 #include <asm/system_info.h>
40 #include <asm/dma-contiguous.h>
41 
42 #include "mm.h"
43 
44 /*
45  * The DMA API is built upon the notion of "buffer ownership".  A buffer
46  * is either exclusively owned by the CPU (and therefore may be accessed
47  * by it) or exclusively owned by the DMA device.  These helper functions
48  * represent the transitions between these two ownership states.
49  *
50  * Note, however, that on later ARMs, this notion does not work due to
51  * speculative prefetches.  We model our approach on the assumption that
52  * the CPU does do speculative prefetches, which means we clean caches
53  * before transfers and delay cache invalidation until transfer completion.
54  *
55  */
56 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
57 		size_t, enum dma_data_direction);
58 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
59 		size_t, enum dma_data_direction);
60 
61 /**
62  * arm_dma_map_page - map a portion of a page for streaming DMA
63  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
64  * @page: page that buffer resides in
65  * @offset: offset into page for start of buffer
66  * @size: size of buffer to map
67  * @dir: DMA transfer direction
68  *
69  * Ensure that any data held in the cache is appropriately discarded
70  * or written back.
71  *
72  * The device owns this memory once this call has completed.  The CPU
73  * can regain ownership by calling dma_unmap_page().
74  */
75 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
76 	     unsigned long offset, size_t size, enum dma_data_direction dir,
77 	     struct dma_attrs *attrs)
78 {
79 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
80 		__dma_page_cpu_to_dev(page, offset, size, dir);
81 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
82 }
83 
84 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
85 	     unsigned long offset, size_t size, enum dma_data_direction dir,
86 	     struct dma_attrs *attrs)
87 {
88 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
89 }
90 
91 /**
92  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
93  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
94  * @handle: DMA address of buffer
95  * @size: size of buffer (same as passed to dma_map_page)
96  * @dir: DMA transfer direction (same as passed to dma_map_page)
97  *
98  * Unmap a page streaming mode DMA translation.  The handle and size
99  * must match what was provided in the previous dma_map_page() call.
100  * All other usages are undefined.
101  *
102  * After this call, reads by the CPU to the buffer are guaranteed to see
103  * whatever the device wrote there.
104  */
105 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
106 		size_t size, enum dma_data_direction dir,
107 		struct dma_attrs *attrs)
108 {
109 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
110 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
111 				      handle & ~PAGE_MASK, size, dir);
112 }
113 
114 static void arm_dma_sync_single_for_cpu(struct device *dev,
115 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
116 {
117 	unsigned int offset = handle & (PAGE_SIZE - 1);
118 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
119 	__dma_page_dev_to_cpu(page, offset, size, dir);
120 }
121 
122 static void arm_dma_sync_single_for_device(struct device *dev,
123 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
124 {
125 	unsigned int offset = handle & (PAGE_SIZE - 1);
126 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
127 	__dma_page_cpu_to_dev(page, offset, size, dir);
128 }
129 
130 struct dma_map_ops arm_dma_ops = {
131 	.alloc			= arm_dma_alloc,
132 	.free			= arm_dma_free,
133 	.mmap			= arm_dma_mmap,
134 	.get_sgtable		= arm_dma_get_sgtable,
135 	.map_page		= arm_dma_map_page,
136 	.unmap_page		= arm_dma_unmap_page,
137 	.map_sg			= arm_dma_map_sg,
138 	.unmap_sg		= arm_dma_unmap_sg,
139 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
140 	.sync_single_for_device	= arm_dma_sync_single_for_device,
141 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
142 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
143 	.set_dma_mask		= arm_dma_set_mask,
144 };
145 EXPORT_SYMBOL(arm_dma_ops);
146 
147 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
148 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
149 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
150 				  dma_addr_t handle, struct dma_attrs *attrs);
151 
152 struct dma_map_ops arm_coherent_dma_ops = {
153 	.alloc			= arm_coherent_dma_alloc,
154 	.free			= arm_coherent_dma_free,
155 	.mmap			= arm_dma_mmap,
156 	.get_sgtable		= arm_dma_get_sgtable,
157 	.map_page		= arm_coherent_dma_map_page,
158 	.map_sg			= arm_dma_map_sg,
159 	.set_dma_mask		= arm_dma_set_mask,
160 };
161 EXPORT_SYMBOL(arm_coherent_dma_ops);
162 
163 static int __dma_supported(struct device *dev, u64 mask, bool warn)
164 {
165 	unsigned long max_dma_pfn;
166 
167 	/*
168 	 * If the mask allows for more memory than we can address,
169 	 * and we actually have that much memory, then we must
170 	 * indicate that DMA to this device is not supported.
171 	 */
172 	if (sizeof(mask) != sizeof(dma_addr_t) &&
173 	    mask > (dma_addr_t)~0 &&
174 	    dma_to_pfn(dev, ~0) < max_pfn) {
175 		if (warn) {
176 			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
177 				 mask);
178 			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
179 		}
180 		return 0;
181 	}
182 
183 	max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
184 
185 	/*
186 	 * Translate the device's DMA mask to a PFN limit.  This
187 	 * PFN number includes the page which we can DMA to.
188 	 */
189 	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
190 		if (warn)
191 			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
192 				 mask,
193 				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
194 				 max_dma_pfn + 1);
195 		return 0;
196 	}
197 
198 	return 1;
199 }
200 
201 static u64 get_coherent_dma_mask(struct device *dev)
202 {
203 	u64 mask = (u64)DMA_BIT_MASK(32);
204 
205 	if (dev) {
206 		mask = dev->coherent_dma_mask;
207 
208 		/*
209 		 * Sanity check the DMA mask - it must be non-zero, and
210 		 * must be able to be satisfied by a DMA allocation.
211 		 */
212 		if (mask == 0) {
213 			dev_warn(dev, "coherent DMA mask is unset\n");
214 			return 0;
215 		}
216 
217 		if (!__dma_supported(dev, mask, true))
218 			return 0;
219 	}
220 
221 	return mask;
222 }
223 
224 static void __dma_clear_buffer(struct page *page, size_t size)
225 {
226 	/*
227 	 * Ensure that the allocated pages are zeroed, and that any data
228 	 * lurking in the kernel direct-mapped region is invalidated.
229 	 */
230 	if (PageHighMem(page)) {
231 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
232 		phys_addr_t end = base + size;
233 		while (size > 0) {
234 			void *ptr = kmap_atomic(page);
235 			memset(ptr, 0, PAGE_SIZE);
236 			dmac_flush_range(ptr, ptr + PAGE_SIZE);
237 			kunmap_atomic(ptr);
238 			page++;
239 			size -= PAGE_SIZE;
240 		}
241 		outer_flush_range(base, end);
242 	} else {
243 		void *ptr = page_address(page);
244 		memset(ptr, 0, size);
245 		dmac_flush_range(ptr, ptr + size);
246 		outer_flush_range(__pa(ptr), __pa(ptr) + size);
247 	}
248 }
249 
250 /*
251  * Allocate a DMA buffer for 'dev' of size 'size' using the
252  * specified gfp mask.  Note that 'size' must be page aligned.
253  */
254 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
255 {
256 	unsigned long order = get_order(size);
257 	struct page *page, *p, *e;
258 
259 	page = alloc_pages(gfp, order);
260 	if (!page)
261 		return NULL;
262 
263 	/*
264 	 * Now split the huge page and free the excess pages
265 	 */
266 	split_page(page, order);
267 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
268 		__free_page(p);
269 
270 	__dma_clear_buffer(page, size);
271 
272 	return page;
273 }
274 
275 /*
276  * Free a DMA buffer.  'size' must be page aligned.
277  */
278 static void __dma_free_buffer(struct page *page, size_t size)
279 {
280 	struct page *e = page + (size >> PAGE_SHIFT);
281 
282 	while (page < e) {
283 		__free_page(page);
284 		page++;
285 	}
286 }
287 
288 #ifdef CONFIG_MMU
289 
290 static void *__alloc_from_contiguous(struct device *dev, size_t size,
291 				     pgprot_t prot, struct page **ret_page,
292 				     const void *caller);
293 
294 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
295 				 pgprot_t prot, struct page **ret_page,
296 				 const void *caller);
297 
298 static void *
299 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
300 	const void *caller)
301 {
302 	/*
303 	 * DMA allocation can be mapped to user space, so lets
304 	 * set VM_USERMAP flags too.
305 	 */
306 	return dma_common_contiguous_remap(page, size,
307 			VM_ARM_DMA_CONSISTENT | VM_USERMAP,
308 			prot, caller);
309 }
310 
311 static void __dma_free_remap(void *cpu_addr, size_t size)
312 {
313 	dma_common_free_remap(cpu_addr, size,
314 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
315 }
316 
317 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
318 static struct gen_pool *atomic_pool;
319 
320 static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
321 
322 static int __init early_coherent_pool(char *p)
323 {
324 	atomic_pool_size = memparse(p, &p);
325 	return 0;
326 }
327 early_param("coherent_pool", early_coherent_pool);
328 
329 void __init init_dma_coherent_pool_size(unsigned long size)
330 {
331 	/*
332 	 * Catch any attempt to set the pool size too late.
333 	 */
334 	BUG_ON(atomic_pool);
335 
336 	/*
337 	 * Set architecture specific coherent pool size only if
338 	 * it has not been changed by kernel command line parameter.
339 	 */
340 	if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
341 		atomic_pool_size = size;
342 }
343 
344 /*
345  * Initialise the coherent pool for atomic allocations.
346  */
347 static int __init atomic_pool_init(void)
348 {
349 	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
350 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
351 	struct page *page;
352 	void *ptr;
353 
354 	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
355 	if (!atomic_pool)
356 		goto out;
357 
358 	if (dev_get_cma_area(NULL))
359 		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
360 					      &page, atomic_pool_init);
361 	else
362 		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
363 					   &page, atomic_pool_init);
364 	if (ptr) {
365 		int ret;
366 
367 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
368 					page_to_phys(page),
369 					atomic_pool_size, -1);
370 		if (ret)
371 			goto destroy_genpool;
372 
373 		gen_pool_set_algo(atomic_pool,
374 				gen_pool_first_fit_order_align,
375 				(void *)PAGE_SHIFT);
376 		pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
377 		       atomic_pool_size / 1024);
378 		return 0;
379 	}
380 
381 destroy_genpool:
382 	gen_pool_destroy(atomic_pool);
383 	atomic_pool = NULL;
384 out:
385 	pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
386 	       atomic_pool_size / 1024);
387 	return -ENOMEM;
388 }
389 /*
390  * CMA is activated by core_initcall, so we must be called after it.
391  */
392 postcore_initcall(atomic_pool_init);
393 
394 struct dma_contig_early_reserve {
395 	phys_addr_t base;
396 	unsigned long size;
397 };
398 
399 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
400 
401 static int dma_mmu_remap_num __initdata;
402 
403 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
404 {
405 	dma_mmu_remap[dma_mmu_remap_num].base = base;
406 	dma_mmu_remap[dma_mmu_remap_num].size = size;
407 	dma_mmu_remap_num++;
408 }
409 
410 void __init dma_contiguous_remap(void)
411 {
412 	int i;
413 	for (i = 0; i < dma_mmu_remap_num; i++) {
414 		phys_addr_t start = dma_mmu_remap[i].base;
415 		phys_addr_t end = start + dma_mmu_remap[i].size;
416 		struct map_desc map;
417 		unsigned long addr;
418 
419 		if (end > arm_lowmem_limit)
420 			end = arm_lowmem_limit;
421 		if (start >= end)
422 			continue;
423 
424 		map.pfn = __phys_to_pfn(start);
425 		map.virtual = __phys_to_virt(start);
426 		map.length = end - start;
427 		map.type = MT_MEMORY_DMA_READY;
428 
429 		/*
430 		 * Clear previous low-memory mapping to ensure that the
431 		 * TLB does not see any conflicting entries, then flush
432 		 * the TLB of the old entries before creating new mappings.
433 		 *
434 		 * This ensures that any speculatively loaded TLB entries
435 		 * (even though they may be rare) can not cause any problems,
436 		 * and ensures that this code is architecturally compliant.
437 		 */
438 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
439 		     addr += PMD_SIZE)
440 			pmd_clear(pmd_off_k(addr));
441 
442 		flush_tlb_kernel_range(__phys_to_virt(start),
443 				       __phys_to_virt(end));
444 
445 		iotable_init(&map, 1);
446 	}
447 }
448 
449 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
450 			    void *data)
451 {
452 	struct page *page = virt_to_page(addr);
453 	pgprot_t prot = *(pgprot_t *)data;
454 
455 	set_pte_ext(pte, mk_pte(page, prot), 0);
456 	return 0;
457 }
458 
459 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
460 {
461 	unsigned long start = (unsigned long) page_address(page);
462 	unsigned end = start + size;
463 
464 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
465 	flush_tlb_kernel_range(start, end);
466 }
467 
468 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
469 				 pgprot_t prot, struct page **ret_page,
470 				 const void *caller)
471 {
472 	struct page *page;
473 	void *ptr;
474 	page = __dma_alloc_buffer(dev, size, gfp);
475 	if (!page)
476 		return NULL;
477 
478 	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
479 	if (!ptr) {
480 		__dma_free_buffer(page, size);
481 		return NULL;
482 	}
483 
484 	*ret_page = page;
485 	return ptr;
486 }
487 
488 static void *__alloc_from_pool(size_t size, struct page **ret_page)
489 {
490 	unsigned long val;
491 	void *ptr = NULL;
492 
493 	if (!atomic_pool) {
494 		WARN(1, "coherent pool not initialised!\n");
495 		return NULL;
496 	}
497 
498 	val = gen_pool_alloc(atomic_pool, size);
499 	if (val) {
500 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
501 
502 		*ret_page = phys_to_page(phys);
503 		ptr = (void *)val;
504 	}
505 
506 	return ptr;
507 }
508 
509 static bool __in_atomic_pool(void *start, size_t size)
510 {
511 	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
512 }
513 
514 static int __free_from_pool(void *start, size_t size)
515 {
516 	if (!__in_atomic_pool(start, size))
517 		return 0;
518 
519 	gen_pool_free(atomic_pool, (unsigned long)start, size);
520 
521 	return 1;
522 }
523 
524 static void *__alloc_from_contiguous(struct device *dev, size_t size,
525 				     pgprot_t prot, struct page **ret_page,
526 				     const void *caller)
527 {
528 	unsigned long order = get_order(size);
529 	size_t count = size >> PAGE_SHIFT;
530 	struct page *page;
531 	void *ptr;
532 
533 	page = dma_alloc_from_contiguous(dev, count, order);
534 	if (!page)
535 		return NULL;
536 
537 	__dma_clear_buffer(page, size);
538 
539 	if (PageHighMem(page)) {
540 		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
541 		if (!ptr) {
542 			dma_release_from_contiguous(dev, page, count);
543 			return NULL;
544 		}
545 	} else {
546 		__dma_remap(page, size, prot);
547 		ptr = page_address(page);
548 	}
549 	*ret_page = page;
550 	return ptr;
551 }
552 
553 static void __free_from_contiguous(struct device *dev, struct page *page,
554 				   void *cpu_addr, size_t size)
555 {
556 	if (PageHighMem(page))
557 		__dma_free_remap(cpu_addr, size);
558 	else
559 		__dma_remap(page, size, PAGE_KERNEL);
560 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
561 }
562 
563 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
564 {
565 	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
566 			    pgprot_writecombine(prot) :
567 			    pgprot_dmacoherent(prot);
568 	return prot;
569 }
570 
571 #define nommu() 0
572 
573 #else	/* !CONFIG_MMU */
574 
575 #define nommu() 1
576 
577 #define __get_dma_pgprot(attrs, prot)	__pgprot(0)
578 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)	NULL
579 #define __alloc_from_pool(size, ret_page)			NULL
580 #define __alloc_from_contiguous(dev, size, prot, ret, c)	NULL
581 #define __free_from_pool(cpu_addr, size)			0
582 #define __free_from_contiguous(dev, page, cpu_addr, size)	do { } while (0)
583 #define __dma_free_remap(cpu_addr, size)			do { } while (0)
584 
585 #endif	/* CONFIG_MMU */
586 
587 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
588 				   struct page **ret_page)
589 {
590 	struct page *page;
591 	page = __dma_alloc_buffer(dev, size, gfp);
592 	if (!page)
593 		return NULL;
594 
595 	*ret_page = page;
596 	return page_address(page);
597 }
598 
599 
600 
601 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
602 			 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
603 {
604 	u64 mask = get_coherent_dma_mask(dev);
605 	struct page *page = NULL;
606 	void *addr;
607 
608 #ifdef CONFIG_DMA_API_DEBUG
609 	u64 limit = (mask + 1) & ~mask;
610 	if (limit && size >= limit) {
611 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
612 			size, mask);
613 		return NULL;
614 	}
615 #endif
616 
617 	if (!mask)
618 		return NULL;
619 
620 	if (mask < 0xffffffffULL)
621 		gfp |= GFP_DMA;
622 
623 	/*
624 	 * Following is a work-around (a.k.a. hack) to prevent pages
625 	 * with __GFP_COMP being passed to split_page() which cannot
626 	 * handle them.  The real problem is that this flag probably
627 	 * should be 0 on ARM as it is not supported on this
628 	 * platform; see CONFIG_HUGETLBFS.
629 	 */
630 	gfp &= ~(__GFP_COMP);
631 
632 	*handle = DMA_ERROR_CODE;
633 	size = PAGE_ALIGN(size);
634 
635 	if (is_coherent || nommu())
636 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
637 	else if (!(gfp & __GFP_WAIT))
638 		addr = __alloc_from_pool(size, &page);
639 	else if (!dev_get_cma_area(dev))
640 		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
641 	else
642 		addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
643 
644 	if (addr)
645 		*handle = pfn_to_dma(dev, page_to_pfn(page));
646 
647 	return addr;
648 }
649 
650 /*
651  * Allocate DMA-coherent memory space and return both the kernel remapped
652  * virtual and bus address for that space.
653  */
654 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
655 		    gfp_t gfp, struct dma_attrs *attrs)
656 {
657 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
658 	void *memory;
659 
660 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
661 		return memory;
662 
663 	return __dma_alloc(dev, size, handle, gfp, prot, false,
664 			   __builtin_return_address(0));
665 }
666 
667 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
668 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
669 {
670 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
671 	void *memory;
672 
673 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
674 		return memory;
675 
676 	return __dma_alloc(dev, size, handle, gfp, prot, true,
677 			   __builtin_return_address(0));
678 }
679 
680 /*
681  * Create userspace mapping for the DMA-coherent memory.
682  */
683 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
684 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
685 		 struct dma_attrs *attrs)
686 {
687 	int ret = -ENXIO;
688 #ifdef CONFIG_MMU
689 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
690 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
691 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
692 	unsigned long off = vma->vm_pgoff;
693 
694 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
695 
696 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
697 		return ret;
698 
699 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
700 		ret = remap_pfn_range(vma, vma->vm_start,
701 				      pfn + off,
702 				      vma->vm_end - vma->vm_start,
703 				      vma->vm_page_prot);
704 	}
705 #endif	/* CONFIG_MMU */
706 
707 	return ret;
708 }
709 
710 /*
711  * Free a buffer as defined by the above mapping.
712  */
713 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
714 			   dma_addr_t handle, struct dma_attrs *attrs,
715 			   bool is_coherent)
716 {
717 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
718 
719 	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
720 		return;
721 
722 	size = PAGE_ALIGN(size);
723 
724 	if (is_coherent || nommu()) {
725 		__dma_free_buffer(page, size);
726 	} else if (__free_from_pool(cpu_addr, size)) {
727 		return;
728 	} else if (!dev_get_cma_area(dev)) {
729 		__dma_free_remap(cpu_addr, size);
730 		__dma_free_buffer(page, size);
731 	} else {
732 		/*
733 		 * Non-atomic allocations cannot be freed with IRQs disabled
734 		 */
735 		WARN_ON(irqs_disabled());
736 		__free_from_contiguous(dev, page, cpu_addr, size);
737 	}
738 }
739 
740 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
741 		  dma_addr_t handle, struct dma_attrs *attrs)
742 {
743 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
744 }
745 
746 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
747 				  dma_addr_t handle, struct dma_attrs *attrs)
748 {
749 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
750 }
751 
752 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
753 		 void *cpu_addr, dma_addr_t handle, size_t size,
754 		 struct dma_attrs *attrs)
755 {
756 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
757 	int ret;
758 
759 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
760 	if (unlikely(ret))
761 		return ret;
762 
763 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
764 	return 0;
765 }
766 
767 static void dma_cache_maint_page(struct page *page, unsigned long offset,
768 	size_t size, enum dma_data_direction dir,
769 	void (*op)(const void *, size_t, int))
770 {
771 	unsigned long pfn;
772 	size_t left = size;
773 
774 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
775 	offset %= PAGE_SIZE;
776 
777 	/*
778 	 * A single sg entry may refer to multiple physically contiguous
779 	 * pages.  But we still need to process highmem pages individually.
780 	 * If highmem is not configured then the bulk of this loop gets
781 	 * optimized out.
782 	 */
783 	do {
784 		size_t len = left;
785 		void *vaddr;
786 
787 		page = pfn_to_page(pfn);
788 
789 		if (PageHighMem(page)) {
790 			if (len + offset > PAGE_SIZE)
791 				len = PAGE_SIZE - offset;
792 
793 			if (cache_is_vipt_nonaliasing()) {
794 				vaddr = kmap_atomic(page);
795 				op(vaddr + offset, len, dir);
796 				kunmap_atomic(vaddr);
797 			} else {
798 				vaddr = kmap_high_get(page);
799 				if (vaddr) {
800 					op(vaddr + offset, len, dir);
801 					kunmap_high(page);
802 				}
803 			}
804 		} else {
805 			vaddr = page_address(page) + offset;
806 			op(vaddr, len, dir);
807 		}
808 		offset = 0;
809 		pfn++;
810 		left -= len;
811 	} while (left);
812 }
813 
814 /*
815  * Make an area consistent for devices.
816  * Note: Drivers should NOT use this function directly, as it will break
817  * platforms with CONFIG_DMABOUNCE.
818  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
819  */
820 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
821 	size_t size, enum dma_data_direction dir)
822 {
823 	phys_addr_t paddr;
824 
825 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
826 
827 	paddr = page_to_phys(page) + off;
828 	if (dir == DMA_FROM_DEVICE) {
829 		outer_inv_range(paddr, paddr + size);
830 	} else {
831 		outer_clean_range(paddr, paddr + size);
832 	}
833 	/* FIXME: non-speculating: flush on bidirectional mappings? */
834 }
835 
836 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
837 	size_t size, enum dma_data_direction dir)
838 {
839 	phys_addr_t paddr = page_to_phys(page) + off;
840 
841 	/* FIXME: non-speculating: not required */
842 	/* in any case, don't bother invalidating if DMA to device */
843 	if (dir != DMA_TO_DEVICE) {
844 		outer_inv_range(paddr, paddr + size);
845 
846 		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
847 	}
848 
849 	/*
850 	 * Mark the D-cache clean for these pages to avoid extra flushing.
851 	 */
852 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
853 		unsigned long pfn;
854 		size_t left = size;
855 
856 		pfn = page_to_pfn(page) + off / PAGE_SIZE;
857 		off %= PAGE_SIZE;
858 		if (off) {
859 			pfn++;
860 			left -= PAGE_SIZE - off;
861 		}
862 		while (left >= PAGE_SIZE) {
863 			page = pfn_to_page(pfn++);
864 			set_bit(PG_dcache_clean, &page->flags);
865 			left -= PAGE_SIZE;
866 		}
867 	}
868 }
869 
870 /**
871  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
872  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
873  * @sg: list of buffers
874  * @nents: number of buffers to map
875  * @dir: DMA transfer direction
876  *
877  * Map a set of buffers described by scatterlist in streaming mode for DMA.
878  * This is the scatter-gather version of the dma_map_single interface.
879  * Here the scatter gather list elements are each tagged with the
880  * appropriate dma address and length.  They are obtained via
881  * sg_dma_{address,length}.
882  *
883  * Device ownership issues as mentioned for dma_map_single are the same
884  * here.
885  */
886 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
887 		enum dma_data_direction dir, struct dma_attrs *attrs)
888 {
889 	struct dma_map_ops *ops = get_dma_ops(dev);
890 	struct scatterlist *s;
891 	int i, j;
892 
893 	for_each_sg(sg, s, nents, i) {
894 #ifdef CONFIG_NEED_SG_DMA_LENGTH
895 		s->dma_length = s->length;
896 #endif
897 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
898 						s->length, dir, attrs);
899 		if (dma_mapping_error(dev, s->dma_address))
900 			goto bad_mapping;
901 	}
902 	return nents;
903 
904  bad_mapping:
905 	for_each_sg(sg, s, i, j)
906 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
907 	return 0;
908 }
909 
910 /**
911  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
912  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
913  * @sg: list of buffers
914  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
915  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
916  *
917  * Unmap a set of streaming mode DMA translations.  Again, CPU access
918  * rules concerning calls here are the same as for dma_unmap_single().
919  */
920 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
921 		enum dma_data_direction dir, struct dma_attrs *attrs)
922 {
923 	struct dma_map_ops *ops = get_dma_ops(dev);
924 	struct scatterlist *s;
925 
926 	int i;
927 
928 	for_each_sg(sg, s, nents, i)
929 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
930 }
931 
932 /**
933  * arm_dma_sync_sg_for_cpu
934  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
935  * @sg: list of buffers
936  * @nents: number of buffers to map (returned from dma_map_sg)
937  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
938  */
939 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
940 			int nents, enum dma_data_direction dir)
941 {
942 	struct dma_map_ops *ops = get_dma_ops(dev);
943 	struct scatterlist *s;
944 	int i;
945 
946 	for_each_sg(sg, s, nents, i)
947 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
948 					 dir);
949 }
950 
951 /**
952  * arm_dma_sync_sg_for_device
953  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
954  * @sg: list of buffers
955  * @nents: number of buffers to map (returned from dma_map_sg)
956  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
957  */
958 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
959 			int nents, enum dma_data_direction dir)
960 {
961 	struct dma_map_ops *ops = get_dma_ops(dev);
962 	struct scatterlist *s;
963 	int i;
964 
965 	for_each_sg(sg, s, nents, i)
966 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
967 					    dir);
968 }
969 
970 /*
971  * Return whether the given device DMA address mask can be supported
972  * properly.  For example, if your device can only drive the low 24-bits
973  * during bus mastering, then you would pass 0x00ffffff as the mask
974  * to this function.
975  */
976 int dma_supported(struct device *dev, u64 mask)
977 {
978 	return __dma_supported(dev, mask, false);
979 }
980 EXPORT_SYMBOL(dma_supported);
981 
982 int arm_dma_set_mask(struct device *dev, u64 dma_mask)
983 {
984 	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
985 		return -EIO;
986 
987 	*dev->dma_mask = dma_mask;
988 
989 	return 0;
990 }
991 
992 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
993 
994 static int __init dma_debug_do_init(void)
995 {
996 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
997 	return 0;
998 }
999 fs_initcall(dma_debug_do_init);
1000 
1001 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1002 
1003 /* IOMMU */
1004 
1005 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1006 
1007 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1008 				      size_t size)
1009 {
1010 	unsigned int order = get_order(size);
1011 	unsigned int align = 0;
1012 	unsigned int count, start;
1013 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1014 	unsigned long flags;
1015 	dma_addr_t iova;
1016 	int i;
1017 
1018 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1019 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1020 
1021 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1022 	align = (1 << order) - 1;
1023 
1024 	spin_lock_irqsave(&mapping->lock, flags);
1025 	for (i = 0; i < mapping->nr_bitmaps; i++) {
1026 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1027 				mapping->bits, 0, count, align);
1028 
1029 		if (start > mapping->bits)
1030 			continue;
1031 
1032 		bitmap_set(mapping->bitmaps[i], start, count);
1033 		break;
1034 	}
1035 
1036 	/*
1037 	 * No unused range found. Try to extend the existing mapping
1038 	 * and perform a second attempt to reserve an IO virtual
1039 	 * address range of size bytes.
1040 	 */
1041 	if (i == mapping->nr_bitmaps) {
1042 		if (extend_iommu_mapping(mapping)) {
1043 			spin_unlock_irqrestore(&mapping->lock, flags);
1044 			return DMA_ERROR_CODE;
1045 		}
1046 
1047 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1048 				mapping->bits, 0, count, align);
1049 
1050 		if (start > mapping->bits) {
1051 			spin_unlock_irqrestore(&mapping->lock, flags);
1052 			return DMA_ERROR_CODE;
1053 		}
1054 
1055 		bitmap_set(mapping->bitmaps[i], start, count);
1056 	}
1057 	spin_unlock_irqrestore(&mapping->lock, flags);
1058 
1059 	iova = mapping->base + (mapping_size * i);
1060 	iova += start << PAGE_SHIFT;
1061 
1062 	return iova;
1063 }
1064 
1065 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1066 			       dma_addr_t addr, size_t size)
1067 {
1068 	unsigned int start, count;
1069 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1070 	unsigned long flags;
1071 	dma_addr_t bitmap_base;
1072 	u32 bitmap_index;
1073 
1074 	if (!size)
1075 		return;
1076 
1077 	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1078 	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1079 
1080 	bitmap_base = mapping->base + mapping_size * bitmap_index;
1081 
1082 	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1083 
1084 	if (addr + size > bitmap_base + mapping_size) {
1085 		/*
1086 		 * The address range to be freed reaches into the iova
1087 		 * range of the next bitmap. This should not happen as
1088 		 * we don't allow this in __alloc_iova (at the
1089 		 * moment).
1090 		 */
1091 		BUG();
1092 	} else
1093 		count = size >> PAGE_SHIFT;
1094 
1095 	spin_lock_irqsave(&mapping->lock, flags);
1096 	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1097 	spin_unlock_irqrestore(&mapping->lock, flags);
1098 }
1099 
1100 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1101 					  gfp_t gfp, struct dma_attrs *attrs)
1102 {
1103 	struct page **pages;
1104 	int count = size >> PAGE_SHIFT;
1105 	int array_size = count * sizeof(struct page *);
1106 	int i = 0;
1107 
1108 	if (array_size <= PAGE_SIZE)
1109 		pages = kzalloc(array_size, GFP_KERNEL);
1110 	else
1111 		pages = vzalloc(array_size);
1112 	if (!pages)
1113 		return NULL;
1114 
1115 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1116 	{
1117 		unsigned long order = get_order(size);
1118 		struct page *page;
1119 
1120 		page = dma_alloc_from_contiguous(dev, count, order);
1121 		if (!page)
1122 			goto error;
1123 
1124 		__dma_clear_buffer(page, size);
1125 
1126 		for (i = 0; i < count; i++)
1127 			pages[i] = page + i;
1128 
1129 		return pages;
1130 	}
1131 
1132 	/*
1133 	 * IOMMU can map any pages, so himem can also be used here
1134 	 */
1135 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1136 
1137 	while (count) {
1138 		int j, order = __fls(count);
1139 
1140 		pages[i] = alloc_pages(gfp, order);
1141 		while (!pages[i] && order)
1142 			pages[i] = alloc_pages(gfp, --order);
1143 		if (!pages[i])
1144 			goto error;
1145 
1146 		if (order) {
1147 			split_page(pages[i], order);
1148 			j = 1 << order;
1149 			while (--j)
1150 				pages[i + j] = pages[i] + j;
1151 		}
1152 
1153 		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
1154 		i += 1 << order;
1155 		count -= 1 << order;
1156 	}
1157 
1158 	return pages;
1159 error:
1160 	while (i--)
1161 		if (pages[i])
1162 			__free_pages(pages[i], 0);
1163 	if (array_size <= PAGE_SIZE)
1164 		kfree(pages);
1165 	else
1166 		vfree(pages);
1167 	return NULL;
1168 }
1169 
1170 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1171 			       size_t size, struct dma_attrs *attrs)
1172 {
1173 	int count = size >> PAGE_SHIFT;
1174 	int array_size = count * sizeof(struct page *);
1175 	int i;
1176 
1177 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1178 		dma_release_from_contiguous(dev, pages[0], count);
1179 	} else {
1180 		for (i = 0; i < count; i++)
1181 			if (pages[i])
1182 				__free_pages(pages[i], 0);
1183 	}
1184 
1185 	if (array_size <= PAGE_SIZE)
1186 		kfree(pages);
1187 	else
1188 		vfree(pages);
1189 	return 0;
1190 }
1191 
1192 /*
1193  * Create a CPU mapping for a specified pages
1194  */
1195 static void *
1196 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1197 		    const void *caller)
1198 {
1199 	return dma_common_pages_remap(pages, size,
1200 			VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1201 }
1202 
1203 /*
1204  * Create a mapping in device IO address space for specified pages
1205  */
1206 static dma_addr_t
1207 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1208 {
1209 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1210 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1211 	dma_addr_t dma_addr, iova;
1212 	int i, ret = DMA_ERROR_CODE;
1213 
1214 	dma_addr = __alloc_iova(mapping, size);
1215 	if (dma_addr == DMA_ERROR_CODE)
1216 		return dma_addr;
1217 
1218 	iova = dma_addr;
1219 	for (i = 0; i < count; ) {
1220 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1221 		phys_addr_t phys = page_to_phys(pages[i]);
1222 		unsigned int len, j;
1223 
1224 		for (j = i + 1; j < count; j++, next_pfn++)
1225 			if (page_to_pfn(pages[j]) != next_pfn)
1226 				break;
1227 
1228 		len = (j - i) << PAGE_SHIFT;
1229 		ret = iommu_map(mapping->domain, iova, phys, len,
1230 				IOMMU_READ|IOMMU_WRITE);
1231 		if (ret < 0)
1232 			goto fail;
1233 		iova += len;
1234 		i = j;
1235 	}
1236 	return dma_addr;
1237 fail:
1238 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1239 	__free_iova(mapping, dma_addr, size);
1240 	return DMA_ERROR_CODE;
1241 }
1242 
1243 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1244 {
1245 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1246 
1247 	/*
1248 	 * add optional in-page offset from iova to size and align
1249 	 * result to page size
1250 	 */
1251 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1252 	iova &= PAGE_MASK;
1253 
1254 	iommu_unmap(mapping->domain, iova, size);
1255 	__free_iova(mapping, iova, size);
1256 	return 0;
1257 }
1258 
1259 static struct page **__atomic_get_pages(void *addr)
1260 {
1261 	struct page *page;
1262 	phys_addr_t phys;
1263 
1264 	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1265 	page = phys_to_page(phys);
1266 
1267 	return (struct page **)page;
1268 }
1269 
1270 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1271 {
1272 	struct vm_struct *area;
1273 
1274 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1275 		return __atomic_get_pages(cpu_addr);
1276 
1277 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1278 		return cpu_addr;
1279 
1280 	area = find_vm_area(cpu_addr);
1281 	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1282 		return area->pages;
1283 	return NULL;
1284 }
1285 
1286 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1287 				  dma_addr_t *handle)
1288 {
1289 	struct page *page;
1290 	void *addr;
1291 
1292 	addr = __alloc_from_pool(size, &page);
1293 	if (!addr)
1294 		return NULL;
1295 
1296 	*handle = __iommu_create_mapping(dev, &page, size);
1297 	if (*handle == DMA_ERROR_CODE)
1298 		goto err_mapping;
1299 
1300 	return addr;
1301 
1302 err_mapping:
1303 	__free_from_pool(addr, size);
1304 	return NULL;
1305 }
1306 
1307 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1308 				dma_addr_t handle, size_t size)
1309 {
1310 	__iommu_remove_mapping(dev, handle, size);
1311 	__free_from_pool(cpu_addr, size);
1312 }
1313 
1314 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1315 	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1316 {
1317 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1318 	struct page **pages;
1319 	void *addr = NULL;
1320 
1321 	*handle = DMA_ERROR_CODE;
1322 	size = PAGE_ALIGN(size);
1323 
1324 	if (!(gfp & __GFP_WAIT))
1325 		return __iommu_alloc_atomic(dev, size, handle);
1326 
1327 	/*
1328 	 * Following is a work-around (a.k.a. hack) to prevent pages
1329 	 * with __GFP_COMP being passed to split_page() which cannot
1330 	 * handle them.  The real problem is that this flag probably
1331 	 * should be 0 on ARM as it is not supported on this
1332 	 * platform; see CONFIG_HUGETLBFS.
1333 	 */
1334 	gfp &= ~(__GFP_COMP);
1335 
1336 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1337 	if (!pages)
1338 		return NULL;
1339 
1340 	*handle = __iommu_create_mapping(dev, pages, size);
1341 	if (*handle == DMA_ERROR_CODE)
1342 		goto err_buffer;
1343 
1344 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1345 		return pages;
1346 
1347 	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1348 				   __builtin_return_address(0));
1349 	if (!addr)
1350 		goto err_mapping;
1351 
1352 	return addr;
1353 
1354 err_mapping:
1355 	__iommu_remove_mapping(dev, *handle, size);
1356 err_buffer:
1357 	__iommu_free_buffer(dev, pages, size, attrs);
1358 	return NULL;
1359 }
1360 
1361 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1362 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1363 		    struct dma_attrs *attrs)
1364 {
1365 	unsigned long uaddr = vma->vm_start;
1366 	unsigned long usize = vma->vm_end - vma->vm_start;
1367 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1368 
1369 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1370 
1371 	if (!pages)
1372 		return -ENXIO;
1373 
1374 	do {
1375 		int ret = vm_insert_page(vma, uaddr, *pages++);
1376 		if (ret) {
1377 			pr_err("Remapping memory failed: %d\n", ret);
1378 			return ret;
1379 		}
1380 		uaddr += PAGE_SIZE;
1381 		usize -= PAGE_SIZE;
1382 	} while (usize > 0);
1383 
1384 	return 0;
1385 }
1386 
1387 /*
1388  * free a page as defined by the above mapping.
1389  * Must not be called with IRQs disabled.
1390  */
1391 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1392 			  dma_addr_t handle, struct dma_attrs *attrs)
1393 {
1394 	struct page **pages;
1395 	size = PAGE_ALIGN(size);
1396 
1397 	if (__in_atomic_pool(cpu_addr, size)) {
1398 		__iommu_free_atomic(dev, cpu_addr, handle, size);
1399 		return;
1400 	}
1401 
1402 	pages = __iommu_get_pages(cpu_addr, attrs);
1403 	if (!pages) {
1404 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1405 		return;
1406 	}
1407 
1408 	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1409 		dma_common_free_remap(cpu_addr, size,
1410 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1411 	}
1412 
1413 	__iommu_remove_mapping(dev, handle, size);
1414 	__iommu_free_buffer(dev, pages, size, attrs);
1415 }
1416 
1417 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1418 				 void *cpu_addr, dma_addr_t dma_addr,
1419 				 size_t size, struct dma_attrs *attrs)
1420 {
1421 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1422 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1423 
1424 	if (!pages)
1425 		return -ENXIO;
1426 
1427 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1428 					 GFP_KERNEL);
1429 }
1430 
1431 static int __dma_direction_to_prot(enum dma_data_direction dir)
1432 {
1433 	int prot;
1434 
1435 	switch (dir) {
1436 	case DMA_BIDIRECTIONAL:
1437 		prot = IOMMU_READ | IOMMU_WRITE;
1438 		break;
1439 	case DMA_TO_DEVICE:
1440 		prot = IOMMU_READ;
1441 		break;
1442 	case DMA_FROM_DEVICE:
1443 		prot = IOMMU_WRITE;
1444 		break;
1445 	default:
1446 		prot = 0;
1447 	}
1448 
1449 	return prot;
1450 }
1451 
1452 /*
1453  * Map a part of the scatter-gather list into contiguous io address space
1454  */
1455 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1456 			  size_t size, dma_addr_t *handle,
1457 			  enum dma_data_direction dir, struct dma_attrs *attrs,
1458 			  bool is_coherent)
1459 {
1460 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1461 	dma_addr_t iova, iova_base;
1462 	int ret = 0;
1463 	unsigned int count;
1464 	struct scatterlist *s;
1465 	int prot;
1466 
1467 	size = PAGE_ALIGN(size);
1468 	*handle = DMA_ERROR_CODE;
1469 
1470 	iova_base = iova = __alloc_iova(mapping, size);
1471 	if (iova == DMA_ERROR_CODE)
1472 		return -ENOMEM;
1473 
1474 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1475 		phys_addr_t phys = page_to_phys(sg_page(s));
1476 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1477 
1478 		if (!is_coherent &&
1479 			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1480 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1481 
1482 		prot = __dma_direction_to_prot(dir);
1483 
1484 		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1485 		if (ret < 0)
1486 			goto fail;
1487 		count += len >> PAGE_SHIFT;
1488 		iova += len;
1489 	}
1490 	*handle = iova_base;
1491 
1492 	return 0;
1493 fail:
1494 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1495 	__free_iova(mapping, iova_base, size);
1496 	return ret;
1497 }
1498 
1499 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1500 		     enum dma_data_direction dir, struct dma_attrs *attrs,
1501 		     bool is_coherent)
1502 {
1503 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1504 	int i, count = 0;
1505 	unsigned int offset = s->offset;
1506 	unsigned int size = s->offset + s->length;
1507 	unsigned int max = dma_get_max_seg_size(dev);
1508 
1509 	for (i = 1; i < nents; i++) {
1510 		s = sg_next(s);
1511 
1512 		s->dma_address = DMA_ERROR_CODE;
1513 		s->dma_length = 0;
1514 
1515 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1516 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1517 			    dir, attrs, is_coherent) < 0)
1518 				goto bad_mapping;
1519 
1520 			dma->dma_address += offset;
1521 			dma->dma_length = size - offset;
1522 
1523 			size = offset = s->offset;
1524 			start = s;
1525 			dma = sg_next(dma);
1526 			count += 1;
1527 		}
1528 		size += s->length;
1529 	}
1530 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1531 		is_coherent) < 0)
1532 		goto bad_mapping;
1533 
1534 	dma->dma_address += offset;
1535 	dma->dma_length = size - offset;
1536 
1537 	return count+1;
1538 
1539 bad_mapping:
1540 	for_each_sg(sg, s, count, i)
1541 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1542 	return 0;
1543 }
1544 
1545 /**
1546  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1547  * @dev: valid struct device pointer
1548  * @sg: list of buffers
1549  * @nents: number of buffers to map
1550  * @dir: DMA transfer direction
1551  *
1552  * Map a set of i/o coherent buffers described by scatterlist in streaming
1553  * mode for DMA. The scatter gather list elements are merged together (if
1554  * possible) and tagged with the appropriate dma address and length. They are
1555  * obtained via sg_dma_{address,length}.
1556  */
1557 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1558 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1559 {
1560 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1561 }
1562 
1563 /**
1564  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1565  * @dev: valid struct device pointer
1566  * @sg: list of buffers
1567  * @nents: number of buffers to map
1568  * @dir: DMA transfer direction
1569  *
1570  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1571  * The scatter gather list elements are merged together (if possible) and
1572  * tagged with the appropriate dma address and length. They are obtained via
1573  * sg_dma_{address,length}.
1574  */
1575 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1576 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1577 {
1578 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1579 }
1580 
1581 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1582 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1583 		bool is_coherent)
1584 {
1585 	struct scatterlist *s;
1586 	int i;
1587 
1588 	for_each_sg(sg, s, nents, i) {
1589 		if (sg_dma_len(s))
1590 			__iommu_remove_mapping(dev, sg_dma_address(s),
1591 					       sg_dma_len(s));
1592 		if (!is_coherent &&
1593 		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1594 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1595 					      s->length, dir);
1596 	}
1597 }
1598 
1599 /**
1600  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1601  * @dev: valid struct device pointer
1602  * @sg: list of buffers
1603  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1604  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1605  *
1606  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1607  * rules concerning calls here are the same as for dma_unmap_single().
1608  */
1609 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1610 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1611 {
1612 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1613 }
1614 
1615 /**
1616  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1617  * @dev: valid struct device pointer
1618  * @sg: list of buffers
1619  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1620  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1621  *
1622  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1623  * rules concerning calls here are the same as for dma_unmap_single().
1624  */
1625 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1626 			enum dma_data_direction dir, struct dma_attrs *attrs)
1627 {
1628 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1629 }
1630 
1631 /**
1632  * arm_iommu_sync_sg_for_cpu
1633  * @dev: valid struct device pointer
1634  * @sg: list of buffers
1635  * @nents: number of buffers to map (returned from dma_map_sg)
1636  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1637  */
1638 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1639 			int nents, enum dma_data_direction dir)
1640 {
1641 	struct scatterlist *s;
1642 	int i;
1643 
1644 	for_each_sg(sg, s, nents, i)
1645 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1646 
1647 }
1648 
1649 /**
1650  * arm_iommu_sync_sg_for_device
1651  * @dev: valid struct device pointer
1652  * @sg: list of buffers
1653  * @nents: number of buffers to map (returned from dma_map_sg)
1654  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1655  */
1656 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1657 			int nents, enum dma_data_direction dir)
1658 {
1659 	struct scatterlist *s;
1660 	int i;
1661 
1662 	for_each_sg(sg, s, nents, i)
1663 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1664 }
1665 
1666 
1667 /**
1668  * arm_coherent_iommu_map_page
1669  * @dev: valid struct device pointer
1670  * @page: page that buffer resides in
1671  * @offset: offset into page for start of buffer
1672  * @size: size of buffer to map
1673  * @dir: DMA transfer direction
1674  *
1675  * Coherent IOMMU aware version of arm_dma_map_page()
1676  */
1677 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1678 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1679 	     struct dma_attrs *attrs)
1680 {
1681 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1682 	dma_addr_t dma_addr;
1683 	int ret, prot, len = PAGE_ALIGN(size + offset);
1684 
1685 	dma_addr = __alloc_iova(mapping, len);
1686 	if (dma_addr == DMA_ERROR_CODE)
1687 		return dma_addr;
1688 
1689 	prot = __dma_direction_to_prot(dir);
1690 
1691 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1692 	if (ret < 0)
1693 		goto fail;
1694 
1695 	return dma_addr + offset;
1696 fail:
1697 	__free_iova(mapping, dma_addr, len);
1698 	return DMA_ERROR_CODE;
1699 }
1700 
1701 /**
1702  * arm_iommu_map_page
1703  * @dev: valid struct device pointer
1704  * @page: page that buffer resides in
1705  * @offset: offset into page for start of buffer
1706  * @size: size of buffer to map
1707  * @dir: DMA transfer direction
1708  *
1709  * IOMMU aware version of arm_dma_map_page()
1710  */
1711 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1712 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1713 	     struct dma_attrs *attrs)
1714 {
1715 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1716 		__dma_page_cpu_to_dev(page, offset, size, dir);
1717 
1718 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1719 }
1720 
1721 /**
1722  * arm_coherent_iommu_unmap_page
1723  * @dev: valid struct device pointer
1724  * @handle: DMA address of buffer
1725  * @size: size of buffer (same as passed to dma_map_page)
1726  * @dir: DMA transfer direction (same as passed to dma_map_page)
1727  *
1728  * Coherent IOMMU aware version of arm_dma_unmap_page()
1729  */
1730 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1731 		size_t size, enum dma_data_direction dir,
1732 		struct dma_attrs *attrs)
1733 {
1734 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1735 	dma_addr_t iova = handle & PAGE_MASK;
1736 	int offset = handle & ~PAGE_MASK;
1737 	int len = PAGE_ALIGN(size + offset);
1738 
1739 	if (!iova)
1740 		return;
1741 
1742 	iommu_unmap(mapping->domain, iova, len);
1743 	__free_iova(mapping, iova, len);
1744 }
1745 
1746 /**
1747  * arm_iommu_unmap_page
1748  * @dev: valid struct device pointer
1749  * @handle: DMA address of buffer
1750  * @size: size of buffer (same as passed to dma_map_page)
1751  * @dir: DMA transfer direction (same as passed to dma_map_page)
1752  *
1753  * IOMMU aware version of arm_dma_unmap_page()
1754  */
1755 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1756 		size_t size, enum dma_data_direction dir,
1757 		struct dma_attrs *attrs)
1758 {
1759 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1760 	dma_addr_t iova = handle & PAGE_MASK;
1761 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1762 	int offset = handle & ~PAGE_MASK;
1763 	int len = PAGE_ALIGN(size + offset);
1764 
1765 	if (!iova)
1766 		return;
1767 
1768 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1769 		__dma_page_dev_to_cpu(page, offset, size, dir);
1770 
1771 	iommu_unmap(mapping->domain, iova, len);
1772 	__free_iova(mapping, iova, len);
1773 }
1774 
1775 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1776 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1777 {
1778 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1779 	dma_addr_t iova = handle & PAGE_MASK;
1780 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1781 	unsigned int offset = handle & ~PAGE_MASK;
1782 
1783 	if (!iova)
1784 		return;
1785 
1786 	__dma_page_dev_to_cpu(page, offset, size, dir);
1787 }
1788 
1789 static void arm_iommu_sync_single_for_device(struct device *dev,
1790 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1791 {
1792 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1793 	dma_addr_t iova = handle & PAGE_MASK;
1794 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1795 	unsigned int offset = handle & ~PAGE_MASK;
1796 
1797 	if (!iova)
1798 		return;
1799 
1800 	__dma_page_cpu_to_dev(page, offset, size, dir);
1801 }
1802 
1803 struct dma_map_ops iommu_ops = {
1804 	.alloc		= arm_iommu_alloc_attrs,
1805 	.free		= arm_iommu_free_attrs,
1806 	.mmap		= arm_iommu_mmap_attrs,
1807 	.get_sgtable	= arm_iommu_get_sgtable,
1808 
1809 	.map_page		= arm_iommu_map_page,
1810 	.unmap_page		= arm_iommu_unmap_page,
1811 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1812 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1813 
1814 	.map_sg			= arm_iommu_map_sg,
1815 	.unmap_sg		= arm_iommu_unmap_sg,
1816 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1817 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1818 
1819 	.set_dma_mask		= arm_dma_set_mask,
1820 };
1821 
1822 struct dma_map_ops iommu_coherent_ops = {
1823 	.alloc		= arm_iommu_alloc_attrs,
1824 	.free		= arm_iommu_free_attrs,
1825 	.mmap		= arm_iommu_mmap_attrs,
1826 	.get_sgtable	= arm_iommu_get_sgtable,
1827 
1828 	.map_page	= arm_coherent_iommu_map_page,
1829 	.unmap_page	= arm_coherent_iommu_unmap_page,
1830 
1831 	.map_sg		= arm_coherent_iommu_map_sg,
1832 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
1833 
1834 	.set_dma_mask	= arm_dma_set_mask,
1835 };
1836 
1837 /**
1838  * arm_iommu_create_mapping
1839  * @bus: pointer to the bus holding the client device (for IOMMU calls)
1840  * @base: start address of the valid IO address space
1841  * @size: maximum size of the valid IO address space
1842  *
1843  * Creates a mapping structure which holds information about used/unused
1844  * IO address ranges, which is required to perform memory allocation and
1845  * mapping with IOMMU aware functions.
1846  *
1847  * The client device need to be attached to the mapping with
1848  * arm_iommu_attach_device function.
1849  */
1850 struct dma_iommu_mapping *
1851 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size)
1852 {
1853 	unsigned int bits = size >> PAGE_SHIFT;
1854 	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1855 	struct dma_iommu_mapping *mapping;
1856 	int extensions = 1;
1857 	int err = -ENOMEM;
1858 
1859 	if (!bitmap_size)
1860 		return ERR_PTR(-EINVAL);
1861 
1862 	if (bitmap_size > PAGE_SIZE) {
1863 		extensions = bitmap_size / PAGE_SIZE;
1864 		bitmap_size = PAGE_SIZE;
1865 	}
1866 
1867 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1868 	if (!mapping)
1869 		goto err;
1870 
1871 	mapping->bitmap_size = bitmap_size;
1872 	mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
1873 				GFP_KERNEL);
1874 	if (!mapping->bitmaps)
1875 		goto err2;
1876 
1877 	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1878 	if (!mapping->bitmaps[0])
1879 		goto err3;
1880 
1881 	mapping->nr_bitmaps = 1;
1882 	mapping->extensions = extensions;
1883 	mapping->base = base;
1884 	mapping->bits = BITS_PER_BYTE * bitmap_size;
1885 
1886 	spin_lock_init(&mapping->lock);
1887 
1888 	mapping->domain = iommu_domain_alloc(bus);
1889 	if (!mapping->domain)
1890 		goto err4;
1891 
1892 	kref_init(&mapping->kref);
1893 	return mapping;
1894 err4:
1895 	kfree(mapping->bitmaps[0]);
1896 err3:
1897 	kfree(mapping->bitmaps);
1898 err2:
1899 	kfree(mapping);
1900 err:
1901 	return ERR_PTR(err);
1902 }
1903 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1904 
1905 static void release_iommu_mapping(struct kref *kref)
1906 {
1907 	int i;
1908 	struct dma_iommu_mapping *mapping =
1909 		container_of(kref, struct dma_iommu_mapping, kref);
1910 
1911 	iommu_domain_free(mapping->domain);
1912 	for (i = 0; i < mapping->nr_bitmaps; i++)
1913 		kfree(mapping->bitmaps[i]);
1914 	kfree(mapping->bitmaps);
1915 	kfree(mapping);
1916 }
1917 
1918 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1919 {
1920 	int next_bitmap;
1921 
1922 	if (mapping->nr_bitmaps > mapping->extensions)
1923 		return -EINVAL;
1924 
1925 	next_bitmap = mapping->nr_bitmaps;
1926 	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1927 						GFP_ATOMIC);
1928 	if (!mapping->bitmaps[next_bitmap])
1929 		return -ENOMEM;
1930 
1931 	mapping->nr_bitmaps++;
1932 
1933 	return 0;
1934 }
1935 
1936 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1937 {
1938 	if (mapping)
1939 		kref_put(&mapping->kref, release_iommu_mapping);
1940 }
1941 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1942 
1943 static int __arm_iommu_attach_device(struct device *dev,
1944 				     struct dma_iommu_mapping *mapping)
1945 {
1946 	int err;
1947 
1948 	err = iommu_attach_device(mapping->domain, dev);
1949 	if (err)
1950 		return err;
1951 
1952 	kref_get(&mapping->kref);
1953 	dev->archdata.mapping = mapping;
1954 
1955 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1956 	return 0;
1957 }
1958 
1959 /**
1960  * arm_iommu_attach_device
1961  * @dev: valid struct device pointer
1962  * @mapping: io address space mapping structure (returned from
1963  *	arm_iommu_create_mapping)
1964  *
1965  * Attaches specified io address space mapping to the provided device.
1966  * This replaces the dma operations (dma_map_ops pointer) with the
1967  * IOMMU aware version.
1968  *
1969  * More than one client might be attached to the same io address space
1970  * mapping.
1971  */
1972 int arm_iommu_attach_device(struct device *dev,
1973 			    struct dma_iommu_mapping *mapping)
1974 {
1975 	int err;
1976 
1977 	err = __arm_iommu_attach_device(dev, mapping);
1978 	if (err)
1979 		return err;
1980 
1981 	set_dma_ops(dev, &iommu_ops);
1982 	return 0;
1983 }
1984 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1985 
1986 static void __arm_iommu_detach_device(struct device *dev)
1987 {
1988 	struct dma_iommu_mapping *mapping;
1989 
1990 	mapping = to_dma_iommu_mapping(dev);
1991 	if (!mapping) {
1992 		dev_warn(dev, "Not attached\n");
1993 		return;
1994 	}
1995 
1996 	iommu_detach_device(mapping->domain, dev);
1997 	kref_put(&mapping->kref, release_iommu_mapping);
1998 	dev->archdata.mapping = NULL;
1999 
2000 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2001 }
2002 
2003 /**
2004  * arm_iommu_detach_device
2005  * @dev: valid struct device pointer
2006  *
2007  * Detaches the provided device from a previously attached map.
2008  * This voids the dma operations (dma_map_ops pointer)
2009  */
2010 void arm_iommu_detach_device(struct device *dev)
2011 {
2012 	__arm_iommu_detach_device(dev);
2013 	set_dma_ops(dev, NULL);
2014 }
2015 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2016 
2017 static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2018 {
2019 	return coherent ? &iommu_coherent_ops : &iommu_ops;
2020 }
2021 
2022 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2023 				    struct iommu_ops *iommu)
2024 {
2025 	struct dma_iommu_mapping *mapping;
2026 
2027 	if (!iommu)
2028 		return false;
2029 
2030 	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2031 	if (IS_ERR(mapping)) {
2032 		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2033 				size, dev_name(dev));
2034 		return false;
2035 	}
2036 
2037 	if (__arm_iommu_attach_device(dev, mapping)) {
2038 		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2039 				dev_name(dev));
2040 		arm_iommu_release_mapping(mapping);
2041 		return false;
2042 	}
2043 
2044 	return true;
2045 }
2046 
2047 static void arm_teardown_iommu_dma_ops(struct device *dev)
2048 {
2049 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
2050 
2051 	if (!mapping)
2052 		return;
2053 
2054 	__arm_iommu_detach_device(dev);
2055 	arm_iommu_release_mapping(mapping);
2056 }
2057 
2058 #else
2059 
2060 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2061 				    struct iommu_ops *iommu)
2062 {
2063 	return false;
2064 }
2065 
2066 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2067 
2068 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2069 
2070 #endif	/* CONFIG_ARM_DMA_USE_IOMMU */
2071 
2072 static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2073 {
2074 	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2075 }
2076 
2077 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2078 			struct iommu_ops *iommu, bool coherent)
2079 {
2080 	struct dma_map_ops *dma_ops;
2081 
2082 	dev->archdata.dma_coherent = coherent;
2083 	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2084 		dma_ops = arm_get_iommu_dma_map_ops(coherent);
2085 	else
2086 		dma_ops = arm_get_dma_map_ops(coherent);
2087 
2088 	set_dma_ops(dev, dma_ops);
2089 }
2090 
2091 void arch_teardown_dma_ops(struct device *dev)
2092 {
2093 	arm_teardown_iommu_dma_ops(dev);
2094 }
2095