xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/highmem.h>
21 
22 #include <asm/memory.h>
23 #include <asm/highmem.h>
24 #include <asm/cacheflush.h>
25 #include <asm/tlbflush.h>
26 #include <asm/sizes.h>
27 
28 static u64 get_coherent_dma_mask(struct device *dev)
29 {
30 	u64 mask = ISA_DMA_THRESHOLD;
31 
32 	if (dev) {
33 		mask = dev->coherent_dma_mask;
34 
35 		/*
36 		 * Sanity check the DMA mask - it must be non-zero, and
37 		 * must be able to be satisfied by a DMA allocation.
38 		 */
39 		if (mask == 0) {
40 			dev_warn(dev, "coherent DMA mask is unset\n");
41 			return 0;
42 		}
43 
44 		if ((~mask) & ISA_DMA_THRESHOLD) {
45 			dev_warn(dev, "coherent DMA mask %#llx is smaller "
46 				 "than system GFP_DMA mask %#llx\n",
47 				 mask, (unsigned long long)ISA_DMA_THRESHOLD);
48 			return 0;
49 		}
50 	}
51 
52 	return mask;
53 }
54 
55 /*
56  * Allocate a DMA buffer for 'dev' of size 'size' using the
57  * specified gfp mask.  Note that 'size' must be page aligned.
58  */
59 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
60 {
61 	unsigned long order = get_order(size);
62 	struct page *page, *p, *e;
63 	void *ptr;
64 	u64 mask = get_coherent_dma_mask(dev);
65 
66 #ifdef CONFIG_DMA_API_DEBUG
67 	u64 limit = (mask + 1) & ~mask;
68 	if (limit && size >= limit) {
69 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
70 			size, mask);
71 		return NULL;
72 	}
73 #endif
74 
75 	if (!mask)
76 		return NULL;
77 
78 	if (mask < 0xffffffffULL)
79 		gfp |= GFP_DMA;
80 
81 	page = alloc_pages(gfp, order);
82 	if (!page)
83 		return NULL;
84 
85 	/*
86 	 * Now split the huge page and free the excess pages
87 	 */
88 	split_page(page, order);
89 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
90 		__free_page(p);
91 
92 	/*
93 	 * Ensure that the allocated pages are zeroed, and that any data
94 	 * lurking in the kernel direct-mapped region is invalidated.
95 	 */
96 	ptr = page_address(page);
97 	memset(ptr, 0, size);
98 	dmac_flush_range(ptr, ptr + size);
99 	outer_flush_range(__pa(ptr), __pa(ptr) + size);
100 
101 	return page;
102 }
103 
104 /*
105  * Free a DMA buffer.  'size' must be page aligned.
106  */
107 static void __dma_free_buffer(struct page *page, size_t size)
108 {
109 	struct page *e = page + (size >> PAGE_SHIFT);
110 
111 	while (page < e) {
112 		__free_page(page);
113 		page++;
114 	}
115 }
116 
117 #ifdef CONFIG_MMU
118 /* Sanity check size */
119 #if (CONSISTENT_DMA_SIZE % SZ_2M)
120 #error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
121 #endif
122 
123 #define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
124 #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
125 #define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)
126 
127 /*
128  * These are the page tables (2MB each) covering uncached, DMA consistent allocations
129  */
130 static pte_t *consistent_pte[NUM_CONSISTENT_PTES];
131 
132 #include "vmregion.h"
133 
134 static struct arm_vmregion_head consistent_head = {
135 	.vm_lock	= __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
136 	.vm_list	= LIST_HEAD_INIT(consistent_head.vm_list),
137 	.vm_start	= CONSISTENT_BASE,
138 	.vm_end		= CONSISTENT_END,
139 };
140 
141 #ifdef CONFIG_HUGETLB_PAGE
142 #error ARM Coherent DMA allocator does not (yet) support huge TLB
143 #endif
144 
145 /*
146  * Initialise the consistent memory allocation.
147  */
148 static int __init consistent_init(void)
149 {
150 	int ret = 0;
151 	pgd_t *pgd;
152 	pmd_t *pmd;
153 	pte_t *pte;
154 	int i = 0;
155 	u32 base = CONSISTENT_BASE;
156 
157 	do {
158 		pgd = pgd_offset(&init_mm, base);
159 		pmd = pmd_alloc(&init_mm, pgd, base);
160 		if (!pmd) {
161 			printk(KERN_ERR "%s: no pmd tables\n", __func__);
162 			ret = -ENOMEM;
163 			break;
164 		}
165 		WARN_ON(!pmd_none(*pmd));
166 
167 		pte = pte_alloc_kernel(pmd, base);
168 		if (!pte) {
169 			printk(KERN_ERR "%s: no pte tables\n", __func__);
170 			ret = -ENOMEM;
171 			break;
172 		}
173 
174 		consistent_pte[i++] = pte;
175 		base += (1 << PGDIR_SHIFT);
176 	} while (base < CONSISTENT_END);
177 
178 	return ret;
179 }
180 
181 core_initcall(consistent_init);
182 
183 static void *
184 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot)
185 {
186 	struct arm_vmregion *c;
187 	size_t align;
188 	int bit;
189 
190 	if (!consistent_pte[0]) {
191 		printk(KERN_ERR "%s: not initialised\n", __func__);
192 		dump_stack();
193 		return NULL;
194 	}
195 
196 	/*
197 	 * Align the virtual region allocation - maximum alignment is
198 	 * a section size, minimum is a page size.  This helps reduce
199 	 * fragmentation of the DMA space, and also prevents allocations
200 	 * smaller than a section from crossing a section boundary.
201 	 */
202 	bit = fls(size - 1);
203 	if (bit > SECTION_SHIFT)
204 		bit = SECTION_SHIFT;
205 	align = 1 << bit;
206 
207 	/*
208 	 * Allocate a virtual address in the consistent mapping region.
209 	 */
210 	c = arm_vmregion_alloc(&consistent_head, align, size,
211 			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
212 	if (c) {
213 		pte_t *pte;
214 		int idx = CONSISTENT_PTE_INDEX(c->vm_start);
215 		u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
216 
217 		pte = consistent_pte[idx] + off;
218 		c->vm_pages = page;
219 
220 		do {
221 			BUG_ON(!pte_none(*pte));
222 
223 			set_pte_ext(pte, mk_pte(page, prot), 0);
224 			page++;
225 			pte++;
226 			off++;
227 			if (off >= PTRS_PER_PTE) {
228 				off = 0;
229 				pte = consistent_pte[++idx];
230 			}
231 		} while (size -= PAGE_SIZE);
232 
233 		dsb();
234 
235 		return (void *)c->vm_start;
236 	}
237 	return NULL;
238 }
239 
240 static void __dma_free_remap(void *cpu_addr, size_t size)
241 {
242 	struct arm_vmregion *c;
243 	unsigned long addr;
244 	pte_t *ptep;
245 	int idx;
246 	u32 off;
247 
248 	c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
249 	if (!c) {
250 		printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
251 		       __func__, cpu_addr);
252 		dump_stack();
253 		return;
254 	}
255 
256 	if ((c->vm_end - c->vm_start) != size) {
257 		printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
258 		       __func__, c->vm_end - c->vm_start, size);
259 		dump_stack();
260 		size = c->vm_end - c->vm_start;
261 	}
262 
263 	idx = CONSISTENT_PTE_INDEX(c->vm_start);
264 	off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
265 	ptep = consistent_pte[idx] + off;
266 	addr = c->vm_start;
267 	do {
268 		pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
269 
270 		ptep++;
271 		addr += PAGE_SIZE;
272 		off++;
273 		if (off >= PTRS_PER_PTE) {
274 			off = 0;
275 			ptep = consistent_pte[++idx];
276 		}
277 
278 		if (pte_none(pte) || !pte_present(pte))
279 			printk(KERN_CRIT "%s: bad page in kernel page table\n",
280 			       __func__);
281 	} while (size -= PAGE_SIZE);
282 
283 	flush_tlb_kernel_range(c->vm_start, c->vm_end);
284 
285 	arm_vmregion_free(&consistent_head, c);
286 }
287 
288 #else	/* !CONFIG_MMU */
289 
290 #define __dma_alloc_remap(page, size, gfp, prot)	page_address(page)
291 #define __dma_free_remap(addr, size)			do { } while (0)
292 
293 #endif	/* CONFIG_MMU */
294 
295 static void *
296 __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
297 	    pgprot_t prot)
298 {
299 	struct page *page;
300 	void *addr;
301 
302 	*handle = ~0;
303 	size = PAGE_ALIGN(size);
304 
305 	page = __dma_alloc_buffer(dev, size, gfp);
306 	if (!page)
307 		return NULL;
308 
309 	if (!arch_is_coherent())
310 		addr = __dma_alloc_remap(page, size, gfp, prot);
311 	else
312 		addr = page_address(page);
313 
314 	if (addr)
315 		*handle = pfn_to_dma(dev, page_to_pfn(page));
316 
317 	return addr;
318 }
319 
320 /*
321  * Allocate DMA-coherent memory space and return both the kernel remapped
322  * virtual and bus address for that space.
323  */
324 void *
325 dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
326 {
327 	void *memory;
328 
329 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
330 		return memory;
331 
332 	return __dma_alloc(dev, size, handle, gfp,
333 			   pgprot_dmacoherent(pgprot_kernel));
334 }
335 EXPORT_SYMBOL(dma_alloc_coherent);
336 
337 /*
338  * Allocate a writecombining region, in much the same way as
339  * dma_alloc_coherent above.
340  */
341 void *
342 dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
343 {
344 	return __dma_alloc(dev, size, handle, gfp,
345 			   pgprot_writecombine(pgprot_kernel));
346 }
347 EXPORT_SYMBOL(dma_alloc_writecombine);
348 
349 static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
350 		    void *cpu_addr, dma_addr_t dma_addr, size_t size)
351 {
352 	int ret = -ENXIO;
353 #ifdef CONFIG_MMU
354 	unsigned long user_size, kern_size;
355 	struct arm_vmregion *c;
356 
357 	user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
358 
359 	c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
360 	if (c) {
361 		unsigned long off = vma->vm_pgoff;
362 
363 		kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
364 
365 		if (off < kern_size &&
366 		    user_size <= (kern_size - off)) {
367 			ret = remap_pfn_range(vma, vma->vm_start,
368 					      page_to_pfn(c->vm_pages) + off,
369 					      user_size << PAGE_SHIFT,
370 					      vma->vm_page_prot);
371 		}
372 	}
373 #endif	/* CONFIG_MMU */
374 
375 	return ret;
376 }
377 
378 int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
379 		      void *cpu_addr, dma_addr_t dma_addr, size_t size)
380 {
381 	vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
382 	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
383 }
384 EXPORT_SYMBOL(dma_mmap_coherent);
385 
386 int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
387 			  void *cpu_addr, dma_addr_t dma_addr, size_t size)
388 {
389 	vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
390 	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
391 }
392 EXPORT_SYMBOL(dma_mmap_writecombine);
393 
394 /*
395  * free a page as defined by the above mapping.
396  * Must not be called with IRQs disabled.
397  */
398 void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
399 {
400 	WARN_ON(irqs_disabled());
401 
402 	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
403 		return;
404 
405 	size = PAGE_ALIGN(size);
406 
407 	if (!arch_is_coherent())
408 		__dma_free_remap(cpu_addr, size);
409 
410 	__dma_free_buffer(pfn_to_page(dma_to_pfn(dev, handle)), size);
411 }
412 EXPORT_SYMBOL(dma_free_coherent);
413 
414 /*
415  * Make an area consistent for devices.
416  * Note: Drivers should NOT use this function directly, as it will break
417  * platforms with CONFIG_DMABOUNCE.
418  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
419  */
420 void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
421 	enum dma_data_direction dir)
422 {
423 	unsigned long paddr;
424 
425 	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
426 
427 	dmac_map_area(kaddr, size, dir);
428 
429 	paddr = __pa(kaddr);
430 	if (dir == DMA_FROM_DEVICE) {
431 		outer_inv_range(paddr, paddr + size);
432 	} else {
433 		outer_clean_range(paddr, paddr + size);
434 	}
435 	/* FIXME: non-speculating: flush on bidirectional mappings? */
436 }
437 EXPORT_SYMBOL(___dma_single_cpu_to_dev);
438 
439 void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
440 	enum dma_data_direction dir)
441 {
442 	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
443 
444 	/* FIXME: non-speculating: not required */
445 	/* don't bother invalidating if DMA to device */
446 	if (dir != DMA_TO_DEVICE) {
447 		unsigned long paddr = __pa(kaddr);
448 		outer_inv_range(paddr, paddr + size);
449 	}
450 
451 	dmac_unmap_area(kaddr, size, dir);
452 }
453 EXPORT_SYMBOL(___dma_single_dev_to_cpu);
454 
455 static void dma_cache_maint_page(struct page *page, unsigned long offset,
456 	size_t size, enum dma_data_direction dir,
457 	void (*op)(const void *, size_t, int))
458 {
459 	/*
460 	 * A single sg entry may refer to multiple physically contiguous
461 	 * pages.  But we still need to process highmem pages individually.
462 	 * If highmem is not configured then the bulk of this loop gets
463 	 * optimized out.
464 	 */
465 	size_t left = size;
466 	do {
467 		size_t len = left;
468 		void *vaddr;
469 
470 		if (PageHighMem(page)) {
471 			if (len + offset > PAGE_SIZE) {
472 				if (offset >= PAGE_SIZE) {
473 					page += offset / PAGE_SIZE;
474 					offset %= PAGE_SIZE;
475 				}
476 				len = PAGE_SIZE - offset;
477 			}
478 			vaddr = kmap_high_get(page);
479 			if (vaddr) {
480 				vaddr += offset;
481 				op(vaddr, len, dir);
482 				kunmap_high(page);
483 			} else if (cache_is_vipt()) {
484 				/* unmapped pages might still be cached */
485 				vaddr = kmap_atomic(page);
486 				op(vaddr + offset, len, dir);
487 				kunmap_atomic(vaddr);
488 			}
489 		} else {
490 			vaddr = page_address(page) + offset;
491 			op(vaddr, len, dir);
492 		}
493 		offset = 0;
494 		page++;
495 		left -= len;
496 	} while (left);
497 }
498 
499 void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
500 	size_t size, enum dma_data_direction dir)
501 {
502 	unsigned long paddr;
503 
504 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
505 
506 	paddr = page_to_phys(page) + off;
507 	if (dir == DMA_FROM_DEVICE) {
508 		outer_inv_range(paddr, paddr + size);
509 	} else {
510 		outer_clean_range(paddr, paddr + size);
511 	}
512 	/* FIXME: non-speculating: flush on bidirectional mappings? */
513 }
514 EXPORT_SYMBOL(___dma_page_cpu_to_dev);
515 
516 void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
517 	size_t size, enum dma_data_direction dir)
518 {
519 	unsigned long paddr = page_to_phys(page) + off;
520 
521 	/* FIXME: non-speculating: not required */
522 	/* don't bother invalidating if DMA to device */
523 	if (dir != DMA_TO_DEVICE)
524 		outer_inv_range(paddr, paddr + size);
525 
526 	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
527 
528 	/*
529 	 * Mark the D-cache clean for this page to avoid extra flushing.
530 	 */
531 	if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
532 		set_bit(PG_dcache_clean, &page->flags);
533 }
534 EXPORT_SYMBOL(___dma_page_dev_to_cpu);
535 
536 /**
537  * dma_map_sg - map a set of SG buffers for streaming mode DMA
538  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
539  * @sg: list of buffers
540  * @nents: number of buffers to map
541  * @dir: DMA transfer direction
542  *
543  * Map a set of buffers described by scatterlist in streaming mode for DMA.
544  * This is the scatter-gather version of the dma_map_single interface.
545  * Here the scatter gather list elements are each tagged with the
546  * appropriate dma address and length.  They are obtained via
547  * sg_dma_{address,length}.
548  *
549  * Device ownership issues as mentioned for dma_map_single are the same
550  * here.
551  */
552 int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
553 		enum dma_data_direction dir)
554 {
555 	struct scatterlist *s;
556 	int i, j;
557 
558 	BUG_ON(!valid_dma_direction(dir));
559 
560 	for_each_sg(sg, s, nents, i) {
561 		s->dma_address = __dma_map_page(dev, sg_page(s), s->offset,
562 						s->length, dir);
563 		if (dma_mapping_error(dev, s->dma_address))
564 			goto bad_mapping;
565 	}
566 	debug_dma_map_sg(dev, sg, nents, nents, dir);
567 	return nents;
568 
569  bad_mapping:
570 	for_each_sg(sg, s, i, j)
571 		__dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
572 	return 0;
573 }
574 EXPORT_SYMBOL(dma_map_sg);
575 
576 /**
577  * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
578  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
579  * @sg: list of buffers
580  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
581  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
582  *
583  * Unmap a set of streaming mode DMA translations.  Again, CPU access
584  * rules concerning calls here are the same as for dma_unmap_single().
585  */
586 void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
587 		enum dma_data_direction dir)
588 {
589 	struct scatterlist *s;
590 	int i;
591 
592 	debug_dma_unmap_sg(dev, sg, nents, dir);
593 
594 	for_each_sg(sg, s, nents, i)
595 		__dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
596 }
597 EXPORT_SYMBOL(dma_unmap_sg);
598 
599 /**
600  * dma_sync_sg_for_cpu
601  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
602  * @sg: list of buffers
603  * @nents: number of buffers to map (returned from dma_map_sg)
604  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
605  */
606 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
607 			int nents, enum dma_data_direction dir)
608 {
609 	struct scatterlist *s;
610 	int i;
611 
612 	for_each_sg(sg, s, nents, i) {
613 		if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
614 					    sg_dma_len(s), dir))
615 			continue;
616 
617 		__dma_page_dev_to_cpu(sg_page(s), s->offset,
618 				      s->length, dir);
619 	}
620 
621 	debug_dma_sync_sg_for_cpu(dev, sg, nents, dir);
622 }
623 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
624 
625 /**
626  * dma_sync_sg_for_device
627  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
628  * @sg: list of buffers
629  * @nents: number of buffers to map (returned from dma_map_sg)
630  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
631  */
632 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
633 			int nents, enum dma_data_direction dir)
634 {
635 	struct scatterlist *s;
636 	int i;
637 
638 	for_each_sg(sg, s, nents, i) {
639 		if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
640 					sg_dma_len(s), dir))
641 			continue;
642 
643 		__dma_page_cpu_to_dev(sg_page(s), s->offset,
644 				      s->length, dir);
645 	}
646 
647 	debug_dma_sync_sg_for_device(dev, sg, nents, dir);
648 }
649 EXPORT_SYMBOL(dma_sync_sg_for_device);
650 
651 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
652 
653 static int __init dma_debug_do_init(void)
654 {
655 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
656 	return 0;
657 }
658 fs_initcall(dma_debug_do_init);
659