xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision d0b73b48)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/dma-contiguous.h>
21 #include <linux/highmem.h>
22 #include <linux/memblock.h>
23 #include <linux/slab.h>
24 #include <linux/iommu.h>
25 #include <linux/io.h>
26 #include <linux/vmalloc.h>
27 #include <linux/sizes.h>
28 
29 #include <asm/memory.h>
30 #include <asm/highmem.h>
31 #include <asm/cacheflush.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mach/arch.h>
34 #include <asm/dma-iommu.h>
35 #include <asm/mach/map.h>
36 #include <asm/system_info.h>
37 #include <asm/dma-contiguous.h>
38 
39 #include "mm.h"
40 
41 /*
42  * The DMA API is built upon the notion of "buffer ownership".  A buffer
43  * is either exclusively owned by the CPU (and therefore may be accessed
44  * by it) or exclusively owned by the DMA device.  These helper functions
45  * represent the transitions between these two ownership states.
46  *
47  * Note, however, that on later ARMs, this notion does not work due to
48  * speculative prefetches.  We model our approach on the assumption that
49  * the CPU does do speculative prefetches, which means we clean caches
50  * before transfers and delay cache invalidation until transfer completion.
51  *
52  */
53 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
54 		size_t, enum dma_data_direction);
55 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
56 		size_t, enum dma_data_direction);
57 
58 /**
59  * arm_dma_map_page - map a portion of a page for streaming DMA
60  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
61  * @page: page that buffer resides in
62  * @offset: offset into page for start of buffer
63  * @size: size of buffer to map
64  * @dir: DMA transfer direction
65  *
66  * Ensure that any data held in the cache is appropriately discarded
67  * or written back.
68  *
69  * The device owns this memory once this call has completed.  The CPU
70  * can regain ownership by calling dma_unmap_page().
71  */
72 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
73 	     unsigned long offset, size_t size, enum dma_data_direction dir,
74 	     struct dma_attrs *attrs)
75 {
76 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
77 		__dma_page_cpu_to_dev(page, offset, size, dir);
78 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
79 }
80 
81 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
82 	     unsigned long offset, size_t size, enum dma_data_direction dir,
83 	     struct dma_attrs *attrs)
84 {
85 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
86 }
87 
88 /**
89  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
90  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
91  * @handle: DMA address of buffer
92  * @size: size of buffer (same as passed to dma_map_page)
93  * @dir: DMA transfer direction (same as passed to dma_map_page)
94  *
95  * Unmap a page streaming mode DMA translation.  The handle and size
96  * must match what was provided in the previous dma_map_page() call.
97  * All other usages are undefined.
98  *
99  * After this call, reads by the CPU to the buffer are guaranteed to see
100  * whatever the device wrote there.
101  */
102 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
103 		size_t size, enum dma_data_direction dir,
104 		struct dma_attrs *attrs)
105 {
106 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
107 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
108 				      handle & ~PAGE_MASK, size, dir);
109 }
110 
111 static void arm_dma_sync_single_for_cpu(struct device *dev,
112 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
113 {
114 	unsigned int offset = handle & (PAGE_SIZE - 1);
115 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
116 	__dma_page_dev_to_cpu(page, offset, size, dir);
117 }
118 
119 static void arm_dma_sync_single_for_device(struct device *dev,
120 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
121 {
122 	unsigned int offset = handle & (PAGE_SIZE - 1);
123 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
124 	__dma_page_cpu_to_dev(page, offset, size, dir);
125 }
126 
127 struct dma_map_ops arm_dma_ops = {
128 	.alloc			= arm_dma_alloc,
129 	.free			= arm_dma_free,
130 	.mmap			= arm_dma_mmap,
131 	.get_sgtable		= arm_dma_get_sgtable,
132 	.map_page		= arm_dma_map_page,
133 	.unmap_page		= arm_dma_unmap_page,
134 	.map_sg			= arm_dma_map_sg,
135 	.unmap_sg		= arm_dma_unmap_sg,
136 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
137 	.sync_single_for_device	= arm_dma_sync_single_for_device,
138 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
139 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
140 	.set_dma_mask		= arm_dma_set_mask,
141 };
142 EXPORT_SYMBOL(arm_dma_ops);
143 
144 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
145 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
146 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
147 				  dma_addr_t handle, struct dma_attrs *attrs);
148 
149 struct dma_map_ops arm_coherent_dma_ops = {
150 	.alloc			= arm_coherent_dma_alloc,
151 	.free			= arm_coherent_dma_free,
152 	.mmap			= arm_dma_mmap,
153 	.get_sgtable		= arm_dma_get_sgtable,
154 	.map_page		= arm_coherent_dma_map_page,
155 	.map_sg			= arm_dma_map_sg,
156 	.set_dma_mask		= arm_dma_set_mask,
157 };
158 EXPORT_SYMBOL(arm_coherent_dma_ops);
159 
160 static u64 get_coherent_dma_mask(struct device *dev)
161 {
162 	u64 mask = (u64)arm_dma_limit;
163 
164 	if (dev) {
165 		mask = dev->coherent_dma_mask;
166 
167 		/*
168 		 * Sanity check the DMA mask - it must be non-zero, and
169 		 * must be able to be satisfied by a DMA allocation.
170 		 */
171 		if (mask == 0) {
172 			dev_warn(dev, "coherent DMA mask is unset\n");
173 			return 0;
174 		}
175 
176 		if ((~mask) & (u64)arm_dma_limit) {
177 			dev_warn(dev, "coherent DMA mask %#llx is smaller "
178 				 "than system GFP_DMA mask %#llx\n",
179 				 mask, (u64)arm_dma_limit);
180 			return 0;
181 		}
182 	}
183 
184 	return mask;
185 }
186 
187 static void __dma_clear_buffer(struct page *page, size_t size)
188 {
189 	void *ptr;
190 	/*
191 	 * Ensure that the allocated pages are zeroed, and that any data
192 	 * lurking in the kernel direct-mapped region is invalidated.
193 	 */
194 	ptr = page_address(page);
195 	if (ptr) {
196 		memset(ptr, 0, size);
197 		dmac_flush_range(ptr, ptr + size);
198 		outer_flush_range(__pa(ptr), __pa(ptr) + size);
199 	}
200 }
201 
202 /*
203  * Allocate a DMA buffer for 'dev' of size 'size' using the
204  * specified gfp mask.  Note that 'size' must be page aligned.
205  */
206 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
207 {
208 	unsigned long order = get_order(size);
209 	struct page *page, *p, *e;
210 
211 	page = alloc_pages(gfp, order);
212 	if (!page)
213 		return NULL;
214 
215 	/*
216 	 * Now split the huge page and free the excess pages
217 	 */
218 	split_page(page, order);
219 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
220 		__free_page(p);
221 
222 	__dma_clear_buffer(page, size);
223 
224 	return page;
225 }
226 
227 /*
228  * Free a DMA buffer.  'size' must be page aligned.
229  */
230 static void __dma_free_buffer(struct page *page, size_t size)
231 {
232 	struct page *e = page + (size >> PAGE_SHIFT);
233 
234 	while (page < e) {
235 		__free_page(page);
236 		page++;
237 	}
238 }
239 
240 #ifdef CONFIG_MMU
241 #ifdef CONFIG_HUGETLB_PAGE
242 #error ARM Coherent DMA allocator does not (yet) support huge TLB
243 #endif
244 
245 static void *__alloc_from_contiguous(struct device *dev, size_t size,
246 				     pgprot_t prot, struct page **ret_page);
247 
248 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
249 				 pgprot_t prot, struct page **ret_page,
250 				 const void *caller);
251 
252 static void *
253 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
254 	const void *caller)
255 {
256 	struct vm_struct *area;
257 	unsigned long addr;
258 
259 	/*
260 	 * DMA allocation can be mapped to user space, so lets
261 	 * set VM_USERMAP flags too.
262 	 */
263 	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
264 				  caller);
265 	if (!area)
266 		return NULL;
267 	addr = (unsigned long)area->addr;
268 	area->phys_addr = __pfn_to_phys(page_to_pfn(page));
269 
270 	if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
271 		vunmap((void *)addr);
272 		return NULL;
273 	}
274 	return (void *)addr;
275 }
276 
277 static void __dma_free_remap(void *cpu_addr, size_t size)
278 {
279 	unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
280 	struct vm_struct *area = find_vm_area(cpu_addr);
281 	if (!area || (area->flags & flags) != flags) {
282 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
283 		return;
284 	}
285 	unmap_kernel_range((unsigned long)cpu_addr, size);
286 	vunmap(cpu_addr);
287 }
288 
289 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
290 
291 struct dma_pool {
292 	size_t size;
293 	spinlock_t lock;
294 	unsigned long *bitmap;
295 	unsigned long nr_pages;
296 	void *vaddr;
297 	struct page **pages;
298 };
299 
300 static struct dma_pool atomic_pool = {
301 	.size = DEFAULT_DMA_COHERENT_POOL_SIZE,
302 };
303 
304 static int __init early_coherent_pool(char *p)
305 {
306 	atomic_pool.size = memparse(p, &p);
307 	return 0;
308 }
309 early_param("coherent_pool", early_coherent_pool);
310 
311 void __init init_dma_coherent_pool_size(unsigned long size)
312 {
313 	/*
314 	 * Catch any attempt to set the pool size too late.
315 	 */
316 	BUG_ON(atomic_pool.vaddr);
317 
318 	/*
319 	 * Set architecture specific coherent pool size only if
320 	 * it has not been changed by kernel command line parameter.
321 	 */
322 	if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
323 		atomic_pool.size = size;
324 }
325 
326 /*
327  * Initialise the coherent pool for atomic allocations.
328  */
329 static int __init atomic_pool_init(void)
330 {
331 	struct dma_pool *pool = &atomic_pool;
332 	pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
333 	unsigned long nr_pages = pool->size >> PAGE_SHIFT;
334 	unsigned long *bitmap;
335 	struct page *page;
336 	struct page **pages;
337 	void *ptr;
338 	int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
339 
340 	bitmap = kzalloc(bitmap_size, GFP_KERNEL);
341 	if (!bitmap)
342 		goto no_bitmap;
343 
344 	pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
345 	if (!pages)
346 		goto no_pages;
347 
348 	if (IS_ENABLED(CONFIG_CMA))
349 		ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page);
350 	else
351 		ptr = __alloc_remap_buffer(NULL, pool->size, GFP_KERNEL, prot,
352 					   &page, NULL);
353 	if (ptr) {
354 		int i;
355 
356 		for (i = 0; i < nr_pages; i++)
357 			pages[i] = page + i;
358 
359 		spin_lock_init(&pool->lock);
360 		pool->vaddr = ptr;
361 		pool->pages = pages;
362 		pool->bitmap = bitmap;
363 		pool->nr_pages = nr_pages;
364 		pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
365 		       (unsigned)pool->size / 1024);
366 		return 0;
367 	}
368 
369 	kfree(pages);
370 no_pages:
371 	kfree(bitmap);
372 no_bitmap:
373 	pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
374 	       (unsigned)pool->size / 1024);
375 	return -ENOMEM;
376 }
377 /*
378  * CMA is activated by core_initcall, so we must be called after it.
379  */
380 postcore_initcall(atomic_pool_init);
381 
382 struct dma_contig_early_reserve {
383 	phys_addr_t base;
384 	unsigned long size;
385 };
386 
387 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
388 
389 static int dma_mmu_remap_num __initdata;
390 
391 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
392 {
393 	dma_mmu_remap[dma_mmu_remap_num].base = base;
394 	dma_mmu_remap[dma_mmu_remap_num].size = size;
395 	dma_mmu_remap_num++;
396 }
397 
398 void __init dma_contiguous_remap(void)
399 {
400 	int i;
401 	for (i = 0; i < dma_mmu_remap_num; i++) {
402 		phys_addr_t start = dma_mmu_remap[i].base;
403 		phys_addr_t end = start + dma_mmu_remap[i].size;
404 		struct map_desc map;
405 		unsigned long addr;
406 
407 		if (end > arm_lowmem_limit)
408 			end = arm_lowmem_limit;
409 		if (start >= end)
410 			continue;
411 
412 		map.pfn = __phys_to_pfn(start);
413 		map.virtual = __phys_to_virt(start);
414 		map.length = end - start;
415 		map.type = MT_MEMORY_DMA_READY;
416 
417 		/*
418 		 * Clear previous low-memory mapping
419 		 */
420 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
421 		     addr += PMD_SIZE)
422 			pmd_clear(pmd_off_k(addr));
423 
424 		iotable_init(&map, 1);
425 	}
426 }
427 
428 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
429 			    void *data)
430 {
431 	struct page *page = virt_to_page(addr);
432 	pgprot_t prot = *(pgprot_t *)data;
433 
434 	set_pte_ext(pte, mk_pte(page, prot), 0);
435 	return 0;
436 }
437 
438 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
439 {
440 	unsigned long start = (unsigned long) page_address(page);
441 	unsigned end = start + size;
442 
443 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
444 	dsb();
445 	flush_tlb_kernel_range(start, end);
446 }
447 
448 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
449 				 pgprot_t prot, struct page **ret_page,
450 				 const void *caller)
451 {
452 	struct page *page;
453 	void *ptr;
454 	page = __dma_alloc_buffer(dev, size, gfp);
455 	if (!page)
456 		return NULL;
457 
458 	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
459 	if (!ptr) {
460 		__dma_free_buffer(page, size);
461 		return NULL;
462 	}
463 
464 	*ret_page = page;
465 	return ptr;
466 }
467 
468 static void *__alloc_from_pool(size_t size, struct page **ret_page)
469 {
470 	struct dma_pool *pool = &atomic_pool;
471 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
472 	unsigned int pageno;
473 	unsigned long flags;
474 	void *ptr = NULL;
475 	unsigned long align_mask;
476 
477 	if (!pool->vaddr) {
478 		WARN(1, "coherent pool not initialised!\n");
479 		return NULL;
480 	}
481 
482 	/*
483 	 * Align the region allocation - allocations from pool are rather
484 	 * small, so align them to their order in pages, minimum is a page
485 	 * size. This helps reduce fragmentation of the DMA space.
486 	 */
487 	align_mask = (1 << get_order(size)) - 1;
488 
489 	spin_lock_irqsave(&pool->lock, flags);
490 	pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
491 					    0, count, align_mask);
492 	if (pageno < pool->nr_pages) {
493 		bitmap_set(pool->bitmap, pageno, count);
494 		ptr = pool->vaddr + PAGE_SIZE * pageno;
495 		*ret_page = pool->pages[pageno];
496 	} else {
497 		pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
498 			    "Please increase it with coherent_pool= kernel parameter!\n",
499 			    (unsigned)pool->size / 1024);
500 	}
501 	spin_unlock_irqrestore(&pool->lock, flags);
502 
503 	return ptr;
504 }
505 
506 static bool __in_atomic_pool(void *start, size_t size)
507 {
508 	struct dma_pool *pool = &atomic_pool;
509 	void *end = start + size;
510 	void *pool_start = pool->vaddr;
511 	void *pool_end = pool->vaddr + pool->size;
512 
513 	if (start < pool_start || start >= pool_end)
514 		return false;
515 
516 	if (end <= pool_end)
517 		return true;
518 
519 	WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
520 	     start, end - 1, pool_start, pool_end - 1);
521 
522 	return false;
523 }
524 
525 static int __free_from_pool(void *start, size_t size)
526 {
527 	struct dma_pool *pool = &atomic_pool;
528 	unsigned long pageno, count;
529 	unsigned long flags;
530 
531 	if (!__in_atomic_pool(start, size))
532 		return 0;
533 
534 	pageno = (start - pool->vaddr) >> PAGE_SHIFT;
535 	count = size >> PAGE_SHIFT;
536 
537 	spin_lock_irqsave(&pool->lock, flags);
538 	bitmap_clear(pool->bitmap, pageno, count);
539 	spin_unlock_irqrestore(&pool->lock, flags);
540 
541 	return 1;
542 }
543 
544 static void *__alloc_from_contiguous(struct device *dev, size_t size,
545 				     pgprot_t prot, struct page **ret_page)
546 {
547 	unsigned long order = get_order(size);
548 	size_t count = size >> PAGE_SHIFT;
549 	struct page *page;
550 
551 	page = dma_alloc_from_contiguous(dev, count, order);
552 	if (!page)
553 		return NULL;
554 
555 	__dma_clear_buffer(page, size);
556 	__dma_remap(page, size, prot);
557 
558 	*ret_page = page;
559 	return page_address(page);
560 }
561 
562 static void __free_from_contiguous(struct device *dev, struct page *page,
563 				   size_t size)
564 {
565 	__dma_remap(page, size, pgprot_kernel);
566 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
567 }
568 
569 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
570 {
571 	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
572 			    pgprot_writecombine(prot) :
573 			    pgprot_dmacoherent(prot);
574 	return prot;
575 }
576 
577 #define nommu() 0
578 
579 #else	/* !CONFIG_MMU */
580 
581 #define nommu() 1
582 
583 #define __get_dma_pgprot(attrs, prot)	__pgprot(0)
584 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)	NULL
585 #define __alloc_from_pool(size, ret_page)			NULL
586 #define __alloc_from_contiguous(dev, size, prot, ret)		NULL
587 #define __free_from_pool(cpu_addr, size)			0
588 #define __free_from_contiguous(dev, page, size)			do { } while (0)
589 #define __dma_free_remap(cpu_addr, size)			do { } while (0)
590 
591 #endif	/* CONFIG_MMU */
592 
593 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
594 				   struct page **ret_page)
595 {
596 	struct page *page;
597 	page = __dma_alloc_buffer(dev, size, gfp);
598 	if (!page)
599 		return NULL;
600 
601 	*ret_page = page;
602 	return page_address(page);
603 }
604 
605 
606 
607 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
608 			 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
609 {
610 	u64 mask = get_coherent_dma_mask(dev);
611 	struct page *page = NULL;
612 	void *addr;
613 
614 #ifdef CONFIG_DMA_API_DEBUG
615 	u64 limit = (mask + 1) & ~mask;
616 	if (limit && size >= limit) {
617 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
618 			size, mask);
619 		return NULL;
620 	}
621 #endif
622 
623 	if (!mask)
624 		return NULL;
625 
626 	if (mask < 0xffffffffULL)
627 		gfp |= GFP_DMA;
628 
629 	/*
630 	 * Following is a work-around (a.k.a. hack) to prevent pages
631 	 * with __GFP_COMP being passed to split_page() which cannot
632 	 * handle them.  The real problem is that this flag probably
633 	 * should be 0 on ARM as it is not supported on this
634 	 * platform; see CONFIG_HUGETLBFS.
635 	 */
636 	gfp &= ~(__GFP_COMP);
637 
638 	*handle = DMA_ERROR_CODE;
639 	size = PAGE_ALIGN(size);
640 
641 	if (is_coherent || nommu())
642 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
643 	else if (!(gfp & __GFP_WAIT))
644 		addr = __alloc_from_pool(size, &page);
645 	else if (!IS_ENABLED(CONFIG_CMA))
646 		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
647 	else
648 		addr = __alloc_from_contiguous(dev, size, prot, &page);
649 
650 	if (addr)
651 		*handle = pfn_to_dma(dev, page_to_pfn(page));
652 
653 	return addr;
654 }
655 
656 /*
657  * Allocate DMA-coherent memory space and return both the kernel remapped
658  * virtual and bus address for that space.
659  */
660 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
661 		    gfp_t gfp, struct dma_attrs *attrs)
662 {
663 	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
664 	void *memory;
665 
666 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
667 		return memory;
668 
669 	return __dma_alloc(dev, size, handle, gfp, prot, false,
670 			   __builtin_return_address(0));
671 }
672 
673 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
674 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
675 {
676 	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
677 	void *memory;
678 
679 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
680 		return memory;
681 
682 	return __dma_alloc(dev, size, handle, gfp, prot, true,
683 			   __builtin_return_address(0));
684 }
685 
686 /*
687  * Create userspace mapping for the DMA-coherent memory.
688  */
689 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
690 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
691 		 struct dma_attrs *attrs)
692 {
693 	int ret = -ENXIO;
694 #ifdef CONFIG_MMU
695 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
696 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
697 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
698 	unsigned long off = vma->vm_pgoff;
699 
700 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
701 
702 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
703 		return ret;
704 
705 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
706 		ret = remap_pfn_range(vma, vma->vm_start,
707 				      pfn + off,
708 				      vma->vm_end - vma->vm_start,
709 				      vma->vm_page_prot);
710 	}
711 #endif	/* CONFIG_MMU */
712 
713 	return ret;
714 }
715 
716 /*
717  * Free a buffer as defined by the above mapping.
718  */
719 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
720 			   dma_addr_t handle, struct dma_attrs *attrs,
721 			   bool is_coherent)
722 {
723 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
724 
725 	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
726 		return;
727 
728 	size = PAGE_ALIGN(size);
729 
730 	if (is_coherent || nommu()) {
731 		__dma_free_buffer(page, size);
732 	} else if (__free_from_pool(cpu_addr, size)) {
733 		return;
734 	} else if (!IS_ENABLED(CONFIG_CMA)) {
735 		__dma_free_remap(cpu_addr, size);
736 		__dma_free_buffer(page, size);
737 	} else {
738 		/*
739 		 * Non-atomic allocations cannot be freed with IRQs disabled
740 		 */
741 		WARN_ON(irqs_disabled());
742 		__free_from_contiguous(dev, page, size);
743 	}
744 }
745 
746 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
747 		  dma_addr_t handle, struct dma_attrs *attrs)
748 {
749 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
750 }
751 
752 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
753 				  dma_addr_t handle, struct dma_attrs *attrs)
754 {
755 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
756 }
757 
758 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
759 		 void *cpu_addr, dma_addr_t handle, size_t size,
760 		 struct dma_attrs *attrs)
761 {
762 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
763 	int ret;
764 
765 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
766 	if (unlikely(ret))
767 		return ret;
768 
769 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
770 	return 0;
771 }
772 
773 static void dma_cache_maint_page(struct page *page, unsigned long offset,
774 	size_t size, enum dma_data_direction dir,
775 	void (*op)(const void *, size_t, int))
776 {
777 	unsigned long pfn;
778 	size_t left = size;
779 
780 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
781 	offset %= PAGE_SIZE;
782 
783 	/*
784 	 * A single sg entry may refer to multiple physically contiguous
785 	 * pages.  But we still need to process highmem pages individually.
786 	 * If highmem is not configured then the bulk of this loop gets
787 	 * optimized out.
788 	 */
789 	do {
790 		size_t len = left;
791 		void *vaddr;
792 
793 		page = pfn_to_page(pfn);
794 
795 		if (PageHighMem(page)) {
796 			if (len + offset > PAGE_SIZE)
797 				len = PAGE_SIZE - offset;
798 			vaddr = kmap_high_get(page);
799 			if (vaddr) {
800 				vaddr += offset;
801 				op(vaddr, len, dir);
802 				kunmap_high(page);
803 			} else if (cache_is_vipt()) {
804 				/* unmapped pages might still be cached */
805 				vaddr = kmap_atomic(page);
806 				op(vaddr + offset, len, dir);
807 				kunmap_atomic(vaddr);
808 			}
809 		} else {
810 			vaddr = page_address(page) + offset;
811 			op(vaddr, len, dir);
812 		}
813 		offset = 0;
814 		pfn++;
815 		left -= len;
816 	} while (left);
817 }
818 
819 /*
820  * Make an area consistent for devices.
821  * Note: Drivers should NOT use this function directly, as it will break
822  * platforms with CONFIG_DMABOUNCE.
823  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
824  */
825 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
826 	size_t size, enum dma_data_direction dir)
827 {
828 	unsigned long paddr;
829 
830 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
831 
832 	paddr = page_to_phys(page) + off;
833 	if (dir == DMA_FROM_DEVICE) {
834 		outer_inv_range(paddr, paddr + size);
835 	} else {
836 		outer_clean_range(paddr, paddr + size);
837 	}
838 	/* FIXME: non-speculating: flush on bidirectional mappings? */
839 }
840 
841 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
842 	size_t size, enum dma_data_direction dir)
843 {
844 	unsigned long paddr = page_to_phys(page) + off;
845 
846 	/* FIXME: non-speculating: not required */
847 	/* don't bother invalidating if DMA to device */
848 	if (dir != DMA_TO_DEVICE)
849 		outer_inv_range(paddr, paddr + size);
850 
851 	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
852 
853 	/*
854 	 * Mark the D-cache clean for this page to avoid extra flushing.
855 	 */
856 	if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
857 		set_bit(PG_dcache_clean, &page->flags);
858 }
859 
860 /**
861  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
862  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
863  * @sg: list of buffers
864  * @nents: number of buffers to map
865  * @dir: DMA transfer direction
866  *
867  * Map a set of buffers described by scatterlist in streaming mode for DMA.
868  * This is the scatter-gather version of the dma_map_single interface.
869  * Here the scatter gather list elements are each tagged with the
870  * appropriate dma address and length.  They are obtained via
871  * sg_dma_{address,length}.
872  *
873  * Device ownership issues as mentioned for dma_map_single are the same
874  * here.
875  */
876 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
877 		enum dma_data_direction dir, struct dma_attrs *attrs)
878 {
879 	struct dma_map_ops *ops = get_dma_ops(dev);
880 	struct scatterlist *s;
881 	int i, j;
882 
883 	for_each_sg(sg, s, nents, i) {
884 #ifdef CONFIG_NEED_SG_DMA_LENGTH
885 		s->dma_length = s->length;
886 #endif
887 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
888 						s->length, dir, attrs);
889 		if (dma_mapping_error(dev, s->dma_address))
890 			goto bad_mapping;
891 	}
892 	return nents;
893 
894  bad_mapping:
895 	for_each_sg(sg, s, i, j)
896 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
897 	return 0;
898 }
899 
900 /**
901  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
902  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
903  * @sg: list of buffers
904  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
905  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
906  *
907  * Unmap a set of streaming mode DMA translations.  Again, CPU access
908  * rules concerning calls here are the same as for dma_unmap_single().
909  */
910 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
911 		enum dma_data_direction dir, struct dma_attrs *attrs)
912 {
913 	struct dma_map_ops *ops = get_dma_ops(dev);
914 	struct scatterlist *s;
915 
916 	int i;
917 
918 	for_each_sg(sg, s, nents, i)
919 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
920 }
921 
922 /**
923  * arm_dma_sync_sg_for_cpu
924  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
925  * @sg: list of buffers
926  * @nents: number of buffers to map (returned from dma_map_sg)
927  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
928  */
929 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
930 			int nents, enum dma_data_direction dir)
931 {
932 	struct dma_map_ops *ops = get_dma_ops(dev);
933 	struct scatterlist *s;
934 	int i;
935 
936 	for_each_sg(sg, s, nents, i)
937 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
938 					 dir);
939 }
940 
941 /**
942  * arm_dma_sync_sg_for_device
943  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
944  * @sg: list of buffers
945  * @nents: number of buffers to map (returned from dma_map_sg)
946  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
947  */
948 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
949 			int nents, enum dma_data_direction dir)
950 {
951 	struct dma_map_ops *ops = get_dma_ops(dev);
952 	struct scatterlist *s;
953 	int i;
954 
955 	for_each_sg(sg, s, nents, i)
956 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
957 					    dir);
958 }
959 
960 /*
961  * Return whether the given device DMA address mask can be supported
962  * properly.  For example, if your device can only drive the low 24-bits
963  * during bus mastering, then you would pass 0x00ffffff as the mask
964  * to this function.
965  */
966 int dma_supported(struct device *dev, u64 mask)
967 {
968 	if (mask < (u64)arm_dma_limit)
969 		return 0;
970 	return 1;
971 }
972 EXPORT_SYMBOL(dma_supported);
973 
974 int arm_dma_set_mask(struct device *dev, u64 dma_mask)
975 {
976 	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
977 		return -EIO;
978 
979 	*dev->dma_mask = dma_mask;
980 
981 	return 0;
982 }
983 
984 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
985 
986 static int __init dma_debug_do_init(void)
987 {
988 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
989 	return 0;
990 }
991 fs_initcall(dma_debug_do_init);
992 
993 #ifdef CONFIG_ARM_DMA_USE_IOMMU
994 
995 /* IOMMU */
996 
997 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
998 				      size_t size)
999 {
1000 	unsigned int order = get_order(size);
1001 	unsigned int align = 0;
1002 	unsigned int count, start;
1003 	unsigned long flags;
1004 
1005 	count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
1006 		 (1 << mapping->order) - 1) >> mapping->order;
1007 
1008 	if (order > mapping->order)
1009 		align = (1 << (order - mapping->order)) - 1;
1010 
1011 	spin_lock_irqsave(&mapping->lock, flags);
1012 	start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
1013 					   count, align);
1014 	if (start > mapping->bits) {
1015 		spin_unlock_irqrestore(&mapping->lock, flags);
1016 		return DMA_ERROR_CODE;
1017 	}
1018 
1019 	bitmap_set(mapping->bitmap, start, count);
1020 	spin_unlock_irqrestore(&mapping->lock, flags);
1021 
1022 	return mapping->base + (start << (mapping->order + PAGE_SHIFT));
1023 }
1024 
1025 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1026 			       dma_addr_t addr, size_t size)
1027 {
1028 	unsigned int start = (addr - mapping->base) >>
1029 			     (mapping->order + PAGE_SHIFT);
1030 	unsigned int count = ((size >> PAGE_SHIFT) +
1031 			      (1 << mapping->order) - 1) >> mapping->order;
1032 	unsigned long flags;
1033 
1034 	spin_lock_irqsave(&mapping->lock, flags);
1035 	bitmap_clear(mapping->bitmap, start, count);
1036 	spin_unlock_irqrestore(&mapping->lock, flags);
1037 }
1038 
1039 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1040 					  gfp_t gfp, struct dma_attrs *attrs)
1041 {
1042 	struct page **pages;
1043 	int count = size >> PAGE_SHIFT;
1044 	int array_size = count * sizeof(struct page *);
1045 	int i = 0;
1046 
1047 	if (array_size <= PAGE_SIZE)
1048 		pages = kzalloc(array_size, gfp);
1049 	else
1050 		pages = vzalloc(array_size);
1051 	if (!pages)
1052 		return NULL;
1053 
1054 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1055 	{
1056 		unsigned long order = get_order(size);
1057 		struct page *page;
1058 
1059 		page = dma_alloc_from_contiguous(dev, count, order);
1060 		if (!page)
1061 			goto error;
1062 
1063 		__dma_clear_buffer(page, size);
1064 
1065 		for (i = 0; i < count; i++)
1066 			pages[i] = page + i;
1067 
1068 		return pages;
1069 	}
1070 
1071 	while (count) {
1072 		int j, order = __fls(count);
1073 
1074 		pages[i] = alloc_pages(gfp | __GFP_NOWARN, order);
1075 		while (!pages[i] && order)
1076 			pages[i] = alloc_pages(gfp | __GFP_NOWARN, --order);
1077 		if (!pages[i])
1078 			goto error;
1079 
1080 		if (order) {
1081 			split_page(pages[i], order);
1082 			j = 1 << order;
1083 			while (--j)
1084 				pages[i + j] = pages[i] + j;
1085 		}
1086 
1087 		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
1088 		i += 1 << order;
1089 		count -= 1 << order;
1090 	}
1091 
1092 	return pages;
1093 error:
1094 	while (i--)
1095 		if (pages[i])
1096 			__free_pages(pages[i], 0);
1097 	if (array_size <= PAGE_SIZE)
1098 		kfree(pages);
1099 	else
1100 		vfree(pages);
1101 	return NULL;
1102 }
1103 
1104 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1105 			       size_t size, struct dma_attrs *attrs)
1106 {
1107 	int count = size >> PAGE_SHIFT;
1108 	int array_size = count * sizeof(struct page *);
1109 	int i;
1110 
1111 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1112 		dma_release_from_contiguous(dev, pages[0], count);
1113 	} else {
1114 		for (i = 0; i < count; i++)
1115 			if (pages[i])
1116 				__free_pages(pages[i], 0);
1117 	}
1118 
1119 	if (array_size <= PAGE_SIZE)
1120 		kfree(pages);
1121 	else
1122 		vfree(pages);
1123 	return 0;
1124 }
1125 
1126 /*
1127  * Create a CPU mapping for a specified pages
1128  */
1129 static void *
1130 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1131 		    const void *caller)
1132 {
1133 	unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1134 	struct vm_struct *area;
1135 	unsigned long p;
1136 
1137 	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1138 				  caller);
1139 	if (!area)
1140 		return NULL;
1141 
1142 	area->pages = pages;
1143 	area->nr_pages = nr_pages;
1144 	p = (unsigned long)area->addr;
1145 
1146 	for (i = 0; i < nr_pages; i++) {
1147 		phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1148 		if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1149 			goto err;
1150 		p += PAGE_SIZE;
1151 	}
1152 	return area->addr;
1153 err:
1154 	unmap_kernel_range((unsigned long)area->addr, size);
1155 	vunmap(area->addr);
1156 	return NULL;
1157 }
1158 
1159 /*
1160  * Create a mapping in device IO address space for specified pages
1161  */
1162 static dma_addr_t
1163 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1164 {
1165 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1166 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1167 	dma_addr_t dma_addr, iova;
1168 	int i, ret = DMA_ERROR_CODE;
1169 
1170 	dma_addr = __alloc_iova(mapping, size);
1171 	if (dma_addr == DMA_ERROR_CODE)
1172 		return dma_addr;
1173 
1174 	iova = dma_addr;
1175 	for (i = 0; i < count; ) {
1176 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1177 		phys_addr_t phys = page_to_phys(pages[i]);
1178 		unsigned int len, j;
1179 
1180 		for (j = i + 1; j < count; j++, next_pfn++)
1181 			if (page_to_pfn(pages[j]) != next_pfn)
1182 				break;
1183 
1184 		len = (j - i) << PAGE_SHIFT;
1185 		ret = iommu_map(mapping->domain, iova, phys, len, 0);
1186 		if (ret < 0)
1187 			goto fail;
1188 		iova += len;
1189 		i = j;
1190 	}
1191 	return dma_addr;
1192 fail:
1193 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1194 	__free_iova(mapping, dma_addr, size);
1195 	return DMA_ERROR_CODE;
1196 }
1197 
1198 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1199 {
1200 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1201 
1202 	/*
1203 	 * add optional in-page offset from iova to size and align
1204 	 * result to page size
1205 	 */
1206 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1207 	iova &= PAGE_MASK;
1208 
1209 	iommu_unmap(mapping->domain, iova, size);
1210 	__free_iova(mapping, iova, size);
1211 	return 0;
1212 }
1213 
1214 static struct page **__atomic_get_pages(void *addr)
1215 {
1216 	struct dma_pool *pool = &atomic_pool;
1217 	struct page **pages = pool->pages;
1218 	int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
1219 
1220 	return pages + offs;
1221 }
1222 
1223 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1224 {
1225 	struct vm_struct *area;
1226 
1227 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1228 		return __atomic_get_pages(cpu_addr);
1229 
1230 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1231 		return cpu_addr;
1232 
1233 	area = find_vm_area(cpu_addr);
1234 	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1235 		return area->pages;
1236 	return NULL;
1237 }
1238 
1239 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1240 				  dma_addr_t *handle)
1241 {
1242 	struct page *page;
1243 	void *addr;
1244 
1245 	addr = __alloc_from_pool(size, &page);
1246 	if (!addr)
1247 		return NULL;
1248 
1249 	*handle = __iommu_create_mapping(dev, &page, size);
1250 	if (*handle == DMA_ERROR_CODE)
1251 		goto err_mapping;
1252 
1253 	return addr;
1254 
1255 err_mapping:
1256 	__free_from_pool(addr, size);
1257 	return NULL;
1258 }
1259 
1260 static void __iommu_free_atomic(struct device *dev, struct page **pages,
1261 				dma_addr_t handle, size_t size)
1262 {
1263 	__iommu_remove_mapping(dev, handle, size);
1264 	__free_from_pool(page_address(pages[0]), size);
1265 }
1266 
1267 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1268 	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1269 {
1270 	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1271 	struct page **pages;
1272 	void *addr = NULL;
1273 
1274 	*handle = DMA_ERROR_CODE;
1275 	size = PAGE_ALIGN(size);
1276 
1277 	if (gfp & GFP_ATOMIC)
1278 		return __iommu_alloc_atomic(dev, size, handle);
1279 
1280 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1281 	if (!pages)
1282 		return NULL;
1283 
1284 	*handle = __iommu_create_mapping(dev, pages, size);
1285 	if (*handle == DMA_ERROR_CODE)
1286 		goto err_buffer;
1287 
1288 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1289 		return pages;
1290 
1291 	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1292 				   __builtin_return_address(0));
1293 	if (!addr)
1294 		goto err_mapping;
1295 
1296 	return addr;
1297 
1298 err_mapping:
1299 	__iommu_remove_mapping(dev, *handle, size);
1300 err_buffer:
1301 	__iommu_free_buffer(dev, pages, size, attrs);
1302 	return NULL;
1303 }
1304 
1305 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1306 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1307 		    struct dma_attrs *attrs)
1308 {
1309 	unsigned long uaddr = vma->vm_start;
1310 	unsigned long usize = vma->vm_end - vma->vm_start;
1311 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1312 
1313 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1314 
1315 	if (!pages)
1316 		return -ENXIO;
1317 
1318 	do {
1319 		int ret = vm_insert_page(vma, uaddr, *pages++);
1320 		if (ret) {
1321 			pr_err("Remapping memory failed: %d\n", ret);
1322 			return ret;
1323 		}
1324 		uaddr += PAGE_SIZE;
1325 		usize -= PAGE_SIZE;
1326 	} while (usize > 0);
1327 
1328 	return 0;
1329 }
1330 
1331 /*
1332  * free a page as defined by the above mapping.
1333  * Must not be called with IRQs disabled.
1334  */
1335 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1336 			  dma_addr_t handle, struct dma_attrs *attrs)
1337 {
1338 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1339 	size = PAGE_ALIGN(size);
1340 
1341 	if (!pages) {
1342 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1343 		return;
1344 	}
1345 
1346 	if (__in_atomic_pool(cpu_addr, size)) {
1347 		__iommu_free_atomic(dev, pages, handle, size);
1348 		return;
1349 	}
1350 
1351 	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1352 		unmap_kernel_range((unsigned long)cpu_addr, size);
1353 		vunmap(cpu_addr);
1354 	}
1355 
1356 	__iommu_remove_mapping(dev, handle, size);
1357 	__iommu_free_buffer(dev, pages, size, attrs);
1358 }
1359 
1360 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1361 				 void *cpu_addr, dma_addr_t dma_addr,
1362 				 size_t size, struct dma_attrs *attrs)
1363 {
1364 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1365 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1366 
1367 	if (!pages)
1368 		return -ENXIO;
1369 
1370 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1371 					 GFP_KERNEL);
1372 }
1373 
1374 /*
1375  * Map a part of the scatter-gather list into contiguous io address space
1376  */
1377 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1378 			  size_t size, dma_addr_t *handle,
1379 			  enum dma_data_direction dir, struct dma_attrs *attrs,
1380 			  bool is_coherent)
1381 {
1382 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1383 	dma_addr_t iova, iova_base;
1384 	int ret = 0;
1385 	unsigned int count;
1386 	struct scatterlist *s;
1387 
1388 	size = PAGE_ALIGN(size);
1389 	*handle = DMA_ERROR_CODE;
1390 
1391 	iova_base = iova = __alloc_iova(mapping, size);
1392 	if (iova == DMA_ERROR_CODE)
1393 		return -ENOMEM;
1394 
1395 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1396 		phys_addr_t phys = page_to_phys(sg_page(s));
1397 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1398 
1399 		if (!is_coherent &&
1400 			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1401 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1402 
1403 		ret = iommu_map(mapping->domain, iova, phys, len, 0);
1404 		if (ret < 0)
1405 			goto fail;
1406 		count += len >> PAGE_SHIFT;
1407 		iova += len;
1408 	}
1409 	*handle = iova_base;
1410 
1411 	return 0;
1412 fail:
1413 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1414 	__free_iova(mapping, iova_base, size);
1415 	return ret;
1416 }
1417 
1418 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1419 		     enum dma_data_direction dir, struct dma_attrs *attrs,
1420 		     bool is_coherent)
1421 {
1422 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1423 	int i, count = 0;
1424 	unsigned int offset = s->offset;
1425 	unsigned int size = s->offset + s->length;
1426 	unsigned int max = dma_get_max_seg_size(dev);
1427 
1428 	for (i = 1; i < nents; i++) {
1429 		s = sg_next(s);
1430 
1431 		s->dma_address = DMA_ERROR_CODE;
1432 		s->dma_length = 0;
1433 
1434 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1435 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1436 			    dir, attrs, is_coherent) < 0)
1437 				goto bad_mapping;
1438 
1439 			dma->dma_address += offset;
1440 			dma->dma_length = size - offset;
1441 
1442 			size = offset = s->offset;
1443 			start = s;
1444 			dma = sg_next(dma);
1445 			count += 1;
1446 		}
1447 		size += s->length;
1448 	}
1449 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1450 		is_coherent) < 0)
1451 		goto bad_mapping;
1452 
1453 	dma->dma_address += offset;
1454 	dma->dma_length = size - offset;
1455 
1456 	return count+1;
1457 
1458 bad_mapping:
1459 	for_each_sg(sg, s, count, i)
1460 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1461 	return 0;
1462 }
1463 
1464 /**
1465  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1466  * @dev: valid struct device pointer
1467  * @sg: list of buffers
1468  * @nents: number of buffers to map
1469  * @dir: DMA transfer direction
1470  *
1471  * Map a set of i/o coherent buffers described by scatterlist in streaming
1472  * mode for DMA. The scatter gather list elements are merged together (if
1473  * possible) and tagged with the appropriate dma address and length. They are
1474  * obtained via sg_dma_{address,length}.
1475  */
1476 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1477 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1478 {
1479 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1480 }
1481 
1482 /**
1483  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1484  * @dev: valid struct device pointer
1485  * @sg: list of buffers
1486  * @nents: number of buffers to map
1487  * @dir: DMA transfer direction
1488  *
1489  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1490  * The scatter gather list elements are merged together (if possible) and
1491  * tagged with the appropriate dma address and length. They are obtained via
1492  * sg_dma_{address,length}.
1493  */
1494 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1495 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1496 {
1497 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1498 }
1499 
1500 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1501 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1502 		bool is_coherent)
1503 {
1504 	struct scatterlist *s;
1505 	int i;
1506 
1507 	for_each_sg(sg, s, nents, i) {
1508 		if (sg_dma_len(s))
1509 			__iommu_remove_mapping(dev, sg_dma_address(s),
1510 					       sg_dma_len(s));
1511 		if (!is_coherent &&
1512 		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1513 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1514 					      s->length, dir);
1515 	}
1516 }
1517 
1518 /**
1519  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1520  * @dev: valid struct device pointer
1521  * @sg: list of buffers
1522  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1523  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1524  *
1525  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1526  * rules concerning calls here are the same as for dma_unmap_single().
1527  */
1528 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1529 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1530 {
1531 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1532 }
1533 
1534 /**
1535  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1536  * @dev: valid struct device pointer
1537  * @sg: list of buffers
1538  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1539  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1540  *
1541  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1542  * rules concerning calls here are the same as for dma_unmap_single().
1543  */
1544 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1545 			enum dma_data_direction dir, struct dma_attrs *attrs)
1546 {
1547 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1548 }
1549 
1550 /**
1551  * arm_iommu_sync_sg_for_cpu
1552  * @dev: valid struct device pointer
1553  * @sg: list of buffers
1554  * @nents: number of buffers to map (returned from dma_map_sg)
1555  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1556  */
1557 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1558 			int nents, enum dma_data_direction dir)
1559 {
1560 	struct scatterlist *s;
1561 	int i;
1562 
1563 	for_each_sg(sg, s, nents, i)
1564 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1565 
1566 }
1567 
1568 /**
1569  * arm_iommu_sync_sg_for_device
1570  * @dev: valid struct device pointer
1571  * @sg: list of buffers
1572  * @nents: number of buffers to map (returned from dma_map_sg)
1573  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1574  */
1575 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1576 			int nents, enum dma_data_direction dir)
1577 {
1578 	struct scatterlist *s;
1579 	int i;
1580 
1581 	for_each_sg(sg, s, nents, i)
1582 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1583 }
1584 
1585 
1586 /**
1587  * arm_coherent_iommu_map_page
1588  * @dev: valid struct device pointer
1589  * @page: page that buffer resides in
1590  * @offset: offset into page for start of buffer
1591  * @size: size of buffer to map
1592  * @dir: DMA transfer direction
1593  *
1594  * Coherent IOMMU aware version of arm_dma_map_page()
1595  */
1596 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1597 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1598 	     struct dma_attrs *attrs)
1599 {
1600 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1601 	dma_addr_t dma_addr;
1602 	int ret, len = PAGE_ALIGN(size + offset);
1603 
1604 	dma_addr = __alloc_iova(mapping, len);
1605 	if (dma_addr == DMA_ERROR_CODE)
1606 		return dma_addr;
1607 
1608 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0);
1609 	if (ret < 0)
1610 		goto fail;
1611 
1612 	return dma_addr + offset;
1613 fail:
1614 	__free_iova(mapping, dma_addr, len);
1615 	return DMA_ERROR_CODE;
1616 }
1617 
1618 /**
1619  * arm_iommu_map_page
1620  * @dev: valid struct device pointer
1621  * @page: page that buffer resides in
1622  * @offset: offset into page for start of buffer
1623  * @size: size of buffer to map
1624  * @dir: DMA transfer direction
1625  *
1626  * IOMMU aware version of arm_dma_map_page()
1627  */
1628 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1629 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1630 	     struct dma_attrs *attrs)
1631 {
1632 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1633 		__dma_page_cpu_to_dev(page, offset, size, dir);
1634 
1635 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1636 }
1637 
1638 /**
1639  * arm_coherent_iommu_unmap_page
1640  * @dev: valid struct device pointer
1641  * @handle: DMA address of buffer
1642  * @size: size of buffer (same as passed to dma_map_page)
1643  * @dir: DMA transfer direction (same as passed to dma_map_page)
1644  *
1645  * Coherent IOMMU aware version of arm_dma_unmap_page()
1646  */
1647 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1648 		size_t size, enum dma_data_direction dir,
1649 		struct dma_attrs *attrs)
1650 {
1651 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1652 	dma_addr_t iova = handle & PAGE_MASK;
1653 	int offset = handle & ~PAGE_MASK;
1654 	int len = PAGE_ALIGN(size + offset);
1655 
1656 	if (!iova)
1657 		return;
1658 
1659 	iommu_unmap(mapping->domain, iova, len);
1660 	__free_iova(mapping, iova, len);
1661 }
1662 
1663 /**
1664  * arm_iommu_unmap_page
1665  * @dev: valid struct device pointer
1666  * @handle: DMA address of buffer
1667  * @size: size of buffer (same as passed to dma_map_page)
1668  * @dir: DMA transfer direction (same as passed to dma_map_page)
1669  *
1670  * IOMMU aware version of arm_dma_unmap_page()
1671  */
1672 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1673 		size_t size, enum dma_data_direction dir,
1674 		struct dma_attrs *attrs)
1675 {
1676 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1677 	dma_addr_t iova = handle & PAGE_MASK;
1678 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1679 	int offset = handle & ~PAGE_MASK;
1680 	int len = PAGE_ALIGN(size + offset);
1681 
1682 	if (!iova)
1683 		return;
1684 
1685 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1686 		__dma_page_dev_to_cpu(page, offset, size, dir);
1687 
1688 	iommu_unmap(mapping->domain, iova, len);
1689 	__free_iova(mapping, iova, len);
1690 }
1691 
1692 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1693 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1694 {
1695 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1696 	dma_addr_t iova = handle & PAGE_MASK;
1697 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1698 	unsigned int offset = handle & ~PAGE_MASK;
1699 
1700 	if (!iova)
1701 		return;
1702 
1703 	__dma_page_dev_to_cpu(page, offset, size, dir);
1704 }
1705 
1706 static void arm_iommu_sync_single_for_device(struct device *dev,
1707 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1708 {
1709 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1710 	dma_addr_t iova = handle & PAGE_MASK;
1711 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1712 	unsigned int offset = handle & ~PAGE_MASK;
1713 
1714 	if (!iova)
1715 		return;
1716 
1717 	__dma_page_cpu_to_dev(page, offset, size, dir);
1718 }
1719 
1720 struct dma_map_ops iommu_ops = {
1721 	.alloc		= arm_iommu_alloc_attrs,
1722 	.free		= arm_iommu_free_attrs,
1723 	.mmap		= arm_iommu_mmap_attrs,
1724 	.get_sgtable	= arm_iommu_get_sgtable,
1725 
1726 	.map_page		= arm_iommu_map_page,
1727 	.unmap_page		= arm_iommu_unmap_page,
1728 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1729 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1730 
1731 	.map_sg			= arm_iommu_map_sg,
1732 	.unmap_sg		= arm_iommu_unmap_sg,
1733 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1734 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1735 };
1736 
1737 struct dma_map_ops iommu_coherent_ops = {
1738 	.alloc		= arm_iommu_alloc_attrs,
1739 	.free		= arm_iommu_free_attrs,
1740 	.mmap		= arm_iommu_mmap_attrs,
1741 	.get_sgtable	= arm_iommu_get_sgtable,
1742 
1743 	.map_page	= arm_coherent_iommu_map_page,
1744 	.unmap_page	= arm_coherent_iommu_unmap_page,
1745 
1746 	.map_sg		= arm_coherent_iommu_map_sg,
1747 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
1748 };
1749 
1750 /**
1751  * arm_iommu_create_mapping
1752  * @bus: pointer to the bus holding the client device (for IOMMU calls)
1753  * @base: start address of the valid IO address space
1754  * @size: size of the valid IO address space
1755  * @order: accuracy of the IO addresses allocations
1756  *
1757  * Creates a mapping structure which holds information about used/unused
1758  * IO address ranges, which is required to perform memory allocation and
1759  * mapping with IOMMU aware functions.
1760  *
1761  * The client device need to be attached to the mapping with
1762  * arm_iommu_attach_device function.
1763  */
1764 struct dma_iommu_mapping *
1765 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
1766 			 int order)
1767 {
1768 	unsigned int count = size >> (PAGE_SHIFT + order);
1769 	unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
1770 	struct dma_iommu_mapping *mapping;
1771 	int err = -ENOMEM;
1772 
1773 	if (!count)
1774 		return ERR_PTR(-EINVAL);
1775 
1776 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1777 	if (!mapping)
1778 		goto err;
1779 
1780 	mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1781 	if (!mapping->bitmap)
1782 		goto err2;
1783 
1784 	mapping->base = base;
1785 	mapping->bits = BITS_PER_BYTE * bitmap_size;
1786 	mapping->order = order;
1787 	spin_lock_init(&mapping->lock);
1788 
1789 	mapping->domain = iommu_domain_alloc(bus);
1790 	if (!mapping->domain)
1791 		goto err3;
1792 
1793 	kref_init(&mapping->kref);
1794 	return mapping;
1795 err3:
1796 	kfree(mapping->bitmap);
1797 err2:
1798 	kfree(mapping);
1799 err:
1800 	return ERR_PTR(err);
1801 }
1802 
1803 static void release_iommu_mapping(struct kref *kref)
1804 {
1805 	struct dma_iommu_mapping *mapping =
1806 		container_of(kref, struct dma_iommu_mapping, kref);
1807 
1808 	iommu_domain_free(mapping->domain);
1809 	kfree(mapping->bitmap);
1810 	kfree(mapping);
1811 }
1812 
1813 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1814 {
1815 	if (mapping)
1816 		kref_put(&mapping->kref, release_iommu_mapping);
1817 }
1818 
1819 /**
1820  * arm_iommu_attach_device
1821  * @dev: valid struct device pointer
1822  * @mapping: io address space mapping structure (returned from
1823  *	arm_iommu_create_mapping)
1824  *
1825  * Attaches specified io address space mapping to the provided device,
1826  * this replaces the dma operations (dma_map_ops pointer) with the
1827  * IOMMU aware version. More than one client might be attached to
1828  * the same io address space mapping.
1829  */
1830 int arm_iommu_attach_device(struct device *dev,
1831 			    struct dma_iommu_mapping *mapping)
1832 {
1833 	int err;
1834 
1835 	err = iommu_attach_device(mapping->domain, dev);
1836 	if (err)
1837 		return err;
1838 
1839 	kref_get(&mapping->kref);
1840 	dev->archdata.mapping = mapping;
1841 	set_dma_ops(dev, &iommu_ops);
1842 
1843 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1844 	return 0;
1845 }
1846 
1847 #endif
1848