xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision cd5d5810)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/dma-contiguous.h>
21 #include <linux/highmem.h>
22 #include <linux/memblock.h>
23 #include <linux/slab.h>
24 #include <linux/iommu.h>
25 #include <linux/io.h>
26 #include <linux/vmalloc.h>
27 #include <linux/sizes.h>
28 
29 #include <asm/memory.h>
30 #include <asm/highmem.h>
31 #include <asm/cacheflush.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mach/arch.h>
34 #include <asm/dma-iommu.h>
35 #include <asm/mach/map.h>
36 #include <asm/system_info.h>
37 #include <asm/dma-contiguous.h>
38 
39 #include "mm.h"
40 
41 /*
42  * The DMA API is built upon the notion of "buffer ownership".  A buffer
43  * is either exclusively owned by the CPU (and therefore may be accessed
44  * by it) or exclusively owned by the DMA device.  These helper functions
45  * represent the transitions between these two ownership states.
46  *
47  * Note, however, that on later ARMs, this notion does not work due to
48  * speculative prefetches.  We model our approach on the assumption that
49  * the CPU does do speculative prefetches, which means we clean caches
50  * before transfers and delay cache invalidation until transfer completion.
51  *
52  */
53 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
54 		size_t, enum dma_data_direction);
55 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
56 		size_t, enum dma_data_direction);
57 
58 /**
59  * arm_dma_map_page - map a portion of a page for streaming DMA
60  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
61  * @page: page that buffer resides in
62  * @offset: offset into page for start of buffer
63  * @size: size of buffer to map
64  * @dir: DMA transfer direction
65  *
66  * Ensure that any data held in the cache is appropriately discarded
67  * or written back.
68  *
69  * The device owns this memory once this call has completed.  The CPU
70  * can regain ownership by calling dma_unmap_page().
71  */
72 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
73 	     unsigned long offset, size_t size, enum dma_data_direction dir,
74 	     struct dma_attrs *attrs)
75 {
76 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
77 		__dma_page_cpu_to_dev(page, offset, size, dir);
78 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
79 }
80 
81 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
82 	     unsigned long offset, size_t size, enum dma_data_direction dir,
83 	     struct dma_attrs *attrs)
84 {
85 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
86 }
87 
88 /**
89  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
90  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
91  * @handle: DMA address of buffer
92  * @size: size of buffer (same as passed to dma_map_page)
93  * @dir: DMA transfer direction (same as passed to dma_map_page)
94  *
95  * Unmap a page streaming mode DMA translation.  The handle and size
96  * must match what was provided in the previous dma_map_page() call.
97  * All other usages are undefined.
98  *
99  * After this call, reads by the CPU to the buffer are guaranteed to see
100  * whatever the device wrote there.
101  */
102 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
103 		size_t size, enum dma_data_direction dir,
104 		struct dma_attrs *attrs)
105 {
106 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
107 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
108 				      handle & ~PAGE_MASK, size, dir);
109 }
110 
111 static void arm_dma_sync_single_for_cpu(struct device *dev,
112 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
113 {
114 	unsigned int offset = handle & (PAGE_SIZE - 1);
115 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
116 	__dma_page_dev_to_cpu(page, offset, size, dir);
117 }
118 
119 static void arm_dma_sync_single_for_device(struct device *dev,
120 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
121 {
122 	unsigned int offset = handle & (PAGE_SIZE - 1);
123 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
124 	__dma_page_cpu_to_dev(page, offset, size, dir);
125 }
126 
127 struct dma_map_ops arm_dma_ops = {
128 	.alloc			= arm_dma_alloc,
129 	.free			= arm_dma_free,
130 	.mmap			= arm_dma_mmap,
131 	.get_sgtable		= arm_dma_get_sgtable,
132 	.map_page		= arm_dma_map_page,
133 	.unmap_page		= arm_dma_unmap_page,
134 	.map_sg			= arm_dma_map_sg,
135 	.unmap_sg		= arm_dma_unmap_sg,
136 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
137 	.sync_single_for_device	= arm_dma_sync_single_for_device,
138 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
139 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
140 	.set_dma_mask		= arm_dma_set_mask,
141 };
142 EXPORT_SYMBOL(arm_dma_ops);
143 
144 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
145 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
146 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
147 				  dma_addr_t handle, struct dma_attrs *attrs);
148 
149 struct dma_map_ops arm_coherent_dma_ops = {
150 	.alloc			= arm_coherent_dma_alloc,
151 	.free			= arm_coherent_dma_free,
152 	.mmap			= arm_dma_mmap,
153 	.get_sgtable		= arm_dma_get_sgtable,
154 	.map_page		= arm_coherent_dma_map_page,
155 	.map_sg			= arm_dma_map_sg,
156 	.set_dma_mask		= arm_dma_set_mask,
157 };
158 EXPORT_SYMBOL(arm_coherent_dma_ops);
159 
160 static u64 get_coherent_dma_mask(struct device *dev)
161 {
162 	u64 mask = (u64)arm_dma_limit;
163 
164 	if (dev) {
165 		mask = dev->coherent_dma_mask;
166 
167 		/*
168 		 * Sanity check the DMA mask - it must be non-zero, and
169 		 * must be able to be satisfied by a DMA allocation.
170 		 */
171 		if (mask == 0) {
172 			dev_warn(dev, "coherent DMA mask is unset\n");
173 			return 0;
174 		}
175 
176 		if ((~mask) & (u64)arm_dma_limit) {
177 			dev_warn(dev, "coherent DMA mask %#llx is smaller "
178 				 "than system GFP_DMA mask %#llx\n",
179 				 mask, (u64)arm_dma_limit);
180 			return 0;
181 		}
182 	}
183 
184 	return mask;
185 }
186 
187 static void __dma_clear_buffer(struct page *page, size_t size)
188 {
189 	/*
190 	 * Ensure that the allocated pages are zeroed, and that any data
191 	 * lurking in the kernel direct-mapped region is invalidated.
192 	 */
193 	if (PageHighMem(page)) {
194 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
195 		phys_addr_t end = base + size;
196 		while (size > 0) {
197 			void *ptr = kmap_atomic(page);
198 			memset(ptr, 0, PAGE_SIZE);
199 			dmac_flush_range(ptr, ptr + PAGE_SIZE);
200 			kunmap_atomic(ptr);
201 			page++;
202 			size -= PAGE_SIZE;
203 		}
204 		outer_flush_range(base, end);
205 	} else {
206 		void *ptr = page_address(page);
207 		memset(ptr, 0, size);
208 		dmac_flush_range(ptr, ptr + size);
209 		outer_flush_range(__pa(ptr), __pa(ptr) + size);
210 	}
211 }
212 
213 /*
214  * Allocate a DMA buffer for 'dev' of size 'size' using the
215  * specified gfp mask.  Note that 'size' must be page aligned.
216  */
217 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
218 {
219 	unsigned long order = get_order(size);
220 	struct page *page, *p, *e;
221 
222 	page = alloc_pages(gfp, order);
223 	if (!page)
224 		return NULL;
225 
226 	/*
227 	 * Now split the huge page and free the excess pages
228 	 */
229 	split_page(page, order);
230 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
231 		__free_page(p);
232 
233 	__dma_clear_buffer(page, size);
234 
235 	return page;
236 }
237 
238 /*
239  * Free a DMA buffer.  'size' must be page aligned.
240  */
241 static void __dma_free_buffer(struct page *page, size_t size)
242 {
243 	struct page *e = page + (size >> PAGE_SHIFT);
244 
245 	while (page < e) {
246 		__free_page(page);
247 		page++;
248 	}
249 }
250 
251 #ifdef CONFIG_MMU
252 #ifdef CONFIG_HUGETLB_PAGE
253 #warning ARM Coherent DMA allocator does not (yet) support huge TLB
254 #endif
255 
256 static void *__alloc_from_contiguous(struct device *dev, size_t size,
257 				     pgprot_t prot, struct page **ret_page,
258 				     const void *caller);
259 
260 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
261 				 pgprot_t prot, struct page **ret_page,
262 				 const void *caller);
263 
264 static void *
265 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
266 	const void *caller)
267 {
268 	struct vm_struct *area;
269 	unsigned long addr;
270 
271 	/*
272 	 * DMA allocation can be mapped to user space, so lets
273 	 * set VM_USERMAP flags too.
274 	 */
275 	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
276 				  caller);
277 	if (!area)
278 		return NULL;
279 	addr = (unsigned long)area->addr;
280 	area->phys_addr = __pfn_to_phys(page_to_pfn(page));
281 
282 	if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
283 		vunmap((void *)addr);
284 		return NULL;
285 	}
286 	return (void *)addr;
287 }
288 
289 static void __dma_free_remap(void *cpu_addr, size_t size)
290 {
291 	unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
292 	struct vm_struct *area = find_vm_area(cpu_addr);
293 	if (!area || (area->flags & flags) != flags) {
294 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
295 		return;
296 	}
297 	unmap_kernel_range((unsigned long)cpu_addr, size);
298 	vunmap(cpu_addr);
299 }
300 
301 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
302 
303 struct dma_pool {
304 	size_t size;
305 	spinlock_t lock;
306 	unsigned long *bitmap;
307 	unsigned long nr_pages;
308 	void *vaddr;
309 	struct page **pages;
310 };
311 
312 static struct dma_pool atomic_pool = {
313 	.size = DEFAULT_DMA_COHERENT_POOL_SIZE,
314 };
315 
316 static int __init early_coherent_pool(char *p)
317 {
318 	atomic_pool.size = memparse(p, &p);
319 	return 0;
320 }
321 early_param("coherent_pool", early_coherent_pool);
322 
323 void __init init_dma_coherent_pool_size(unsigned long size)
324 {
325 	/*
326 	 * Catch any attempt to set the pool size too late.
327 	 */
328 	BUG_ON(atomic_pool.vaddr);
329 
330 	/*
331 	 * Set architecture specific coherent pool size only if
332 	 * it has not been changed by kernel command line parameter.
333 	 */
334 	if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
335 		atomic_pool.size = size;
336 }
337 
338 /*
339  * Initialise the coherent pool for atomic allocations.
340  */
341 static int __init atomic_pool_init(void)
342 {
343 	struct dma_pool *pool = &atomic_pool;
344 	pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
345 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
346 	unsigned long nr_pages = pool->size >> PAGE_SHIFT;
347 	unsigned long *bitmap;
348 	struct page *page;
349 	struct page **pages;
350 	void *ptr;
351 	int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
352 
353 	bitmap = kzalloc(bitmap_size, GFP_KERNEL);
354 	if (!bitmap)
355 		goto no_bitmap;
356 
357 	pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
358 	if (!pages)
359 		goto no_pages;
360 
361 	if (IS_ENABLED(CONFIG_DMA_CMA))
362 		ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
363 					      atomic_pool_init);
364 	else
365 		ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,
366 					   atomic_pool_init);
367 	if (ptr) {
368 		int i;
369 
370 		for (i = 0; i < nr_pages; i++)
371 			pages[i] = page + i;
372 
373 		spin_lock_init(&pool->lock);
374 		pool->vaddr = ptr;
375 		pool->pages = pages;
376 		pool->bitmap = bitmap;
377 		pool->nr_pages = nr_pages;
378 		pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
379 		       (unsigned)pool->size / 1024);
380 		return 0;
381 	}
382 
383 	kfree(pages);
384 no_pages:
385 	kfree(bitmap);
386 no_bitmap:
387 	pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
388 	       (unsigned)pool->size / 1024);
389 	return -ENOMEM;
390 }
391 /*
392  * CMA is activated by core_initcall, so we must be called after it.
393  */
394 postcore_initcall(atomic_pool_init);
395 
396 struct dma_contig_early_reserve {
397 	phys_addr_t base;
398 	unsigned long size;
399 };
400 
401 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
402 
403 static int dma_mmu_remap_num __initdata;
404 
405 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
406 {
407 	dma_mmu_remap[dma_mmu_remap_num].base = base;
408 	dma_mmu_remap[dma_mmu_remap_num].size = size;
409 	dma_mmu_remap_num++;
410 }
411 
412 void __init dma_contiguous_remap(void)
413 {
414 	int i;
415 	for (i = 0; i < dma_mmu_remap_num; i++) {
416 		phys_addr_t start = dma_mmu_remap[i].base;
417 		phys_addr_t end = start + dma_mmu_remap[i].size;
418 		struct map_desc map;
419 		unsigned long addr;
420 
421 		if (end > arm_lowmem_limit)
422 			end = arm_lowmem_limit;
423 		if (start >= end)
424 			continue;
425 
426 		map.pfn = __phys_to_pfn(start);
427 		map.virtual = __phys_to_virt(start);
428 		map.length = end - start;
429 		map.type = MT_MEMORY_DMA_READY;
430 
431 		/*
432 		 * Clear previous low-memory mapping
433 		 */
434 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
435 		     addr += PMD_SIZE)
436 			pmd_clear(pmd_off_k(addr));
437 
438 		iotable_init(&map, 1);
439 	}
440 }
441 
442 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
443 			    void *data)
444 {
445 	struct page *page = virt_to_page(addr);
446 	pgprot_t prot = *(pgprot_t *)data;
447 
448 	set_pte_ext(pte, mk_pte(page, prot), 0);
449 	return 0;
450 }
451 
452 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
453 {
454 	unsigned long start = (unsigned long) page_address(page);
455 	unsigned end = start + size;
456 
457 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
458 	flush_tlb_kernel_range(start, end);
459 }
460 
461 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
462 				 pgprot_t prot, struct page **ret_page,
463 				 const void *caller)
464 {
465 	struct page *page;
466 	void *ptr;
467 	page = __dma_alloc_buffer(dev, size, gfp);
468 	if (!page)
469 		return NULL;
470 
471 	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
472 	if (!ptr) {
473 		__dma_free_buffer(page, size);
474 		return NULL;
475 	}
476 
477 	*ret_page = page;
478 	return ptr;
479 }
480 
481 static void *__alloc_from_pool(size_t size, struct page **ret_page)
482 {
483 	struct dma_pool *pool = &atomic_pool;
484 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
485 	unsigned int pageno;
486 	unsigned long flags;
487 	void *ptr = NULL;
488 	unsigned long align_mask;
489 
490 	if (!pool->vaddr) {
491 		WARN(1, "coherent pool not initialised!\n");
492 		return NULL;
493 	}
494 
495 	/*
496 	 * Align the region allocation - allocations from pool are rather
497 	 * small, so align them to their order in pages, minimum is a page
498 	 * size. This helps reduce fragmentation of the DMA space.
499 	 */
500 	align_mask = (1 << get_order(size)) - 1;
501 
502 	spin_lock_irqsave(&pool->lock, flags);
503 	pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
504 					    0, count, align_mask);
505 	if (pageno < pool->nr_pages) {
506 		bitmap_set(pool->bitmap, pageno, count);
507 		ptr = pool->vaddr + PAGE_SIZE * pageno;
508 		*ret_page = pool->pages[pageno];
509 	} else {
510 		pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
511 			    "Please increase it with coherent_pool= kernel parameter!\n",
512 			    (unsigned)pool->size / 1024);
513 	}
514 	spin_unlock_irqrestore(&pool->lock, flags);
515 
516 	return ptr;
517 }
518 
519 static bool __in_atomic_pool(void *start, size_t size)
520 {
521 	struct dma_pool *pool = &atomic_pool;
522 	void *end = start + size;
523 	void *pool_start = pool->vaddr;
524 	void *pool_end = pool->vaddr + pool->size;
525 
526 	if (start < pool_start || start >= pool_end)
527 		return false;
528 
529 	if (end <= pool_end)
530 		return true;
531 
532 	WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
533 	     start, end - 1, pool_start, pool_end - 1);
534 
535 	return false;
536 }
537 
538 static int __free_from_pool(void *start, size_t size)
539 {
540 	struct dma_pool *pool = &atomic_pool;
541 	unsigned long pageno, count;
542 	unsigned long flags;
543 
544 	if (!__in_atomic_pool(start, size))
545 		return 0;
546 
547 	pageno = (start - pool->vaddr) >> PAGE_SHIFT;
548 	count = size >> PAGE_SHIFT;
549 
550 	spin_lock_irqsave(&pool->lock, flags);
551 	bitmap_clear(pool->bitmap, pageno, count);
552 	spin_unlock_irqrestore(&pool->lock, flags);
553 
554 	return 1;
555 }
556 
557 static void *__alloc_from_contiguous(struct device *dev, size_t size,
558 				     pgprot_t prot, struct page **ret_page,
559 				     const void *caller)
560 {
561 	unsigned long order = get_order(size);
562 	size_t count = size >> PAGE_SHIFT;
563 	struct page *page;
564 	void *ptr;
565 
566 	page = dma_alloc_from_contiguous(dev, count, order);
567 	if (!page)
568 		return NULL;
569 
570 	__dma_clear_buffer(page, size);
571 
572 	if (PageHighMem(page)) {
573 		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
574 		if (!ptr) {
575 			dma_release_from_contiguous(dev, page, count);
576 			return NULL;
577 		}
578 	} else {
579 		__dma_remap(page, size, prot);
580 		ptr = page_address(page);
581 	}
582 	*ret_page = page;
583 	return ptr;
584 }
585 
586 static void __free_from_contiguous(struct device *dev, struct page *page,
587 				   void *cpu_addr, size_t size)
588 {
589 	if (PageHighMem(page))
590 		__dma_free_remap(cpu_addr, size);
591 	else
592 		__dma_remap(page, size, pgprot_kernel);
593 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
594 }
595 
596 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
597 {
598 	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
599 			    pgprot_writecombine(prot) :
600 			    pgprot_dmacoherent(prot);
601 	return prot;
602 }
603 
604 #define nommu() 0
605 
606 #else	/* !CONFIG_MMU */
607 
608 #define nommu() 1
609 
610 #define __get_dma_pgprot(attrs, prot)	__pgprot(0)
611 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)	NULL
612 #define __alloc_from_pool(size, ret_page)			NULL
613 #define __alloc_from_contiguous(dev, size, prot, ret, c)	NULL
614 #define __free_from_pool(cpu_addr, size)			0
615 #define __free_from_contiguous(dev, page, cpu_addr, size)	do { } while (0)
616 #define __dma_free_remap(cpu_addr, size)			do { } while (0)
617 
618 #endif	/* CONFIG_MMU */
619 
620 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
621 				   struct page **ret_page)
622 {
623 	struct page *page;
624 	page = __dma_alloc_buffer(dev, size, gfp);
625 	if (!page)
626 		return NULL;
627 
628 	*ret_page = page;
629 	return page_address(page);
630 }
631 
632 
633 
634 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
635 			 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
636 {
637 	u64 mask = get_coherent_dma_mask(dev);
638 	struct page *page = NULL;
639 	void *addr;
640 
641 #ifdef CONFIG_DMA_API_DEBUG
642 	u64 limit = (mask + 1) & ~mask;
643 	if (limit && size >= limit) {
644 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
645 			size, mask);
646 		return NULL;
647 	}
648 #endif
649 
650 	if (!mask)
651 		return NULL;
652 
653 	if (mask < 0xffffffffULL)
654 		gfp |= GFP_DMA;
655 
656 	/*
657 	 * Following is a work-around (a.k.a. hack) to prevent pages
658 	 * with __GFP_COMP being passed to split_page() which cannot
659 	 * handle them.  The real problem is that this flag probably
660 	 * should be 0 on ARM as it is not supported on this
661 	 * platform; see CONFIG_HUGETLBFS.
662 	 */
663 	gfp &= ~(__GFP_COMP);
664 
665 	*handle = DMA_ERROR_CODE;
666 	size = PAGE_ALIGN(size);
667 
668 	if (is_coherent || nommu())
669 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
670 	else if (!(gfp & __GFP_WAIT))
671 		addr = __alloc_from_pool(size, &page);
672 	else if (!IS_ENABLED(CONFIG_DMA_CMA))
673 		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
674 	else
675 		addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
676 
677 	if (addr)
678 		*handle = pfn_to_dma(dev, page_to_pfn(page));
679 
680 	return addr;
681 }
682 
683 /*
684  * Allocate DMA-coherent memory space and return both the kernel remapped
685  * virtual and bus address for that space.
686  */
687 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
688 		    gfp_t gfp, struct dma_attrs *attrs)
689 {
690 	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
691 	void *memory;
692 
693 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
694 		return memory;
695 
696 	return __dma_alloc(dev, size, handle, gfp, prot, false,
697 			   __builtin_return_address(0));
698 }
699 
700 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
701 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
702 {
703 	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
704 	void *memory;
705 
706 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
707 		return memory;
708 
709 	return __dma_alloc(dev, size, handle, gfp, prot, true,
710 			   __builtin_return_address(0));
711 }
712 
713 /*
714  * Create userspace mapping for the DMA-coherent memory.
715  */
716 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
717 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
718 		 struct dma_attrs *attrs)
719 {
720 	int ret = -ENXIO;
721 #ifdef CONFIG_MMU
722 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
723 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
724 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
725 	unsigned long off = vma->vm_pgoff;
726 
727 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
728 
729 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
730 		return ret;
731 
732 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
733 		ret = remap_pfn_range(vma, vma->vm_start,
734 				      pfn + off,
735 				      vma->vm_end - vma->vm_start,
736 				      vma->vm_page_prot);
737 	}
738 #endif	/* CONFIG_MMU */
739 
740 	return ret;
741 }
742 
743 /*
744  * Free a buffer as defined by the above mapping.
745  */
746 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
747 			   dma_addr_t handle, struct dma_attrs *attrs,
748 			   bool is_coherent)
749 {
750 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
751 
752 	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
753 		return;
754 
755 	size = PAGE_ALIGN(size);
756 
757 	if (is_coherent || nommu()) {
758 		__dma_free_buffer(page, size);
759 	} else if (__free_from_pool(cpu_addr, size)) {
760 		return;
761 	} else if (!IS_ENABLED(CONFIG_DMA_CMA)) {
762 		__dma_free_remap(cpu_addr, size);
763 		__dma_free_buffer(page, size);
764 	} else {
765 		/*
766 		 * Non-atomic allocations cannot be freed with IRQs disabled
767 		 */
768 		WARN_ON(irqs_disabled());
769 		__free_from_contiguous(dev, page, cpu_addr, size);
770 	}
771 }
772 
773 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
774 		  dma_addr_t handle, struct dma_attrs *attrs)
775 {
776 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
777 }
778 
779 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
780 				  dma_addr_t handle, struct dma_attrs *attrs)
781 {
782 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
783 }
784 
785 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
786 		 void *cpu_addr, dma_addr_t handle, size_t size,
787 		 struct dma_attrs *attrs)
788 {
789 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
790 	int ret;
791 
792 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
793 	if (unlikely(ret))
794 		return ret;
795 
796 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
797 	return 0;
798 }
799 
800 static void dma_cache_maint_page(struct page *page, unsigned long offset,
801 	size_t size, enum dma_data_direction dir,
802 	void (*op)(const void *, size_t, int))
803 {
804 	unsigned long pfn;
805 	size_t left = size;
806 
807 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
808 	offset %= PAGE_SIZE;
809 
810 	/*
811 	 * A single sg entry may refer to multiple physically contiguous
812 	 * pages.  But we still need to process highmem pages individually.
813 	 * If highmem is not configured then the bulk of this loop gets
814 	 * optimized out.
815 	 */
816 	do {
817 		size_t len = left;
818 		void *vaddr;
819 
820 		page = pfn_to_page(pfn);
821 
822 		if (PageHighMem(page)) {
823 			if (len + offset > PAGE_SIZE)
824 				len = PAGE_SIZE - offset;
825 
826 			if (cache_is_vipt_nonaliasing()) {
827 				vaddr = kmap_atomic(page);
828 				op(vaddr + offset, len, dir);
829 				kunmap_atomic(vaddr);
830 			} else {
831 				vaddr = kmap_high_get(page);
832 				if (vaddr) {
833 					op(vaddr + offset, len, dir);
834 					kunmap_high(page);
835 				}
836 			}
837 		} else {
838 			vaddr = page_address(page) + offset;
839 			op(vaddr, len, dir);
840 		}
841 		offset = 0;
842 		pfn++;
843 		left -= len;
844 	} while (left);
845 }
846 
847 /*
848  * Make an area consistent for devices.
849  * Note: Drivers should NOT use this function directly, as it will break
850  * platforms with CONFIG_DMABOUNCE.
851  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
852  */
853 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
854 	size_t size, enum dma_data_direction dir)
855 {
856 	unsigned long paddr;
857 
858 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
859 
860 	paddr = page_to_phys(page) + off;
861 	if (dir == DMA_FROM_DEVICE) {
862 		outer_inv_range(paddr, paddr + size);
863 	} else {
864 		outer_clean_range(paddr, paddr + size);
865 	}
866 	/* FIXME: non-speculating: flush on bidirectional mappings? */
867 }
868 
869 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
870 	size_t size, enum dma_data_direction dir)
871 {
872 	unsigned long paddr = page_to_phys(page) + off;
873 
874 	/* FIXME: non-speculating: not required */
875 	/* don't bother invalidating if DMA to device */
876 	if (dir != DMA_TO_DEVICE)
877 		outer_inv_range(paddr, paddr + size);
878 
879 	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
880 
881 	/*
882 	 * Mark the D-cache clean for these pages to avoid extra flushing.
883 	 */
884 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
885 		unsigned long pfn;
886 		size_t left = size;
887 
888 		pfn = page_to_pfn(page) + off / PAGE_SIZE;
889 		off %= PAGE_SIZE;
890 		if (off) {
891 			pfn++;
892 			left -= PAGE_SIZE - off;
893 		}
894 		while (left >= PAGE_SIZE) {
895 			page = pfn_to_page(pfn++);
896 			set_bit(PG_dcache_clean, &page->flags);
897 			left -= PAGE_SIZE;
898 		}
899 	}
900 }
901 
902 /**
903  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
904  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
905  * @sg: list of buffers
906  * @nents: number of buffers to map
907  * @dir: DMA transfer direction
908  *
909  * Map a set of buffers described by scatterlist in streaming mode for DMA.
910  * This is the scatter-gather version of the dma_map_single interface.
911  * Here the scatter gather list elements are each tagged with the
912  * appropriate dma address and length.  They are obtained via
913  * sg_dma_{address,length}.
914  *
915  * Device ownership issues as mentioned for dma_map_single are the same
916  * here.
917  */
918 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
919 		enum dma_data_direction dir, struct dma_attrs *attrs)
920 {
921 	struct dma_map_ops *ops = get_dma_ops(dev);
922 	struct scatterlist *s;
923 	int i, j;
924 
925 	for_each_sg(sg, s, nents, i) {
926 #ifdef CONFIG_NEED_SG_DMA_LENGTH
927 		s->dma_length = s->length;
928 #endif
929 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
930 						s->length, dir, attrs);
931 		if (dma_mapping_error(dev, s->dma_address))
932 			goto bad_mapping;
933 	}
934 	return nents;
935 
936  bad_mapping:
937 	for_each_sg(sg, s, i, j)
938 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
939 	return 0;
940 }
941 
942 /**
943  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
944  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
945  * @sg: list of buffers
946  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
947  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
948  *
949  * Unmap a set of streaming mode DMA translations.  Again, CPU access
950  * rules concerning calls here are the same as for dma_unmap_single().
951  */
952 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
953 		enum dma_data_direction dir, struct dma_attrs *attrs)
954 {
955 	struct dma_map_ops *ops = get_dma_ops(dev);
956 	struct scatterlist *s;
957 
958 	int i;
959 
960 	for_each_sg(sg, s, nents, i)
961 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
962 }
963 
964 /**
965  * arm_dma_sync_sg_for_cpu
966  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
967  * @sg: list of buffers
968  * @nents: number of buffers to map (returned from dma_map_sg)
969  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
970  */
971 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
972 			int nents, enum dma_data_direction dir)
973 {
974 	struct dma_map_ops *ops = get_dma_ops(dev);
975 	struct scatterlist *s;
976 	int i;
977 
978 	for_each_sg(sg, s, nents, i)
979 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
980 					 dir);
981 }
982 
983 /**
984  * arm_dma_sync_sg_for_device
985  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
986  * @sg: list of buffers
987  * @nents: number of buffers to map (returned from dma_map_sg)
988  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
989  */
990 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
991 			int nents, enum dma_data_direction dir)
992 {
993 	struct dma_map_ops *ops = get_dma_ops(dev);
994 	struct scatterlist *s;
995 	int i;
996 
997 	for_each_sg(sg, s, nents, i)
998 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
999 					    dir);
1000 }
1001 
1002 /*
1003  * Return whether the given device DMA address mask can be supported
1004  * properly.  For example, if your device can only drive the low 24-bits
1005  * during bus mastering, then you would pass 0x00ffffff as the mask
1006  * to this function.
1007  */
1008 int dma_supported(struct device *dev, u64 mask)
1009 {
1010 	if (mask < (u64)arm_dma_limit)
1011 		return 0;
1012 	return 1;
1013 }
1014 EXPORT_SYMBOL(dma_supported);
1015 
1016 int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1017 {
1018 	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1019 		return -EIO;
1020 
1021 	*dev->dma_mask = dma_mask;
1022 
1023 	return 0;
1024 }
1025 
1026 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
1027 
1028 static int __init dma_debug_do_init(void)
1029 {
1030 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1031 	return 0;
1032 }
1033 fs_initcall(dma_debug_do_init);
1034 
1035 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1036 
1037 /* IOMMU */
1038 
1039 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1040 				      size_t size)
1041 {
1042 	unsigned int order = get_order(size);
1043 	unsigned int align = 0;
1044 	unsigned int count, start;
1045 	unsigned long flags;
1046 
1047 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1048 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1049 
1050 	count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
1051 		 (1 << mapping->order) - 1) >> mapping->order;
1052 
1053 	if (order > mapping->order)
1054 		align = (1 << (order - mapping->order)) - 1;
1055 
1056 	spin_lock_irqsave(&mapping->lock, flags);
1057 	start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
1058 					   count, align);
1059 	if (start > mapping->bits) {
1060 		spin_unlock_irqrestore(&mapping->lock, flags);
1061 		return DMA_ERROR_CODE;
1062 	}
1063 
1064 	bitmap_set(mapping->bitmap, start, count);
1065 	spin_unlock_irqrestore(&mapping->lock, flags);
1066 
1067 	return mapping->base + (start << (mapping->order + PAGE_SHIFT));
1068 }
1069 
1070 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1071 			       dma_addr_t addr, size_t size)
1072 {
1073 	unsigned int start = (addr - mapping->base) >>
1074 			     (mapping->order + PAGE_SHIFT);
1075 	unsigned int count = ((size >> PAGE_SHIFT) +
1076 			      (1 << mapping->order) - 1) >> mapping->order;
1077 	unsigned long flags;
1078 
1079 	spin_lock_irqsave(&mapping->lock, flags);
1080 	bitmap_clear(mapping->bitmap, start, count);
1081 	spin_unlock_irqrestore(&mapping->lock, flags);
1082 }
1083 
1084 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1085 					  gfp_t gfp, struct dma_attrs *attrs)
1086 {
1087 	struct page **pages;
1088 	int count = size >> PAGE_SHIFT;
1089 	int array_size = count * sizeof(struct page *);
1090 	int i = 0;
1091 
1092 	if (array_size <= PAGE_SIZE)
1093 		pages = kzalloc(array_size, gfp);
1094 	else
1095 		pages = vzalloc(array_size);
1096 	if (!pages)
1097 		return NULL;
1098 
1099 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1100 	{
1101 		unsigned long order = get_order(size);
1102 		struct page *page;
1103 
1104 		page = dma_alloc_from_contiguous(dev, count, order);
1105 		if (!page)
1106 			goto error;
1107 
1108 		__dma_clear_buffer(page, size);
1109 
1110 		for (i = 0; i < count; i++)
1111 			pages[i] = page + i;
1112 
1113 		return pages;
1114 	}
1115 
1116 	/*
1117 	 * IOMMU can map any pages, so himem can also be used here
1118 	 */
1119 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1120 
1121 	while (count) {
1122 		int j, order = __fls(count);
1123 
1124 		pages[i] = alloc_pages(gfp, order);
1125 		while (!pages[i] && order)
1126 			pages[i] = alloc_pages(gfp, --order);
1127 		if (!pages[i])
1128 			goto error;
1129 
1130 		if (order) {
1131 			split_page(pages[i], order);
1132 			j = 1 << order;
1133 			while (--j)
1134 				pages[i + j] = pages[i] + j;
1135 		}
1136 
1137 		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
1138 		i += 1 << order;
1139 		count -= 1 << order;
1140 	}
1141 
1142 	return pages;
1143 error:
1144 	while (i--)
1145 		if (pages[i])
1146 			__free_pages(pages[i], 0);
1147 	if (array_size <= PAGE_SIZE)
1148 		kfree(pages);
1149 	else
1150 		vfree(pages);
1151 	return NULL;
1152 }
1153 
1154 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1155 			       size_t size, struct dma_attrs *attrs)
1156 {
1157 	int count = size >> PAGE_SHIFT;
1158 	int array_size = count * sizeof(struct page *);
1159 	int i;
1160 
1161 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1162 		dma_release_from_contiguous(dev, pages[0], count);
1163 	} else {
1164 		for (i = 0; i < count; i++)
1165 			if (pages[i])
1166 				__free_pages(pages[i], 0);
1167 	}
1168 
1169 	if (array_size <= PAGE_SIZE)
1170 		kfree(pages);
1171 	else
1172 		vfree(pages);
1173 	return 0;
1174 }
1175 
1176 /*
1177  * Create a CPU mapping for a specified pages
1178  */
1179 static void *
1180 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1181 		    const void *caller)
1182 {
1183 	unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1184 	struct vm_struct *area;
1185 	unsigned long p;
1186 
1187 	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1188 				  caller);
1189 	if (!area)
1190 		return NULL;
1191 
1192 	area->pages = pages;
1193 	area->nr_pages = nr_pages;
1194 	p = (unsigned long)area->addr;
1195 
1196 	for (i = 0; i < nr_pages; i++) {
1197 		phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1198 		if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1199 			goto err;
1200 		p += PAGE_SIZE;
1201 	}
1202 	return area->addr;
1203 err:
1204 	unmap_kernel_range((unsigned long)area->addr, size);
1205 	vunmap(area->addr);
1206 	return NULL;
1207 }
1208 
1209 /*
1210  * Create a mapping in device IO address space for specified pages
1211  */
1212 static dma_addr_t
1213 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1214 {
1215 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1216 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1217 	dma_addr_t dma_addr, iova;
1218 	int i, ret = DMA_ERROR_CODE;
1219 
1220 	dma_addr = __alloc_iova(mapping, size);
1221 	if (dma_addr == DMA_ERROR_CODE)
1222 		return dma_addr;
1223 
1224 	iova = dma_addr;
1225 	for (i = 0; i < count; ) {
1226 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1227 		phys_addr_t phys = page_to_phys(pages[i]);
1228 		unsigned int len, j;
1229 
1230 		for (j = i + 1; j < count; j++, next_pfn++)
1231 			if (page_to_pfn(pages[j]) != next_pfn)
1232 				break;
1233 
1234 		len = (j - i) << PAGE_SHIFT;
1235 		ret = iommu_map(mapping->domain, iova, phys, len,
1236 				IOMMU_READ|IOMMU_WRITE);
1237 		if (ret < 0)
1238 			goto fail;
1239 		iova += len;
1240 		i = j;
1241 	}
1242 	return dma_addr;
1243 fail:
1244 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1245 	__free_iova(mapping, dma_addr, size);
1246 	return DMA_ERROR_CODE;
1247 }
1248 
1249 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1250 {
1251 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1252 
1253 	/*
1254 	 * add optional in-page offset from iova to size and align
1255 	 * result to page size
1256 	 */
1257 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1258 	iova &= PAGE_MASK;
1259 
1260 	iommu_unmap(mapping->domain, iova, size);
1261 	__free_iova(mapping, iova, size);
1262 	return 0;
1263 }
1264 
1265 static struct page **__atomic_get_pages(void *addr)
1266 {
1267 	struct dma_pool *pool = &atomic_pool;
1268 	struct page **pages = pool->pages;
1269 	int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
1270 
1271 	return pages + offs;
1272 }
1273 
1274 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1275 {
1276 	struct vm_struct *area;
1277 
1278 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1279 		return __atomic_get_pages(cpu_addr);
1280 
1281 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1282 		return cpu_addr;
1283 
1284 	area = find_vm_area(cpu_addr);
1285 	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1286 		return area->pages;
1287 	return NULL;
1288 }
1289 
1290 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1291 				  dma_addr_t *handle)
1292 {
1293 	struct page *page;
1294 	void *addr;
1295 
1296 	addr = __alloc_from_pool(size, &page);
1297 	if (!addr)
1298 		return NULL;
1299 
1300 	*handle = __iommu_create_mapping(dev, &page, size);
1301 	if (*handle == DMA_ERROR_CODE)
1302 		goto err_mapping;
1303 
1304 	return addr;
1305 
1306 err_mapping:
1307 	__free_from_pool(addr, size);
1308 	return NULL;
1309 }
1310 
1311 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1312 				dma_addr_t handle, size_t size)
1313 {
1314 	__iommu_remove_mapping(dev, handle, size);
1315 	__free_from_pool(cpu_addr, size);
1316 }
1317 
1318 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1319 	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1320 {
1321 	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1322 	struct page **pages;
1323 	void *addr = NULL;
1324 
1325 	*handle = DMA_ERROR_CODE;
1326 	size = PAGE_ALIGN(size);
1327 
1328 	if (gfp & GFP_ATOMIC)
1329 		return __iommu_alloc_atomic(dev, size, handle);
1330 
1331 	/*
1332 	 * Following is a work-around (a.k.a. hack) to prevent pages
1333 	 * with __GFP_COMP being passed to split_page() which cannot
1334 	 * handle them.  The real problem is that this flag probably
1335 	 * should be 0 on ARM as it is not supported on this
1336 	 * platform; see CONFIG_HUGETLBFS.
1337 	 */
1338 	gfp &= ~(__GFP_COMP);
1339 
1340 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1341 	if (!pages)
1342 		return NULL;
1343 
1344 	*handle = __iommu_create_mapping(dev, pages, size);
1345 	if (*handle == DMA_ERROR_CODE)
1346 		goto err_buffer;
1347 
1348 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1349 		return pages;
1350 
1351 	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1352 				   __builtin_return_address(0));
1353 	if (!addr)
1354 		goto err_mapping;
1355 
1356 	return addr;
1357 
1358 err_mapping:
1359 	__iommu_remove_mapping(dev, *handle, size);
1360 err_buffer:
1361 	__iommu_free_buffer(dev, pages, size, attrs);
1362 	return NULL;
1363 }
1364 
1365 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1366 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1367 		    struct dma_attrs *attrs)
1368 {
1369 	unsigned long uaddr = vma->vm_start;
1370 	unsigned long usize = vma->vm_end - vma->vm_start;
1371 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1372 
1373 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1374 
1375 	if (!pages)
1376 		return -ENXIO;
1377 
1378 	do {
1379 		int ret = vm_insert_page(vma, uaddr, *pages++);
1380 		if (ret) {
1381 			pr_err("Remapping memory failed: %d\n", ret);
1382 			return ret;
1383 		}
1384 		uaddr += PAGE_SIZE;
1385 		usize -= PAGE_SIZE;
1386 	} while (usize > 0);
1387 
1388 	return 0;
1389 }
1390 
1391 /*
1392  * free a page as defined by the above mapping.
1393  * Must not be called with IRQs disabled.
1394  */
1395 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1396 			  dma_addr_t handle, struct dma_attrs *attrs)
1397 {
1398 	struct page **pages;
1399 	size = PAGE_ALIGN(size);
1400 
1401 	if (__in_atomic_pool(cpu_addr, size)) {
1402 		__iommu_free_atomic(dev, cpu_addr, handle, size);
1403 		return;
1404 	}
1405 
1406 	pages = __iommu_get_pages(cpu_addr, attrs);
1407 	if (!pages) {
1408 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1409 		return;
1410 	}
1411 
1412 	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1413 		unmap_kernel_range((unsigned long)cpu_addr, size);
1414 		vunmap(cpu_addr);
1415 	}
1416 
1417 	__iommu_remove_mapping(dev, handle, size);
1418 	__iommu_free_buffer(dev, pages, size, attrs);
1419 }
1420 
1421 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1422 				 void *cpu_addr, dma_addr_t dma_addr,
1423 				 size_t size, struct dma_attrs *attrs)
1424 {
1425 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1426 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1427 
1428 	if (!pages)
1429 		return -ENXIO;
1430 
1431 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1432 					 GFP_KERNEL);
1433 }
1434 
1435 static int __dma_direction_to_prot(enum dma_data_direction dir)
1436 {
1437 	int prot;
1438 
1439 	switch (dir) {
1440 	case DMA_BIDIRECTIONAL:
1441 		prot = IOMMU_READ | IOMMU_WRITE;
1442 		break;
1443 	case DMA_TO_DEVICE:
1444 		prot = IOMMU_READ;
1445 		break;
1446 	case DMA_FROM_DEVICE:
1447 		prot = IOMMU_WRITE;
1448 		break;
1449 	default:
1450 		prot = 0;
1451 	}
1452 
1453 	return prot;
1454 }
1455 
1456 /*
1457  * Map a part of the scatter-gather list into contiguous io address space
1458  */
1459 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1460 			  size_t size, dma_addr_t *handle,
1461 			  enum dma_data_direction dir, struct dma_attrs *attrs,
1462 			  bool is_coherent)
1463 {
1464 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1465 	dma_addr_t iova, iova_base;
1466 	int ret = 0;
1467 	unsigned int count;
1468 	struct scatterlist *s;
1469 	int prot;
1470 
1471 	size = PAGE_ALIGN(size);
1472 	*handle = DMA_ERROR_CODE;
1473 
1474 	iova_base = iova = __alloc_iova(mapping, size);
1475 	if (iova == DMA_ERROR_CODE)
1476 		return -ENOMEM;
1477 
1478 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1479 		phys_addr_t phys = page_to_phys(sg_page(s));
1480 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1481 
1482 		if (!is_coherent &&
1483 			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1484 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1485 
1486 		prot = __dma_direction_to_prot(dir);
1487 
1488 		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1489 		if (ret < 0)
1490 			goto fail;
1491 		count += len >> PAGE_SHIFT;
1492 		iova += len;
1493 	}
1494 	*handle = iova_base;
1495 
1496 	return 0;
1497 fail:
1498 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1499 	__free_iova(mapping, iova_base, size);
1500 	return ret;
1501 }
1502 
1503 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1504 		     enum dma_data_direction dir, struct dma_attrs *attrs,
1505 		     bool is_coherent)
1506 {
1507 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1508 	int i, count = 0;
1509 	unsigned int offset = s->offset;
1510 	unsigned int size = s->offset + s->length;
1511 	unsigned int max = dma_get_max_seg_size(dev);
1512 
1513 	for (i = 1; i < nents; i++) {
1514 		s = sg_next(s);
1515 
1516 		s->dma_address = DMA_ERROR_CODE;
1517 		s->dma_length = 0;
1518 
1519 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1520 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1521 			    dir, attrs, is_coherent) < 0)
1522 				goto bad_mapping;
1523 
1524 			dma->dma_address += offset;
1525 			dma->dma_length = size - offset;
1526 
1527 			size = offset = s->offset;
1528 			start = s;
1529 			dma = sg_next(dma);
1530 			count += 1;
1531 		}
1532 		size += s->length;
1533 	}
1534 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1535 		is_coherent) < 0)
1536 		goto bad_mapping;
1537 
1538 	dma->dma_address += offset;
1539 	dma->dma_length = size - offset;
1540 
1541 	return count+1;
1542 
1543 bad_mapping:
1544 	for_each_sg(sg, s, count, i)
1545 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1546 	return 0;
1547 }
1548 
1549 /**
1550  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1551  * @dev: valid struct device pointer
1552  * @sg: list of buffers
1553  * @nents: number of buffers to map
1554  * @dir: DMA transfer direction
1555  *
1556  * Map a set of i/o coherent buffers described by scatterlist in streaming
1557  * mode for DMA. The scatter gather list elements are merged together (if
1558  * possible) and tagged with the appropriate dma address and length. They are
1559  * obtained via sg_dma_{address,length}.
1560  */
1561 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1562 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1563 {
1564 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1565 }
1566 
1567 /**
1568  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1569  * @dev: valid struct device pointer
1570  * @sg: list of buffers
1571  * @nents: number of buffers to map
1572  * @dir: DMA transfer direction
1573  *
1574  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1575  * The scatter gather list elements are merged together (if possible) and
1576  * tagged with the appropriate dma address and length. They are obtained via
1577  * sg_dma_{address,length}.
1578  */
1579 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1580 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1581 {
1582 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1583 }
1584 
1585 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1586 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1587 		bool is_coherent)
1588 {
1589 	struct scatterlist *s;
1590 	int i;
1591 
1592 	for_each_sg(sg, s, nents, i) {
1593 		if (sg_dma_len(s))
1594 			__iommu_remove_mapping(dev, sg_dma_address(s),
1595 					       sg_dma_len(s));
1596 		if (!is_coherent &&
1597 		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1598 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1599 					      s->length, dir);
1600 	}
1601 }
1602 
1603 /**
1604  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1605  * @dev: valid struct device pointer
1606  * @sg: list of buffers
1607  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1608  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1609  *
1610  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1611  * rules concerning calls here are the same as for dma_unmap_single().
1612  */
1613 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1614 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1615 {
1616 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1617 }
1618 
1619 /**
1620  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1621  * @dev: valid struct device pointer
1622  * @sg: list of buffers
1623  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1624  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1625  *
1626  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1627  * rules concerning calls here are the same as for dma_unmap_single().
1628  */
1629 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1630 			enum dma_data_direction dir, struct dma_attrs *attrs)
1631 {
1632 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1633 }
1634 
1635 /**
1636  * arm_iommu_sync_sg_for_cpu
1637  * @dev: valid struct device pointer
1638  * @sg: list of buffers
1639  * @nents: number of buffers to map (returned from dma_map_sg)
1640  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1641  */
1642 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1643 			int nents, enum dma_data_direction dir)
1644 {
1645 	struct scatterlist *s;
1646 	int i;
1647 
1648 	for_each_sg(sg, s, nents, i)
1649 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1650 
1651 }
1652 
1653 /**
1654  * arm_iommu_sync_sg_for_device
1655  * @dev: valid struct device pointer
1656  * @sg: list of buffers
1657  * @nents: number of buffers to map (returned from dma_map_sg)
1658  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1659  */
1660 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1661 			int nents, enum dma_data_direction dir)
1662 {
1663 	struct scatterlist *s;
1664 	int i;
1665 
1666 	for_each_sg(sg, s, nents, i)
1667 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1668 }
1669 
1670 
1671 /**
1672  * arm_coherent_iommu_map_page
1673  * @dev: valid struct device pointer
1674  * @page: page that buffer resides in
1675  * @offset: offset into page for start of buffer
1676  * @size: size of buffer to map
1677  * @dir: DMA transfer direction
1678  *
1679  * Coherent IOMMU aware version of arm_dma_map_page()
1680  */
1681 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1682 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1683 	     struct dma_attrs *attrs)
1684 {
1685 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1686 	dma_addr_t dma_addr;
1687 	int ret, prot, len = PAGE_ALIGN(size + offset);
1688 
1689 	dma_addr = __alloc_iova(mapping, len);
1690 	if (dma_addr == DMA_ERROR_CODE)
1691 		return dma_addr;
1692 
1693 	prot = __dma_direction_to_prot(dir);
1694 
1695 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1696 	if (ret < 0)
1697 		goto fail;
1698 
1699 	return dma_addr + offset;
1700 fail:
1701 	__free_iova(mapping, dma_addr, len);
1702 	return DMA_ERROR_CODE;
1703 }
1704 
1705 /**
1706  * arm_iommu_map_page
1707  * @dev: valid struct device pointer
1708  * @page: page that buffer resides in
1709  * @offset: offset into page for start of buffer
1710  * @size: size of buffer to map
1711  * @dir: DMA transfer direction
1712  *
1713  * IOMMU aware version of arm_dma_map_page()
1714  */
1715 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1716 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1717 	     struct dma_attrs *attrs)
1718 {
1719 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1720 		__dma_page_cpu_to_dev(page, offset, size, dir);
1721 
1722 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1723 }
1724 
1725 /**
1726  * arm_coherent_iommu_unmap_page
1727  * @dev: valid struct device pointer
1728  * @handle: DMA address of buffer
1729  * @size: size of buffer (same as passed to dma_map_page)
1730  * @dir: DMA transfer direction (same as passed to dma_map_page)
1731  *
1732  * Coherent IOMMU aware version of arm_dma_unmap_page()
1733  */
1734 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1735 		size_t size, enum dma_data_direction dir,
1736 		struct dma_attrs *attrs)
1737 {
1738 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1739 	dma_addr_t iova = handle & PAGE_MASK;
1740 	int offset = handle & ~PAGE_MASK;
1741 	int len = PAGE_ALIGN(size + offset);
1742 
1743 	if (!iova)
1744 		return;
1745 
1746 	iommu_unmap(mapping->domain, iova, len);
1747 	__free_iova(mapping, iova, len);
1748 }
1749 
1750 /**
1751  * arm_iommu_unmap_page
1752  * @dev: valid struct device pointer
1753  * @handle: DMA address of buffer
1754  * @size: size of buffer (same as passed to dma_map_page)
1755  * @dir: DMA transfer direction (same as passed to dma_map_page)
1756  *
1757  * IOMMU aware version of arm_dma_unmap_page()
1758  */
1759 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1760 		size_t size, enum dma_data_direction dir,
1761 		struct dma_attrs *attrs)
1762 {
1763 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1764 	dma_addr_t iova = handle & PAGE_MASK;
1765 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1766 	int offset = handle & ~PAGE_MASK;
1767 	int len = PAGE_ALIGN(size + offset);
1768 
1769 	if (!iova)
1770 		return;
1771 
1772 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1773 		__dma_page_dev_to_cpu(page, offset, size, dir);
1774 
1775 	iommu_unmap(mapping->domain, iova, len);
1776 	__free_iova(mapping, iova, len);
1777 }
1778 
1779 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1780 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1781 {
1782 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1783 	dma_addr_t iova = handle & PAGE_MASK;
1784 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1785 	unsigned int offset = handle & ~PAGE_MASK;
1786 
1787 	if (!iova)
1788 		return;
1789 
1790 	__dma_page_dev_to_cpu(page, offset, size, dir);
1791 }
1792 
1793 static void arm_iommu_sync_single_for_device(struct device *dev,
1794 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1795 {
1796 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1797 	dma_addr_t iova = handle & PAGE_MASK;
1798 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1799 	unsigned int offset = handle & ~PAGE_MASK;
1800 
1801 	if (!iova)
1802 		return;
1803 
1804 	__dma_page_cpu_to_dev(page, offset, size, dir);
1805 }
1806 
1807 struct dma_map_ops iommu_ops = {
1808 	.alloc		= arm_iommu_alloc_attrs,
1809 	.free		= arm_iommu_free_attrs,
1810 	.mmap		= arm_iommu_mmap_attrs,
1811 	.get_sgtable	= arm_iommu_get_sgtable,
1812 
1813 	.map_page		= arm_iommu_map_page,
1814 	.unmap_page		= arm_iommu_unmap_page,
1815 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1816 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1817 
1818 	.map_sg			= arm_iommu_map_sg,
1819 	.unmap_sg		= arm_iommu_unmap_sg,
1820 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1821 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1822 
1823 	.set_dma_mask		= arm_dma_set_mask,
1824 };
1825 
1826 struct dma_map_ops iommu_coherent_ops = {
1827 	.alloc		= arm_iommu_alloc_attrs,
1828 	.free		= arm_iommu_free_attrs,
1829 	.mmap		= arm_iommu_mmap_attrs,
1830 	.get_sgtable	= arm_iommu_get_sgtable,
1831 
1832 	.map_page	= arm_coherent_iommu_map_page,
1833 	.unmap_page	= arm_coherent_iommu_unmap_page,
1834 
1835 	.map_sg		= arm_coherent_iommu_map_sg,
1836 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
1837 
1838 	.set_dma_mask	= arm_dma_set_mask,
1839 };
1840 
1841 /**
1842  * arm_iommu_create_mapping
1843  * @bus: pointer to the bus holding the client device (for IOMMU calls)
1844  * @base: start address of the valid IO address space
1845  * @size: size of the valid IO address space
1846  * @order: accuracy of the IO addresses allocations
1847  *
1848  * Creates a mapping structure which holds information about used/unused
1849  * IO address ranges, which is required to perform memory allocation and
1850  * mapping with IOMMU aware functions.
1851  *
1852  * The client device need to be attached to the mapping with
1853  * arm_iommu_attach_device function.
1854  */
1855 struct dma_iommu_mapping *
1856 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
1857 			 int order)
1858 {
1859 	unsigned int count = size >> (PAGE_SHIFT + order);
1860 	unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
1861 	struct dma_iommu_mapping *mapping;
1862 	int err = -ENOMEM;
1863 
1864 	if (!count)
1865 		return ERR_PTR(-EINVAL);
1866 
1867 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1868 	if (!mapping)
1869 		goto err;
1870 
1871 	mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1872 	if (!mapping->bitmap)
1873 		goto err2;
1874 
1875 	mapping->base = base;
1876 	mapping->bits = BITS_PER_BYTE * bitmap_size;
1877 	mapping->order = order;
1878 	spin_lock_init(&mapping->lock);
1879 
1880 	mapping->domain = iommu_domain_alloc(bus);
1881 	if (!mapping->domain)
1882 		goto err3;
1883 
1884 	kref_init(&mapping->kref);
1885 	return mapping;
1886 err3:
1887 	kfree(mapping->bitmap);
1888 err2:
1889 	kfree(mapping);
1890 err:
1891 	return ERR_PTR(err);
1892 }
1893 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1894 
1895 static void release_iommu_mapping(struct kref *kref)
1896 {
1897 	struct dma_iommu_mapping *mapping =
1898 		container_of(kref, struct dma_iommu_mapping, kref);
1899 
1900 	iommu_domain_free(mapping->domain);
1901 	kfree(mapping->bitmap);
1902 	kfree(mapping);
1903 }
1904 
1905 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1906 {
1907 	if (mapping)
1908 		kref_put(&mapping->kref, release_iommu_mapping);
1909 }
1910 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1911 
1912 /**
1913  * arm_iommu_attach_device
1914  * @dev: valid struct device pointer
1915  * @mapping: io address space mapping structure (returned from
1916  *	arm_iommu_create_mapping)
1917  *
1918  * Attaches specified io address space mapping to the provided device,
1919  * this replaces the dma operations (dma_map_ops pointer) with the
1920  * IOMMU aware version. More than one client might be attached to
1921  * the same io address space mapping.
1922  */
1923 int arm_iommu_attach_device(struct device *dev,
1924 			    struct dma_iommu_mapping *mapping)
1925 {
1926 	int err;
1927 
1928 	err = iommu_attach_device(mapping->domain, dev);
1929 	if (err)
1930 		return err;
1931 
1932 	kref_get(&mapping->kref);
1933 	dev->archdata.mapping = mapping;
1934 	set_dma_ops(dev, &iommu_ops);
1935 
1936 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1937 	return 0;
1938 }
1939 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1940 
1941 /**
1942  * arm_iommu_detach_device
1943  * @dev: valid struct device pointer
1944  *
1945  * Detaches the provided device from a previously attached map.
1946  * This voids the dma operations (dma_map_ops pointer)
1947  */
1948 void arm_iommu_detach_device(struct device *dev)
1949 {
1950 	struct dma_iommu_mapping *mapping;
1951 
1952 	mapping = to_dma_iommu_mapping(dev);
1953 	if (!mapping) {
1954 		dev_warn(dev, "Not attached\n");
1955 		return;
1956 	}
1957 
1958 	iommu_detach_device(mapping->domain, dev);
1959 	kref_put(&mapping->kref, release_iommu_mapping);
1960 	dev->archdata.mapping = NULL;
1961 	set_dma_ops(dev, NULL);
1962 
1963 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
1964 }
1965 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
1966 
1967 #endif
1968