1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/mm/dma-mapping.c 4 * 5 * Copyright (C) 2000-2004 Russell King 6 * 7 * DMA uncached mapping support. 8 */ 9 #include <linux/module.h> 10 #include <linux/mm.h> 11 #include <linux/genalloc.h> 12 #include <linux/gfp.h> 13 #include <linux/errno.h> 14 #include <linux/list.h> 15 #include <linux/init.h> 16 #include <linux/device.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/dma-noncoherent.h> 19 #include <linux/dma-contiguous.h> 20 #include <linux/highmem.h> 21 #include <linux/memblock.h> 22 #include <linux/slab.h> 23 #include <linux/iommu.h> 24 #include <linux/io.h> 25 #include <linux/vmalloc.h> 26 #include <linux/sizes.h> 27 #include <linux/cma.h> 28 29 #include <asm/memory.h> 30 #include <asm/highmem.h> 31 #include <asm/cacheflush.h> 32 #include <asm/tlbflush.h> 33 #include <asm/mach/arch.h> 34 #include <asm/dma-iommu.h> 35 #include <asm/mach/map.h> 36 #include <asm/system_info.h> 37 #include <asm/dma-contiguous.h> 38 39 #include "dma.h" 40 #include "mm.h" 41 42 struct arm_dma_alloc_args { 43 struct device *dev; 44 size_t size; 45 gfp_t gfp; 46 pgprot_t prot; 47 const void *caller; 48 bool want_vaddr; 49 int coherent_flag; 50 }; 51 52 struct arm_dma_free_args { 53 struct device *dev; 54 size_t size; 55 void *cpu_addr; 56 struct page *page; 57 bool want_vaddr; 58 }; 59 60 #define NORMAL 0 61 #define COHERENT 1 62 63 struct arm_dma_allocator { 64 void *(*alloc)(struct arm_dma_alloc_args *args, 65 struct page **ret_page); 66 void (*free)(struct arm_dma_free_args *args); 67 }; 68 69 struct arm_dma_buffer { 70 struct list_head list; 71 void *virt; 72 struct arm_dma_allocator *allocator; 73 }; 74 75 static LIST_HEAD(arm_dma_bufs); 76 static DEFINE_SPINLOCK(arm_dma_bufs_lock); 77 78 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt) 79 { 80 struct arm_dma_buffer *buf, *found = NULL; 81 unsigned long flags; 82 83 spin_lock_irqsave(&arm_dma_bufs_lock, flags); 84 list_for_each_entry(buf, &arm_dma_bufs, list) { 85 if (buf->virt == virt) { 86 list_del(&buf->list); 87 found = buf; 88 break; 89 } 90 } 91 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); 92 return found; 93 } 94 95 /* 96 * The DMA API is built upon the notion of "buffer ownership". A buffer 97 * is either exclusively owned by the CPU (and therefore may be accessed 98 * by it) or exclusively owned by the DMA device. These helper functions 99 * represent the transitions between these two ownership states. 100 * 101 * Note, however, that on later ARMs, this notion does not work due to 102 * speculative prefetches. We model our approach on the assumption that 103 * the CPU does do speculative prefetches, which means we clean caches 104 * before transfers and delay cache invalidation until transfer completion. 105 * 106 */ 107 static void __dma_page_cpu_to_dev(struct page *, unsigned long, 108 size_t, enum dma_data_direction); 109 static void __dma_page_dev_to_cpu(struct page *, unsigned long, 110 size_t, enum dma_data_direction); 111 112 /** 113 * arm_dma_map_page - map a portion of a page for streaming DMA 114 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 115 * @page: page that buffer resides in 116 * @offset: offset into page for start of buffer 117 * @size: size of buffer to map 118 * @dir: DMA transfer direction 119 * 120 * Ensure that any data held in the cache is appropriately discarded 121 * or written back. 122 * 123 * The device owns this memory once this call has completed. The CPU 124 * can regain ownership by calling dma_unmap_page(). 125 */ 126 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page, 127 unsigned long offset, size_t size, enum dma_data_direction dir, 128 unsigned long attrs) 129 { 130 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 131 __dma_page_cpu_to_dev(page, offset, size, dir); 132 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 133 } 134 135 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page, 136 unsigned long offset, size_t size, enum dma_data_direction dir, 137 unsigned long attrs) 138 { 139 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 140 } 141 142 /** 143 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page() 144 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 145 * @handle: DMA address of buffer 146 * @size: size of buffer (same as passed to dma_map_page) 147 * @dir: DMA transfer direction (same as passed to dma_map_page) 148 * 149 * Unmap a page streaming mode DMA translation. The handle and size 150 * must match what was provided in the previous dma_map_page() call. 151 * All other usages are undefined. 152 * 153 * After this call, reads by the CPU to the buffer are guaranteed to see 154 * whatever the device wrote there. 155 */ 156 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle, 157 size_t size, enum dma_data_direction dir, unsigned long attrs) 158 { 159 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 160 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)), 161 handle & ~PAGE_MASK, size, dir); 162 } 163 164 static void arm_dma_sync_single_for_cpu(struct device *dev, 165 dma_addr_t handle, size_t size, enum dma_data_direction dir) 166 { 167 unsigned int offset = handle & (PAGE_SIZE - 1); 168 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 169 __dma_page_dev_to_cpu(page, offset, size, dir); 170 } 171 172 static void arm_dma_sync_single_for_device(struct device *dev, 173 dma_addr_t handle, size_t size, enum dma_data_direction dir) 174 { 175 unsigned int offset = handle & (PAGE_SIZE - 1); 176 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 177 __dma_page_cpu_to_dev(page, offset, size, dir); 178 } 179 180 const struct dma_map_ops arm_dma_ops = { 181 .alloc = arm_dma_alloc, 182 .free = arm_dma_free, 183 .mmap = arm_dma_mmap, 184 .get_sgtable = arm_dma_get_sgtable, 185 .map_page = arm_dma_map_page, 186 .unmap_page = arm_dma_unmap_page, 187 .map_sg = arm_dma_map_sg, 188 .unmap_sg = arm_dma_unmap_sg, 189 .map_resource = dma_direct_map_resource, 190 .sync_single_for_cpu = arm_dma_sync_single_for_cpu, 191 .sync_single_for_device = arm_dma_sync_single_for_device, 192 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu, 193 .sync_sg_for_device = arm_dma_sync_sg_for_device, 194 .dma_supported = arm_dma_supported, 195 }; 196 EXPORT_SYMBOL(arm_dma_ops); 197 198 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 199 dma_addr_t *handle, gfp_t gfp, unsigned long attrs); 200 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 201 dma_addr_t handle, unsigned long attrs); 202 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma, 203 void *cpu_addr, dma_addr_t dma_addr, size_t size, 204 unsigned long attrs); 205 206 const struct dma_map_ops arm_coherent_dma_ops = { 207 .alloc = arm_coherent_dma_alloc, 208 .free = arm_coherent_dma_free, 209 .mmap = arm_coherent_dma_mmap, 210 .get_sgtable = arm_dma_get_sgtable, 211 .map_page = arm_coherent_dma_map_page, 212 .map_sg = arm_dma_map_sg, 213 .map_resource = dma_direct_map_resource, 214 .dma_supported = arm_dma_supported, 215 }; 216 EXPORT_SYMBOL(arm_coherent_dma_ops); 217 218 static int __dma_supported(struct device *dev, u64 mask, bool warn) 219 { 220 unsigned long max_dma_pfn = min(max_pfn, arm_dma_pfn_limit); 221 222 /* 223 * Translate the device's DMA mask to a PFN limit. This 224 * PFN number includes the page which we can DMA to. 225 */ 226 if (dma_to_pfn(dev, mask) < max_dma_pfn) { 227 if (warn) 228 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n", 229 mask, 230 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1, 231 max_dma_pfn + 1); 232 return 0; 233 } 234 235 return 1; 236 } 237 238 static u64 get_coherent_dma_mask(struct device *dev) 239 { 240 u64 mask = (u64)DMA_BIT_MASK(32); 241 242 if (dev) { 243 mask = dev->coherent_dma_mask; 244 245 /* 246 * Sanity check the DMA mask - it must be non-zero, and 247 * must be able to be satisfied by a DMA allocation. 248 */ 249 if (mask == 0) { 250 dev_warn(dev, "coherent DMA mask is unset\n"); 251 return 0; 252 } 253 254 if (!__dma_supported(dev, mask, true)) 255 return 0; 256 } 257 258 return mask; 259 } 260 261 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag) 262 { 263 /* 264 * Ensure that the allocated pages are zeroed, and that any data 265 * lurking in the kernel direct-mapped region is invalidated. 266 */ 267 if (PageHighMem(page)) { 268 phys_addr_t base = __pfn_to_phys(page_to_pfn(page)); 269 phys_addr_t end = base + size; 270 while (size > 0) { 271 void *ptr = kmap_atomic(page); 272 memset(ptr, 0, PAGE_SIZE); 273 if (coherent_flag != COHERENT) 274 dmac_flush_range(ptr, ptr + PAGE_SIZE); 275 kunmap_atomic(ptr); 276 page++; 277 size -= PAGE_SIZE; 278 } 279 if (coherent_flag != COHERENT) 280 outer_flush_range(base, end); 281 } else { 282 void *ptr = page_address(page); 283 memset(ptr, 0, size); 284 if (coherent_flag != COHERENT) { 285 dmac_flush_range(ptr, ptr + size); 286 outer_flush_range(__pa(ptr), __pa(ptr) + size); 287 } 288 } 289 } 290 291 /* 292 * Allocate a DMA buffer for 'dev' of size 'size' using the 293 * specified gfp mask. Note that 'size' must be page aligned. 294 */ 295 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, 296 gfp_t gfp, int coherent_flag) 297 { 298 unsigned long order = get_order(size); 299 struct page *page, *p, *e; 300 301 page = alloc_pages(gfp, order); 302 if (!page) 303 return NULL; 304 305 /* 306 * Now split the huge page and free the excess pages 307 */ 308 split_page(page, order); 309 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) 310 __free_page(p); 311 312 __dma_clear_buffer(page, size, coherent_flag); 313 314 return page; 315 } 316 317 /* 318 * Free a DMA buffer. 'size' must be page aligned. 319 */ 320 static void __dma_free_buffer(struct page *page, size_t size) 321 { 322 struct page *e = page + (size >> PAGE_SHIFT); 323 324 while (page < e) { 325 __free_page(page); 326 page++; 327 } 328 } 329 330 static void *__alloc_from_contiguous(struct device *dev, size_t size, 331 pgprot_t prot, struct page **ret_page, 332 const void *caller, bool want_vaddr, 333 int coherent_flag, gfp_t gfp); 334 335 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 336 pgprot_t prot, struct page **ret_page, 337 const void *caller, bool want_vaddr); 338 339 static void * 340 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot, 341 const void *caller) 342 { 343 /* 344 * DMA allocation can be mapped to user space, so lets 345 * set VM_USERMAP flags too. 346 */ 347 return dma_common_contiguous_remap(page, size, 348 VM_ARM_DMA_CONSISTENT | VM_USERMAP, 349 prot, caller); 350 } 351 352 static void __dma_free_remap(void *cpu_addr, size_t size) 353 { 354 dma_common_free_remap(cpu_addr, size, 355 VM_ARM_DMA_CONSISTENT | VM_USERMAP); 356 } 357 358 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K 359 static struct gen_pool *atomic_pool __ro_after_init; 360 361 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE; 362 363 static int __init early_coherent_pool(char *p) 364 { 365 atomic_pool_size = memparse(p, &p); 366 return 0; 367 } 368 early_param("coherent_pool", early_coherent_pool); 369 370 /* 371 * Initialise the coherent pool for atomic allocations. 372 */ 373 static int __init atomic_pool_init(void) 374 { 375 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL); 376 gfp_t gfp = GFP_KERNEL | GFP_DMA; 377 struct page *page; 378 void *ptr; 379 380 atomic_pool = gen_pool_create(PAGE_SHIFT, -1); 381 if (!atomic_pool) 382 goto out; 383 /* 384 * The atomic pool is only used for non-coherent allocations 385 * so we must pass NORMAL for coherent_flag. 386 */ 387 if (dev_get_cma_area(NULL)) 388 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot, 389 &page, atomic_pool_init, true, NORMAL, 390 GFP_KERNEL); 391 else 392 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot, 393 &page, atomic_pool_init, true); 394 if (ptr) { 395 int ret; 396 397 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr, 398 page_to_phys(page), 399 atomic_pool_size, -1); 400 if (ret) 401 goto destroy_genpool; 402 403 gen_pool_set_algo(atomic_pool, 404 gen_pool_first_fit_order_align, 405 NULL); 406 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n", 407 atomic_pool_size / 1024); 408 return 0; 409 } 410 411 destroy_genpool: 412 gen_pool_destroy(atomic_pool); 413 atomic_pool = NULL; 414 out: 415 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n", 416 atomic_pool_size / 1024); 417 return -ENOMEM; 418 } 419 /* 420 * CMA is activated by core_initcall, so we must be called after it. 421 */ 422 postcore_initcall(atomic_pool_init); 423 424 struct dma_contig_early_reserve { 425 phys_addr_t base; 426 unsigned long size; 427 }; 428 429 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata; 430 431 static int dma_mmu_remap_num __initdata; 432 433 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) 434 { 435 dma_mmu_remap[dma_mmu_remap_num].base = base; 436 dma_mmu_remap[dma_mmu_remap_num].size = size; 437 dma_mmu_remap_num++; 438 } 439 440 void __init dma_contiguous_remap(void) 441 { 442 int i; 443 for (i = 0; i < dma_mmu_remap_num; i++) { 444 phys_addr_t start = dma_mmu_remap[i].base; 445 phys_addr_t end = start + dma_mmu_remap[i].size; 446 struct map_desc map; 447 unsigned long addr; 448 449 if (end > arm_lowmem_limit) 450 end = arm_lowmem_limit; 451 if (start >= end) 452 continue; 453 454 map.pfn = __phys_to_pfn(start); 455 map.virtual = __phys_to_virt(start); 456 map.length = end - start; 457 map.type = MT_MEMORY_DMA_READY; 458 459 /* 460 * Clear previous low-memory mapping to ensure that the 461 * TLB does not see any conflicting entries, then flush 462 * the TLB of the old entries before creating new mappings. 463 * 464 * This ensures that any speculatively loaded TLB entries 465 * (even though they may be rare) can not cause any problems, 466 * and ensures that this code is architecturally compliant. 467 */ 468 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end); 469 addr += PMD_SIZE) 470 pmd_clear(pmd_off_k(addr)); 471 472 flush_tlb_kernel_range(__phys_to_virt(start), 473 __phys_to_virt(end)); 474 475 iotable_init(&map, 1); 476 } 477 } 478 479 static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data) 480 { 481 struct page *page = virt_to_page(addr); 482 pgprot_t prot = *(pgprot_t *)data; 483 484 set_pte_ext(pte, mk_pte(page, prot), 0); 485 return 0; 486 } 487 488 static void __dma_remap(struct page *page, size_t size, pgprot_t prot) 489 { 490 unsigned long start = (unsigned long) page_address(page); 491 unsigned end = start + size; 492 493 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot); 494 flush_tlb_kernel_range(start, end); 495 } 496 497 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 498 pgprot_t prot, struct page **ret_page, 499 const void *caller, bool want_vaddr) 500 { 501 struct page *page; 502 void *ptr = NULL; 503 /* 504 * __alloc_remap_buffer is only called when the device is 505 * non-coherent 506 */ 507 page = __dma_alloc_buffer(dev, size, gfp, NORMAL); 508 if (!page) 509 return NULL; 510 if (!want_vaddr) 511 goto out; 512 513 ptr = __dma_alloc_remap(page, size, gfp, prot, caller); 514 if (!ptr) { 515 __dma_free_buffer(page, size); 516 return NULL; 517 } 518 519 out: 520 *ret_page = page; 521 return ptr; 522 } 523 524 static void *__alloc_from_pool(size_t size, struct page **ret_page) 525 { 526 unsigned long val; 527 void *ptr = NULL; 528 529 if (!atomic_pool) { 530 WARN(1, "coherent pool not initialised!\n"); 531 return NULL; 532 } 533 534 val = gen_pool_alloc(atomic_pool, size); 535 if (val) { 536 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); 537 538 *ret_page = phys_to_page(phys); 539 ptr = (void *)val; 540 } 541 542 return ptr; 543 } 544 545 static bool __in_atomic_pool(void *start, size_t size) 546 { 547 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size); 548 } 549 550 static int __free_from_pool(void *start, size_t size) 551 { 552 if (!__in_atomic_pool(start, size)) 553 return 0; 554 555 gen_pool_free(atomic_pool, (unsigned long)start, size); 556 557 return 1; 558 } 559 560 static void *__alloc_from_contiguous(struct device *dev, size_t size, 561 pgprot_t prot, struct page **ret_page, 562 const void *caller, bool want_vaddr, 563 int coherent_flag, gfp_t gfp) 564 { 565 unsigned long order = get_order(size); 566 size_t count = size >> PAGE_SHIFT; 567 struct page *page; 568 void *ptr = NULL; 569 570 page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN); 571 if (!page) 572 return NULL; 573 574 __dma_clear_buffer(page, size, coherent_flag); 575 576 if (!want_vaddr) 577 goto out; 578 579 if (PageHighMem(page)) { 580 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller); 581 if (!ptr) { 582 dma_release_from_contiguous(dev, page, count); 583 return NULL; 584 } 585 } else { 586 __dma_remap(page, size, prot); 587 ptr = page_address(page); 588 } 589 590 out: 591 *ret_page = page; 592 return ptr; 593 } 594 595 static void __free_from_contiguous(struct device *dev, struct page *page, 596 void *cpu_addr, size_t size, bool want_vaddr) 597 { 598 if (want_vaddr) { 599 if (PageHighMem(page)) 600 __dma_free_remap(cpu_addr, size); 601 else 602 __dma_remap(page, size, PAGE_KERNEL); 603 } 604 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); 605 } 606 607 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot) 608 { 609 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ? 610 pgprot_writecombine(prot) : 611 pgprot_dmacoherent(prot); 612 return prot; 613 } 614 615 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp, 616 struct page **ret_page) 617 { 618 struct page *page; 619 /* __alloc_simple_buffer is only called when the device is coherent */ 620 page = __dma_alloc_buffer(dev, size, gfp, COHERENT); 621 if (!page) 622 return NULL; 623 624 *ret_page = page; 625 return page_address(page); 626 } 627 628 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args, 629 struct page **ret_page) 630 { 631 return __alloc_simple_buffer(args->dev, args->size, args->gfp, 632 ret_page); 633 } 634 635 static void simple_allocator_free(struct arm_dma_free_args *args) 636 { 637 __dma_free_buffer(args->page, args->size); 638 } 639 640 static struct arm_dma_allocator simple_allocator = { 641 .alloc = simple_allocator_alloc, 642 .free = simple_allocator_free, 643 }; 644 645 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args, 646 struct page **ret_page) 647 { 648 return __alloc_from_contiguous(args->dev, args->size, args->prot, 649 ret_page, args->caller, 650 args->want_vaddr, args->coherent_flag, 651 args->gfp); 652 } 653 654 static void cma_allocator_free(struct arm_dma_free_args *args) 655 { 656 __free_from_contiguous(args->dev, args->page, args->cpu_addr, 657 args->size, args->want_vaddr); 658 } 659 660 static struct arm_dma_allocator cma_allocator = { 661 .alloc = cma_allocator_alloc, 662 .free = cma_allocator_free, 663 }; 664 665 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args, 666 struct page **ret_page) 667 { 668 return __alloc_from_pool(args->size, ret_page); 669 } 670 671 static void pool_allocator_free(struct arm_dma_free_args *args) 672 { 673 __free_from_pool(args->cpu_addr, args->size); 674 } 675 676 static struct arm_dma_allocator pool_allocator = { 677 .alloc = pool_allocator_alloc, 678 .free = pool_allocator_free, 679 }; 680 681 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args, 682 struct page **ret_page) 683 { 684 return __alloc_remap_buffer(args->dev, args->size, args->gfp, 685 args->prot, ret_page, args->caller, 686 args->want_vaddr); 687 } 688 689 static void remap_allocator_free(struct arm_dma_free_args *args) 690 { 691 if (args->want_vaddr) 692 __dma_free_remap(args->cpu_addr, args->size); 693 694 __dma_free_buffer(args->page, args->size); 695 } 696 697 static struct arm_dma_allocator remap_allocator = { 698 .alloc = remap_allocator_alloc, 699 .free = remap_allocator_free, 700 }; 701 702 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 703 gfp_t gfp, pgprot_t prot, bool is_coherent, 704 unsigned long attrs, const void *caller) 705 { 706 u64 mask = get_coherent_dma_mask(dev); 707 struct page *page = NULL; 708 void *addr; 709 bool allowblock, cma; 710 struct arm_dma_buffer *buf; 711 struct arm_dma_alloc_args args = { 712 .dev = dev, 713 .size = PAGE_ALIGN(size), 714 .gfp = gfp, 715 .prot = prot, 716 .caller = caller, 717 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), 718 .coherent_flag = is_coherent ? COHERENT : NORMAL, 719 }; 720 721 #ifdef CONFIG_DMA_API_DEBUG 722 u64 limit = (mask + 1) & ~mask; 723 if (limit && size >= limit) { 724 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", 725 size, mask); 726 return NULL; 727 } 728 #endif 729 730 if (!mask) 731 return NULL; 732 733 buf = kzalloc(sizeof(*buf), 734 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)); 735 if (!buf) 736 return NULL; 737 738 if (mask < 0xffffffffULL) 739 gfp |= GFP_DMA; 740 741 /* 742 * Following is a work-around (a.k.a. hack) to prevent pages 743 * with __GFP_COMP being passed to split_page() which cannot 744 * handle them. The real problem is that this flag probably 745 * should be 0 on ARM as it is not supported on this 746 * platform; see CONFIG_HUGETLBFS. 747 */ 748 gfp &= ~(__GFP_COMP); 749 args.gfp = gfp; 750 751 *handle = DMA_MAPPING_ERROR; 752 allowblock = gfpflags_allow_blocking(gfp); 753 cma = allowblock ? dev_get_cma_area(dev) : false; 754 755 if (cma) 756 buf->allocator = &cma_allocator; 757 else if (is_coherent) 758 buf->allocator = &simple_allocator; 759 else if (allowblock) 760 buf->allocator = &remap_allocator; 761 else 762 buf->allocator = &pool_allocator; 763 764 addr = buf->allocator->alloc(&args, &page); 765 766 if (page) { 767 unsigned long flags; 768 769 *handle = pfn_to_dma(dev, page_to_pfn(page)); 770 buf->virt = args.want_vaddr ? addr : page; 771 772 spin_lock_irqsave(&arm_dma_bufs_lock, flags); 773 list_add(&buf->list, &arm_dma_bufs); 774 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); 775 } else { 776 kfree(buf); 777 } 778 779 return args.want_vaddr ? addr : page; 780 } 781 782 /* 783 * Allocate DMA-coherent memory space and return both the kernel remapped 784 * virtual and bus address for that space. 785 */ 786 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 787 gfp_t gfp, unsigned long attrs) 788 { 789 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 790 791 return __dma_alloc(dev, size, handle, gfp, prot, false, 792 attrs, __builtin_return_address(0)); 793 } 794 795 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 796 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 797 { 798 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true, 799 attrs, __builtin_return_address(0)); 800 } 801 802 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 803 void *cpu_addr, dma_addr_t dma_addr, size_t size, 804 unsigned long attrs) 805 { 806 int ret = -ENXIO; 807 unsigned long nr_vma_pages = vma_pages(vma); 808 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 809 unsigned long pfn = dma_to_pfn(dev, dma_addr); 810 unsigned long off = vma->vm_pgoff; 811 812 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 813 return ret; 814 815 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 816 ret = remap_pfn_range(vma, vma->vm_start, 817 pfn + off, 818 vma->vm_end - vma->vm_start, 819 vma->vm_page_prot); 820 } 821 822 return ret; 823 } 824 825 /* 826 * Create userspace mapping for the DMA-coherent memory. 827 */ 828 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma, 829 void *cpu_addr, dma_addr_t dma_addr, size_t size, 830 unsigned long attrs) 831 { 832 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 833 } 834 835 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 836 void *cpu_addr, dma_addr_t dma_addr, size_t size, 837 unsigned long attrs) 838 { 839 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 840 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 841 } 842 843 /* 844 * Free a buffer as defined by the above mapping. 845 */ 846 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 847 dma_addr_t handle, unsigned long attrs, 848 bool is_coherent) 849 { 850 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 851 struct arm_dma_buffer *buf; 852 struct arm_dma_free_args args = { 853 .dev = dev, 854 .size = PAGE_ALIGN(size), 855 .cpu_addr = cpu_addr, 856 .page = page, 857 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), 858 }; 859 860 buf = arm_dma_buffer_find(cpu_addr); 861 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr)) 862 return; 863 864 buf->allocator->free(&args); 865 kfree(buf); 866 } 867 868 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 869 dma_addr_t handle, unsigned long attrs) 870 { 871 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false); 872 } 873 874 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 875 dma_addr_t handle, unsigned long attrs) 876 { 877 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true); 878 } 879 880 /* 881 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems 882 * that the intention is to allow exporting memory allocated via the 883 * coherent DMA APIs through the dma_buf API, which only accepts a 884 * scattertable. This presents a couple of problems: 885 * 1. Not all memory allocated via the coherent DMA APIs is backed by 886 * a struct page 887 * 2. Passing coherent DMA memory into the streaming APIs is not allowed 888 * as we will try to flush the memory through a different alias to that 889 * actually being used (and the flushes are redundant.) 890 */ 891 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 892 void *cpu_addr, dma_addr_t handle, size_t size, 893 unsigned long attrs) 894 { 895 unsigned long pfn = dma_to_pfn(dev, handle); 896 struct page *page; 897 int ret; 898 899 /* If the PFN is not valid, we do not have a struct page */ 900 if (!pfn_valid(pfn)) 901 return -ENXIO; 902 903 page = pfn_to_page(pfn); 904 905 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 906 if (unlikely(ret)) 907 return ret; 908 909 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 910 return 0; 911 } 912 913 static void dma_cache_maint_page(struct page *page, unsigned long offset, 914 size_t size, enum dma_data_direction dir, 915 void (*op)(const void *, size_t, int)) 916 { 917 unsigned long pfn; 918 size_t left = size; 919 920 pfn = page_to_pfn(page) + offset / PAGE_SIZE; 921 offset %= PAGE_SIZE; 922 923 /* 924 * A single sg entry may refer to multiple physically contiguous 925 * pages. But we still need to process highmem pages individually. 926 * If highmem is not configured then the bulk of this loop gets 927 * optimized out. 928 */ 929 do { 930 size_t len = left; 931 void *vaddr; 932 933 page = pfn_to_page(pfn); 934 935 if (PageHighMem(page)) { 936 if (len + offset > PAGE_SIZE) 937 len = PAGE_SIZE - offset; 938 939 if (cache_is_vipt_nonaliasing()) { 940 vaddr = kmap_atomic(page); 941 op(vaddr + offset, len, dir); 942 kunmap_atomic(vaddr); 943 } else { 944 vaddr = kmap_high_get(page); 945 if (vaddr) { 946 op(vaddr + offset, len, dir); 947 kunmap_high(page); 948 } 949 } 950 } else { 951 vaddr = page_address(page) + offset; 952 op(vaddr, len, dir); 953 } 954 offset = 0; 955 pfn++; 956 left -= len; 957 } while (left); 958 } 959 960 /* 961 * Make an area consistent for devices. 962 * Note: Drivers should NOT use this function directly, as it will break 963 * platforms with CONFIG_DMABOUNCE. 964 * Use the driver DMA support - see dma-mapping.h (dma_sync_*) 965 */ 966 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off, 967 size_t size, enum dma_data_direction dir) 968 { 969 phys_addr_t paddr; 970 971 dma_cache_maint_page(page, off, size, dir, dmac_map_area); 972 973 paddr = page_to_phys(page) + off; 974 if (dir == DMA_FROM_DEVICE) { 975 outer_inv_range(paddr, paddr + size); 976 } else { 977 outer_clean_range(paddr, paddr + size); 978 } 979 /* FIXME: non-speculating: flush on bidirectional mappings? */ 980 } 981 982 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off, 983 size_t size, enum dma_data_direction dir) 984 { 985 phys_addr_t paddr = page_to_phys(page) + off; 986 987 /* FIXME: non-speculating: not required */ 988 /* in any case, don't bother invalidating if DMA to device */ 989 if (dir != DMA_TO_DEVICE) { 990 outer_inv_range(paddr, paddr + size); 991 992 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); 993 } 994 995 /* 996 * Mark the D-cache clean for these pages to avoid extra flushing. 997 */ 998 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) { 999 unsigned long pfn; 1000 size_t left = size; 1001 1002 pfn = page_to_pfn(page) + off / PAGE_SIZE; 1003 off %= PAGE_SIZE; 1004 if (off) { 1005 pfn++; 1006 left -= PAGE_SIZE - off; 1007 } 1008 while (left >= PAGE_SIZE) { 1009 page = pfn_to_page(pfn++); 1010 set_bit(PG_dcache_clean, &page->flags); 1011 left -= PAGE_SIZE; 1012 } 1013 } 1014 } 1015 1016 /** 1017 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA 1018 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1019 * @sg: list of buffers 1020 * @nents: number of buffers to map 1021 * @dir: DMA transfer direction 1022 * 1023 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1024 * This is the scatter-gather version of the dma_map_single interface. 1025 * Here the scatter gather list elements are each tagged with the 1026 * appropriate dma address and length. They are obtained via 1027 * sg_dma_{address,length}. 1028 * 1029 * Device ownership issues as mentioned for dma_map_single are the same 1030 * here. 1031 */ 1032 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1033 enum dma_data_direction dir, unsigned long attrs) 1034 { 1035 const struct dma_map_ops *ops = get_dma_ops(dev); 1036 struct scatterlist *s; 1037 int i, j; 1038 1039 for_each_sg(sg, s, nents, i) { 1040 #ifdef CONFIG_NEED_SG_DMA_LENGTH 1041 s->dma_length = s->length; 1042 #endif 1043 s->dma_address = ops->map_page(dev, sg_page(s), s->offset, 1044 s->length, dir, attrs); 1045 if (dma_mapping_error(dev, s->dma_address)) 1046 goto bad_mapping; 1047 } 1048 return nents; 1049 1050 bad_mapping: 1051 for_each_sg(sg, s, i, j) 1052 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 1053 return 0; 1054 } 1055 1056 /** 1057 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1058 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1059 * @sg: list of buffers 1060 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1061 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1062 * 1063 * Unmap a set of streaming mode DMA translations. Again, CPU access 1064 * rules concerning calls here are the same as for dma_unmap_single(). 1065 */ 1066 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1067 enum dma_data_direction dir, unsigned long attrs) 1068 { 1069 const struct dma_map_ops *ops = get_dma_ops(dev); 1070 struct scatterlist *s; 1071 1072 int i; 1073 1074 for_each_sg(sg, s, nents, i) 1075 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 1076 } 1077 1078 /** 1079 * arm_dma_sync_sg_for_cpu 1080 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1081 * @sg: list of buffers 1082 * @nents: number of buffers to map (returned from dma_map_sg) 1083 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1084 */ 1085 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1086 int nents, enum dma_data_direction dir) 1087 { 1088 const struct dma_map_ops *ops = get_dma_ops(dev); 1089 struct scatterlist *s; 1090 int i; 1091 1092 for_each_sg(sg, s, nents, i) 1093 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length, 1094 dir); 1095 } 1096 1097 /** 1098 * arm_dma_sync_sg_for_device 1099 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1100 * @sg: list of buffers 1101 * @nents: number of buffers to map (returned from dma_map_sg) 1102 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1103 */ 1104 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1105 int nents, enum dma_data_direction dir) 1106 { 1107 const struct dma_map_ops *ops = get_dma_ops(dev); 1108 struct scatterlist *s; 1109 int i; 1110 1111 for_each_sg(sg, s, nents, i) 1112 ops->sync_single_for_device(dev, sg_dma_address(s), s->length, 1113 dir); 1114 } 1115 1116 /* 1117 * Return whether the given device DMA address mask can be supported 1118 * properly. For example, if your device can only drive the low 24-bits 1119 * during bus mastering, then you would pass 0x00ffffff as the mask 1120 * to this function. 1121 */ 1122 int arm_dma_supported(struct device *dev, u64 mask) 1123 { 1124 return __dma_supported(dev, mask, false); 1125 } 1126 1127 static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent) 1128 { 1129 /* 1130 * When CONFIG_ARM_LPAE is set, physical address can extend above 1131 * 32-bits, which then can't be addressed by devices that only support 1132 * 32-bit DMA. 1133 * Use the generic dma-direct / swiotlb ops code in that case, as that 1134 * handles bounce buffering for us. 1135 * 1136 * Note: this checks CONFIG_ARM_LPAE instead of CONFIG_SWIOTLB as the 1137 * latter is also selected by the Xen code, but that code for now relies 1138 * on non-NULL dev_dma_ops. To be cleaned up later. 1139 */ 1140 if (IS_ENABLED(CONFIG_ARM_LPAE)) 1141 return NULL; 1142 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops; 1143 } 1144 1145 #ifdef CONFIG_ARM_DMA_USE_IOMMU 1146 1147 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs) 1148 { 1149 int prot = 0; 1150 1151 if (attrs & DMA_ATTR_PRIVILEGED) 1152 prot |= IOMMU_PRIV; 1153 1154 switch (dir) { 1155 case DMA_BIDIRECTIONAL: 1156 return prot | IOMMU_READ | IOMMU_WRITE; 1157 case DMA_TO_DEVICE: 1158 return prot | IOMMU_READ; 1159 case DMA_FROM_DEVICE: 1160 return prot | IOMMU_WRITE; 1161 default: 1162 return prot; 1163 } 1164 } 1165 1166 /* IOMMU */ 1167 1168 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping); 1169 1170 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, 1171 size_t size) 1172 { 1173 unsigned int order = get_order(size); 1174 unsigned int align = 0; 1175 unsigned int count, start; 1176 size_t mapping_size = mapping->bits << PAGE_SHIFT; 1177 unsigned long flags; 1178 dma_addr_t iova; 1179 int i; 1180 1181 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT) 1182 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT; 1183 1184 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1185 align = (1 << order) - 1; 1186 1187 spin_lock_irqsave(&mapping->lock, flags); 1188 for (i = 0; i < mapping->nr_bitmaps; i++) { 1189 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1190 mapping->bits, 0, count, align); 1191 1192 if (start > mapping->bits) 1193 continue; 1194 1195 bitmap_set(mapping->bitmaps[i], start, count); 1196 break; 1197 } 1198 1199 /* 1200 * No unused range found. Try to extend the existing mapping 1201 * and perform a second attempt to reserve an IO virtual 1202 * address range of size bytes. 1203 */ 1204 if (i == mapping->nr_bitmaps) { 1205 if (extend_iommu_mapping(mapping)) { 1206 spin_unlock_irqrestore(&mapping->lock, flags); 1207 return DMA_MAPPING_ERROR; 1208 } 1209 1210 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1211 mapping->bits, 0, count, align); 1212 1213 if (start > mapping->bits) { 1214 spin_unlock_irqrestore(&mapping->lock, flags); 1215 return DMA_MAPPING_ERROR; 1216 } 1217 1218 bitmap_set(mapping->bitmaps[i], start, count); 1219 } 1220 spin_unlock_irqrestore(&mapping->lock, flags); 1221 1222 iova = mapping->base + (mapping_size * i); 1223 iova += start << PAGE_SHIFT; 1224 1225 return iova; 1226 } 1227 1228 static inline void __free_iova(struct dma_iommu_mapping *mapping, 1229 dma_addr_t addr, size_t size) 1230 { 1231 unsigned int start, count; 1232 size_t mapping_size = mapping->bits << PAGE_SHIFT; 1233 unsigned long flags; 1234 dma_addr_t bitmap_base; 1235 u32 bitmap_index; 1236 1237 if (!size) 1238 return; 1239 1240 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size; 1241 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions); 1242 1243 bitmap_base = mapping->base + mapping_size * bitmap_index; 1244 1245 start = (addr - bitmap_base) >> PAGE_SHIFT; 1246 1247 if (addr + size > bitmap_base + mapping_size) { 1248 /* 1249 * The address range to be freed reaches into the iova 1250 * range of the next bitmap. This should not happen as 1251 * we don't allow this in __alloc_iova (at the 1252 * moment). 1253 */ 1254 BUG(); 1255 } else 1256 count = size >> PAGE_SHIFT; 1257 1258 spin_lock_irqsave(&mapping->lock, flags); 1259 bitmap_clear(mapping->bitmaps[bitmap_index], start, count); 1260 spin_unlock_irqrestore(&mapping->lock, flags); 1261 } 1262 1263 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */ 1264 static const int iommu_order_array[] = { 9, 8, 4, 0 }; 1265 1266 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, 1267 gfp_t gfp, unsigned long attrs, 1268 int coherent_flag) 1269 { 1270 struct page **pages; 1271 int count = size >> PAGE_SHIFT; 1272 int array_size = count * sizeof(struct page *); 1273 int i = 0; 1274 int order_idx = 0; 1275 1276 if (array_size <= PAGE_SIZE) 1277 pages = kzalloc(array_size, GFP_KERNEL); 1278 else 1279 pages = vzalloc(array_size); 1280 if (!pages) 1281 return NULL; 1282 1283 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) 1284 { 1285 unsigned long order = get_order(size); 1286 struct page *page; 1287 1288 page = dma_alloc_from_contiguous(dev, count, order, 1289 gfp & __GFP_NOWARN); 1290 if (!page) 1291 goto error; 1292 1293 __dma_clear_buffer(page, size, coherent_flag); 1294 1295 for (i = 0; i < count; i++) 1296 pages[i] = page + i; 1297 1298 return pages; 1299 } 1300 1301 /* Go straight to 4K chunks if caller says it's OK. */ 1302 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 1303 order_idx = ARRAY_SIZE(iommu_order_array) - 1; 1304 1305 /* 1306 * IOMMU can map any pages, so himem can also be used here 1307 */ 1308 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 1309 1310 while (count) { 1311 int j, order; 1312 1313 order = iommu_order_array[order_idx]; 1314 1315 /* Drop down when we get small */ 1316 if (__fls(count) < order) { 1317 order_idx++; 1318 continue; 1319 } 1320 1321 if (order) { 1322 /* See if it's easy to allocate a high-order chunk */ 1323 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order); 1324 1325 /* Go down a notch at first sign of pressure */ 1326 if (!pages[i]) { 1327 order_idx++; 1328 continue; 1329 } 1330 } else { 1331 pages[i] = alloc_pages(gfp, 0); 1332 if (!pages[i]) 1333 goto error; 1334 } 1335 1336 if (order) { 1337 split_page(pages[i], order); 1338 j = 1 << order; 1339 while (--j) 1340 pages[i + j] = pages[i] + j; 1341 } 1342 1343 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag); 1344 i += 1 << order; 1345 count -= 1 << order; 1346 } 1347 1348 return pages; 1349 error: 1350 while (i--) 1351 if (pages[i]) 1352 __free_pages(pages[i], 0); 1353 kvfree(pages); 1354 return NULL; 1355 } 1356 1357 static int __iommu_free_buffer(struct device *dev, struct page **pages, 1358 size_t size, unsigned long attrs) 1359 { 1360 int count = size >> PAGE_SHIFT; 1361 int i; 1362 1363 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 1364 dma_release_from_contiguous(dev, pages[0], count); 1365 } else { 1366 for (i = 0; i < count; i++) 1367 if (pages[i]) 1368 __free_pages(pages[i], 0); 1369 } 1370 1371 kvfree(pages); 1372 return 0; 1373 } 1374 1375 /* 1376 * Create a CPU mapping for a specified pages 1377 */ 1378 static void * 1379 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot, 1380 const void *caller) 1381 { 1382 return dma_common_pages_remap(pages, size, 1383 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller); 1384 } 1385 1386 /* 1387 * Create a mapping in device IO address space for specified pages 1388 */ 1389 static dma_addr_t 1390 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size, 1391 unsigned long attrs) 1392 { 1393 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1394 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1395 dma_addr_t dma_addr, iova; 1396 int i; 1397 1398 dma_addr = __alloc_iova(mapping, size); 1399 if (dma_addr == DMA_MAPPING_ERROR) 1400 return dma_addr; 1401 1402 iova = dma_addr; 1403 for (i = 0; i < count; ) { 1404 int ret; 1405 1406 unsigned int next_pfn = page_to_pfn(pages[i]) + 1; 1407 phys_addr_t phys = page_to_phys(pages[i]); 1408 unsigned int len, j; 1409 1410 for (j = i + 1; j < count; j++, next_pfn++) 1411 if (page_to_pfn(pages[j]) != next_pfn) 1412 break; 1413 1414 len = (j - i) << PAGE_SHIFT; 1415 ret = iommu_map(mapping->domain, iova, phys, len, 1416 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs)); 1417 if (ret < 0) 1418 goto fail; 1419 iova += len; 1420 i = j; 1421 } 1422 return dma_addr; 1423 fail: 1424 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); 1425 __free_iova(mapping, dma_addr, size); 1426 return DMA_MAPPING_ERROR; 1427 } 1428 1429 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) 1430 { 1431 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1432 1433 /* 1434 * add optional in-page offset from iova to size and align 1435 * result to page size 1436 */ 1437 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); 1438 iova &= PAGE_MASK; 1439 1440 iommu_unmap(mapping->domain, iova, size); 1441 __free_iova(mapping, iova, size); 1442 return 0; 1443 } 1444 1445 static struct page **__atomic_get_pages(void *addr) 1446 { 1447 struct page *page; 1448 phys_addr_t phys; 1449 1450 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr); 1451 page = phys_to_page(phys); 1452 1453 return (struct page **)page; 1454 } 1455 1456 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs) 1457 { 1458 struct vm_struct *area; 1459 1460 if (__in_atomic_pool(cpu_addr, PAGE_SIZE)) 1461 return __atomic_get_pages(cpu_addr); 1462 1463 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) 1464 return cpu_addr; 1465 1466 area = find_vm_area(cpu_addr); 1467 if (area && (area->flags & VM_ARM_DMA_CONSISTENT)) 1468 return area->pages; 1469 return NULL; 1470 } 1471 1472 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp, 1473 dma_addr_t *handle, int coherent_flag, 1474 unsigned long attrs) 1475 { 1476 struct page *page; 1477 void *addr; 1478 1479 if (coherent_flag == COHERENT) 1480 addr = __alloc_simple_buffer(dev, size, gfp, &page); 1481 else 1482 addr = __alloc_from_pool(size, &page); 1483 if (!addr) 1484 return NULL; 1485 1486 *handle = __iommu_create_mapping(dev, &page, size, attrs); 1487 if (*handle == DMA_MAPPING_ERROR) 1488 goto err_mapping; 1489 1490 return addr; 1491 1492 err_mapping: 1493 __free_from_pool(addr, size); 1494 return NULL; 1495 } 1496 1497 static void __iommu_free_atomic(struct device *dev, void *cpu_addr, 1498 dma_addr_t handle, size_t size, int coherent_flag) 1499 { 1500 __iommu_remove_mapping(dev, handle, size); 1501 if (coherent_flag == COHERENT) 1502 __dma_free_buffer(virt_to_page(cpu_addr), size); 1503 else 1504 __free_from_pool(cpu_addr, size); 1505 } 1506 1507 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size, 1508 dma_addr_t *handle, gfp_t gfp, unsigned long attrs, 1509 int coherent_flag) 1510 { 1511 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 1512 struct page **pages; 1513 void *addr = NULL; 1514 1515 *handle = DMA_MAPPING_ERROR; 1516 size = PAGE_ALIGN(size); 1517 1518 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp)) 1519 return __iommu_alloc_simple(dev, size, gfp, handle, 1520 coherent_flag, attrs); 1521 1522 /* 1523 * Following is a work-around (a.k.a. hack) to prevent pages 1524 * with __GFP_COMP being passed to split_page() which cannot 1525 * handle them. The real problem is that this flag probably 1526 * should be 0 on ARM as it is not supported on this 1527 * platform; see CONFIG_HUGETLBFS. 1528 */ 1529 gfp &= ~(__GFP_COMP); 1530 1531 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag); 1532 if (!pages) 1533 return NULL; 1534 1535 *handle = __iommu_create_mapping(dev, pages, size, attrs); 1536 if (*handle == DMA_MAPPING_ERROR) 1537 goto err_buffer; 1538 1539 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) 1540 return pages; 1541 1542 addr = __iommu_alloc_remap(pages, size, gfp, prot, 1543 __builtin_return_address(0)); 1544 if (!addr) 1545 goto err_mapping; 1546 1547 return addr; 1548 1549 err_mapping: 1550 __iommu_remove_mapping(dev, *handle, size); 1551 err_buffer: 1552 __iommu_free_buffer(dev, pages, size, attrs); 1553 return NULL; 1554 } 1555 1556 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, 1557 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1558 { 1559 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL); 1560 } 1561 1562 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size, 1563 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1564 { 1565 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT); 1566 } 1567 1568 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 1569 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1570 unsigned long attrs) 1571 { 1572 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1573 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1574 int err; 1575 1576 if (!pages) 1577 return -ENXIO; 1578 1579 if (vma->vm_pgoff >= nr_pages) 1580 return -ENXIO; 1581 1582 err = vm_map_pages(vma, pages, nr_pages); 1583 if (err) 1584 pr_err("Remapping memory failed: %d\n", err); 1585 1586 return err; 1587 } 1588 static int arm_iommu_mmap_attrs(struct device *dev, 1589 struct vm_area_struct *vma, void *cpu_addr, 1590 dma_addr_t dma_addr, size_t size, unsigned long attrs) 1591 { 1592 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 1593 1594 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs); 1595 } 1596 1597 static int arm_coherent_iommu_mmap_attrs(struct device *dev, 1598 struct vm_area_struct *vma, void *cpu_addr, 1599 dma_addr_t dma_addr, size_t size, unsigned long attrs) 1600 { 1601 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs); 1602 } 1603 1604 /* 1605 * free a page as defined by the above mapping. 1606 * Must not be called with IRQs disabled. 1607 */ 1608 void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 1609 dma_addr_t handle, unsigned long attrs, int coherent_flag) 1610 { 1611 struct page **pages; 1612 size = PAGE_ALIGN(size); 1613 1614 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) { 1615 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag); 1616 return; 1617 } 1618 1619 pages = __iommu_get_pages(cpu_addr, attrs); 1620 if (!pages) { 1621 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 1622 return; 1623 } 1624 1625 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) { 1626 dma_common_free_remap(cpu_addr, size, 1627 VM_ARM_DMA_CONSISTENT | VM_USERMAP); 1628 } 1629 1630 __iommu_remove_mapping(dev, handle, size); 1631 __iommu_free_buffer(dev, pages, size, attrs); 1632 } 1633 1634 void arm_iommu_free_attrs(struct device *dev, size_t size, 1635 void *cpu_addr, dma_addr_t handle, unsigned long attrs) 1636 { 1637 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL); 1638 } 1639 1640 void arm_coherent_iommu_free_attrs(struct device *dev, size_t size, 1641 void *cpu_addr, dma_addr_t handle, unsigned long attrs) 1642 { 1643 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT); 1644 } 1645 1646 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 1647 void *cpu_addr, dma_addr_t dma_addr, 1648 size_t size, unsigned long attrs) 1649 { 1650 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1651 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1652 1653 if (!pages) 1654 return -ENXIO; 1655 1656 return sg_alloc_table_from_pages(sgt, pages, count, 0, size, 1657 GFP_KERNEL); 1658 } 1659 1660 /* 1661 * Map a part of the scatter-gather list into contiguous io address space 1662 */ 1663 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg, 1664 size_t size, dma_addr_t *handle, 1665 enum dma_data_direction dir, unsigned long attrs, 1666 bool is_coherent) 1667 { 1668 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1669 dma_addr_t iova, iova_base; 1670 int ret = 0; 1671 unsigned int count; 1672 struct scatterlist *s; 1673 int prot; 1674 1675 size = PAGE_ALIGN(size); 1676 *handle = DMA_MAPPING_ERROR; 1677 1678 iova_base = iova = __alloc_iova(mapping, size); 1679 if (iova == DMA_MAPPING_ERROR) 1680 return -ENOMEM; 1681 1682 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) { 1683 phys_addr_t phys = page_to_phys(sg_page(s)); 1684 unsigned int len = PAGE_ALIGN(s->offset + s->length); 1685 1686 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1687 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1688 1689 prot = __dma_info_to_prot(dir, attrs); 1690 1691 ret = iommu_map(mapping->domain, iova, phys, len, prot); 1692 if (ret < 0) 1693 goto fail; 1694 count += len >> PAGE_SHIFT; 1695 iova += len; 1696 } 1697 *handle = iova_base; 1698 1699 return 0; 1700 fail: 1701 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE); 1702 __free_iova(mapping, iova_base, size); 1703 return ret; 1704 } 1705 1706 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1707 enum dma_data_direction dir, unsigned long attrs, 1708 bool is_coherent) 1709 { 1710 struct scatterlist *s = sg, *dma = sg, *start = sg; 1711 int i, count = 0; 1712 unsigned int offset = s->offset; 1713 unsigned int size = s->offset + s->length; 1714 unsigned int max = dma_get_max_seg_size(dev); 1715 1716 for (i = 1; i < nents; i++) { 1717 s = sg_next(s); 1718 1719 s->dma_address = DMA_MAPPING_ERROR; 1720 s->dma_length = 0; 1721 1722 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { 1723 if (__map_sg_chunk(dev, start, size, &dma->dma_address, 1724 dir, attrs, is_coherent) < 0) 1725 goto bad_mapping; 1726 1727 dma->dma_address += offset; 1728 dma->dma_length = size - offset; 1729 1730 size = offset = s->offset; 1731 start = s; 1732 dma = sg_next(dma); 1733 count += 1; 1734 } 1735 size += s->length; 1736 } 1737 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs, 1738 is_coherent) < 0) 1739 goto bad_mapping; 1740 1741 dma->dma_address += offset; 1742 dma->dma_length = size - offset; 1743 1744 return count+1; 1745 1746 bad_mapping: 1747 for_each_sg(sg, s, count, i) 1748 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); 1749 return 0; 1750 } 1751 1752 /** 1753 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1754 * @dev: valid struct device pointer 1755 * @sg: list of buffers 1756 * @nents: number of buffers to map 1757 * @dir: DMA transfer direction 1758 * 1759 * Map a set of i/o coherent buffers described by scatterlist in streaming 1760 * mode for DMA. The scatter gather list elements are merged together (if 1761 * possible) and tagged with the appropriate dma address and length. They are 1762 * obtained via sg_dma_{address,length}. 1763 */ 1764 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1765 int nents, enum dma_data_direction dir, unsigned long attrs) 1766 { 1767 return __iommu_map_sg(dev, sg, nents, dir, attrs, true); 1768 } 1769 1770 /** 1771 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1772 * @dev: valid struct device pointer 1773 * @sg: list of buffers 1774 * @nents: number of buffers to map 1775 * @dir: DMA transfer direction 1776 * 1777 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1778 * The scatter gather list elements are merged together (if possible) and 1779 * tagged with the appropriate dma address and length. They are obtained via 1780 * sg_dma_{address,length}. 1781 */ 1782 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1783 int nents, enum dma_data_direction dir, unsigned long attrs) 1784 { 1785 return __iommu_map_sg(dev, sg, nents, dir, attrs, false); 1786 } 1787 1788 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1789 int nents, enum dma_data_direction dir, 1790 unsigned long attrs, bool is_coherent) 1791 { 1792 struct scatterlist *s; 1793 int i; 1794 1795 for_each_sg(sg, s, nents, i) { 1796 if (sg_dma_len(s)) 1797 __iommu_remove_mapping(dev, sg_dma_address(s), 1798 sg_dma_len(s)); 1799 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1800 __dma_page_dev_to_cpu(sg_page(s), s->offset, 1801 s->length, dir); 1802 } 1803 } 1804 1805 /** 1806 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1807 * @dev: valid struct device pointer 1808 * @sg: list of buffers 1809 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1810 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1811 * 1812 * Unmap a set of streaming mode DMA translations. Again, CPU access 1813 * rules concerning calls here are the same as for dma_unmap_single(). 1814 */ 1815 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1816 int nents, enum dma_data_direction dir, 1817 unsigned long attrs) 1818 { 1819 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true); 1820 } 1821 1822 /** 1823 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1824 * @dev: valid struct device pointer 1825 * @sg: list of buffers 1826 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1827 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1828 * 1829 * Unmap a set of streaming mode DMA translations. Again, CPU access 1830 * rules concerning calls here are the same as for dma_unmap_single(). 1831 */ 1832 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1833 enum dma_data_direction dir, 1834 unsigned long attrs) 1835 { 1836 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false); 1837 } 1838 1839 /** 1840 * arm_iommu_sync_sg_for_cpu 1841 * @dev: valid struct device pointer 1842 * @sg: list of buffers 1843 * @nents: number of buffers to map (returned from dma_map_sg) 1844 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1845 */ 1846 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1847 int nents, enum dma_data_direction dir) 1848 { 1849 struct scatterlist *s; 1850 int i; 1851 1852 for_each_sg(sg, s, nents, i) 1853 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); 1854 1855 } 1856 1857 /** 1858 * arm_iommu_sync_sg_for_device 1859 * @dev: valid struct device pointer 1860 * @sg: list of buffers 1861 * @nents: number of buffers to map (returned from dma_map_sg) 1862 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1863 */ 1864 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1865 int nents, enum dma_data_direction dir) 1866 { 1867 struct scatterlist *s; 1868 int i; 1869 1870 for_each_sg(sg, s, nents, i) 1871 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1872 } 1873 1874 1875 /** 1876 * arm_coherent_iommu_map_page 1877 * @dev: valid struct device pointer 1878 * @page: page that buffer resides in 1879 * @offset: offset into page for start of buffer 1880 * @size: size of buffer to map 1881 * @dir: DMA transfer direction 1882 * 1883 * Coherent IOMMU aware version of arm_dma_map_page() 1884 */ 1885 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page, 1886 unsigned long offset, size_t size, enum dma_data_direction dir, 1887 unsigned long attrs) 1888 { 1889 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1890 dma_addr_t dma_addr; 1891 int ret, prot, len = PAGE_ALIGN(size + offset); 1892 1893 dma_addr = __alloc_iova(mapping, len); 1894 if (dma_addr == DMA_MAPPING_ERROR) 1895 return dma_addr; 1896 1897 prot = __dma_info_to_prot(dir, attrs); 1898 1899 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot); 1900 if (ret < 0) 1901 goto fail; 1902 1903 return dma_addr + offset; 1904 fail: 1905 __free_iova(mapping, dma_addr, len); 1906 return DMA_MAPPING_ERROR; 1907 } 1908 1909 /** 1910 * arm_iommu_map_page 1911 * @dev: valid struct device pointer 1912 * @page: page that buffer resides in 1913 * @offset: offset into page for start of buffer 1914 * @size: size of buffer to map 1915 * @dir: DMA transfer direction 1916 * 1917 * IOMMU aware version of arm_dma_map_page() 1918 */ 1919 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page, 1920 unsigned long offset, size_t size, enum dma_data_direction dir, 1921 unsigned long attrs) 1922 { 1923 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1924 __dma_page_cpu_to_dev(page, offset, size, dir); 1925 1926 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs); 1927 } 1928 1929 /** 1930 * arm_coherent_iommu_unmap_page 1931 * @dev: valid struct device pointer 1932 * @handle: DMA address of buffer 1933 * @size: size of buffer (same as passed to dma_map_page) 1934 * @dir: DMA transfer direction (same as passed to dma_map_page) 1935 * 1936 * Coherent IOMMU aware version of arm_dma_unmap_page() 1937 */ 1938 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1939 size_t size, enum dma_data_direction dir, unsigned long attrs) 1940 { 1941 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1942 dma_addr_t iova = handle & PAGE_MASK; 1943 int offset = handle & ~PAGE_MASK; 1944 int len = PAGE_ALIGN(size + offset); 1945 1946 if (!iova) 1947 return; 1948 1949 iommu_unmap(mapping->domain, iova, len); 1950 __free_iova(mapping, iova, len); 1951 } 1952 1953 /** 1954 * arm_iommu_unmap_page 1955 * @dev: valid struct device pointer 1956 * @handle: DMA address of buffer 1957 * @size: size of buffer (same as passed to dma_map_page) 1958 * @dir: DMA transfer direction (same as passed to dma_map_page) 1959 * 1960 * IOMMU aware version of arm_dma_unmap_page() 1961 */ 1962 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1963 size_t size, enum dma_data_direction dir, unsigned long attrs) 1964 { 1965 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1966 dma_addr_t iova = handle & PAGE_MASK; 1967 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1968 int offset = handle & ~PAGE_MASK; 1969 int len = PAGE_ALIGN(size + offset); 1970 1971 if (!iova) 1972 return; 1973 1974 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1975 __dma_page_dev_to_cpu(page, offset, size, dir); 1976 1977 iommu_unmap(mapping->domain, iova, len); 1978 __free_iova(mapping, iova, len); 1979 } 1980 1981 /** 1982 * arm_iommu_map_resource - map a device resource for DMA 1983 * @dev: valid struct device pointer 1984 * @phys_addr: physical address of resource 1985 * @size: size of resource to map 1986 * @dir: DMA transfer direction 1987 */ 1988 static dma_addr_t arm_iommu_map_resource(struct device *dev, 1989 phys_addr_t phys_addr, size_t size, 1990 enum dma_data_direction dir, unsigned long attrs) 1991 { 1992 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1993 dma_addr_t dma_addr; 1994 int ret, prot; 1995 phys_addr_t addr = phys_addr & PAGE_MASK; 1996 unsigned int offset = phys_addr & ~PAGE_MASK; 1997 size_t len = PAGE_ALIGN(size + offset); 1998 1999 dma_addr = __alloc_iova(mapping, len); 2000 if (dma_addr == DMA_MAPPING_ERROR) 2001 return dma_addr; 2002 2003 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO; 2004 2005 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot); 2006 if (ret < 0) 2007 goto fail; 2008 2009 return dma_addr + offset; 2010 fail: 2011 __free_iova(mapping, dma_addr, len); 2012 return DMA_MAPPING_ERROR; 2013 } 2014 2015 /** 2016 * arm_iommu_unmap_resource - unmap a device DMA resource 2017 * @dev: valid struct device pointer 2018 * @dma_handle: DMA address to resource 2019 * @size: size of resource to map 2020 * @dir: DMA transfer direction 2021 */ 2022 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle, 2023 size_t size, enum dma_data_direction dir, 2024 unsigned long attrs) 2025 { 2026 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2027 dma_addr_t iova = dma_handle & PAGE_MASK; 2028 unsigned int offset = dma_handle & ~PAGE_MASK; 2029 size_t len = PAGE_ALIGN(size + offset); 2030 2031 if (!iova) 2032 return; 2033 2034 iommu_unmap(mapping->domain, iova, len); 2035 __free_iova(mapping, iova, len); 2036 } 2037 2038 static void arm_iommu_sync_single_for_cpu(struct device *dev, 2039 dma_addr_t handle, size_t size, enum dma_data_direction dir) 2040 { 2041 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2042 dma_addr_t iova = handle & PAGE_MASK; 2043 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 2044 unsigned int offset = handle & ~PAGE_MASK; 2045 2046 if (!iova) 2047 return; 2048 2049 __dma_page_dev_to_cpu(page, offset, size, dir); 2050 } 2051 2052 static void arm_iommu_sync_single_for_device(struct device *dev, 2053 dma_addr_t handle, size_t size, enum dma_data_direction dir) 2054 { 2055 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2056 dma_addr_t iova = handle & PAGE_MASK; 2057 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 2058 unsigned int offset = handle & ~PAGE_MASK; 2059 2060 if (!iova) 2061 return; 2062 2063 __dma_page_cpu_to_dev(page, offset, size, dir); 2064 } 2065 2066 const struct dma_map_ops iommu_ops = { 2067 .alloc = arm_iommu_alloc_attrs, 2068 .free = arm_iommu_free_attrs, 2069 .mmap = arm_iommu_mmap_attrs, 2070 .get_sgtable = arm_iommu_get_sgtable, 2071 2072 .map_page = arm_iommu_map_page, 2073 .unmap_page = arm_iommu_unmap_page, 2074 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu, 2075 .sync_single_for_device = arm_iommu_sync_single_for_device, 2076 2077 .map_sg = arm_iommu_map_sg, 2078 .unmap_sg = arm_iommu_unmap_sg, 2079 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu, 2080 .sync_sg_for_device = arm_iommu_sync_sg_for_device, 2081 2082 .map_resource = arm_iommu_map_resource, 2083 .unmap_resource = arm_iommu_unmap_resource, 2084 2085 .dma_supported = arm_dma_supported, 2086 }; 2087 2088 const struct dma_map_ops iommu_coherent_ops = { 2089 .alloc = arm_coherent_iommu_alloc_attrs, 2090 .free = arm_coherent_iommu_free_attrs, 2091 .mmap = arm_coherent_iommu_mmap_attrs, 2092 .get_sgtable = arm_iommu_get_sgtable, 2093 2094 .map_page = arm_coherent_iommu_map_page, 2095 .unmap_page = arm_coherent_iommu_unmap_page, 2096 2097 .map_sg = arm_coherent_iommu_map_sg, 2098 .unmap_sg = arm_coherent_iommu_unmap_sg, 2099 2100 .map_resource = arm_iommu_map_resource, 2101 .unmap_resource = arm_iommu_unmap_resource, 2102 2103 .dma_supported = arm_dma_supported, 2104 }; 2105 2106 /** 2107 * arm_iommu_create_mapping 2108 * @bus: pointer to the bus holding the client device (for IOMMU calls) 2109 * @base: start address of the valid IO address space 2110 * @size: maximum size of the valid IO address space 2111 * 2112 * Creates a mapping structure which holds information about used/unused 2113 * IO address ranges, which is required to perform memory allocation and 2114 * mapping with IOMMU aware functions. 2115 * 2116 * The client device need to be attached to the mapping with 2117 * arm_iommu_attach_device function. 2118 */ 2119 struct dma_iommu_mapping * 2120 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size) 2121 { 2122 unsigned int bits = size >> PAGE_SHIFT; 2123 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long); 2124 struct dma_iommu_mapping *mapping; 2125 int extensions = 1; 2126 int err = -ENOMEM; 2127 2128 /* currently only 32-bit DMA address space is supported */ 2129 if (size > DMA_BIT_MASK(32) + 1) 2130 return ERR_PTR(-ERANGE); 2131 2132 if (!bitmap_size) 2133 return ERR_PTR(-EINVAL); 2134 2135 if (bitmap_size > PAGE_SIZE) { 2136 extensions = bitmap_size / PAGE_SIZE; 2137 bitmap_size = PAGE_SIZE; 2138 } 2139 2140 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); 2141 if (!mapping) 2142 goto err; 2143 2144 mapping->bitmap_size = bitmap_size; 2145 mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *), 2146 GFP_KERNEL); 2147 if (!mapping->bitmaps) 2148 goto err2; 2149 2150 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL); 2151 if (!mapping->bitmaps[0]) 2152 goto err3; 2153 2154 mapping->nr_bitmaps = 1; 2155 mapping->extensions = extensions; 2156 mapping->base = base; 2157 mapping->bits = BITS_PER_BYTE * bitmap_size; 2158 2159 spin_lock_init(&mapping->lock); 2160 2161 mapping->domain = iommu_domain_alloc(bus); 2162 if (!mapping->domain) 2163 goto err4; 2164 2165 kref_init(&mapping->kref); 2166 return mapping; 2167 err4: 2168 kfree(mapping->bitmaps[0]); 2169 err3: 2170 kfree(mapping->bitmaps); 2171 err2: 2172 kfree(mapping); 2173 err: 2174 return ERR_PTR(err); 2175 } 2176 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping); 2177 2178 static void release_iommu_mapping(struct kref *kref) 2179 { 2180 int i; 2181 struct dma_iommu_mapping *mapping = 2182 container_of(kref, struct dma_iommu_mapping, kref); 2183 2184 iommu_domain_free(mapping->domain); 2185 for (i = 0; i < mapping->nr_bitmaps; i++) 2186 kfree(mapping->bitmaps[i]); 2187 kfree(mapping->bitmaps); 2188 kfree(mapping); 2189 } 2190 2191 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping) 2192 { 2193 int next_bitmap; 2194 2195 if (mapping->nr_bitmaps >= mapping->extensions) 2196 return -EINVAL; 2197 2198 next_bitmap = mapping->nr_bitmaps; 2199 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size, 2200 GFP_ATOMIC); 2201 if (!mapping->bitmaps[next_bitmap]) 2202 return -ENOMEM; 2203 2204 mapping->nr_bitmaps++; 2205 2206 return 0; 2207 } 2208 2209 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) 2210 { 2211 if (mapping) 2212 kref_put(&mapping->kref, release_iommu_mapping); 2213 } 2214 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping); 2215 2216 static int __arm_iommu_attach_device(struct device *dev, 2217 struct dma_iommu_mapping *mapping) 2218 { 2219 int err; 2220 2221 err = iommu_attach_device(mapping->domain, dev); 2222 if (err) 2223 return err; 2224 2225 kref_get(&mapping->kref); 2226 to_dma_iommu_mapping(dev) = mapping; 2227 2228 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev)); 2229 return 0; 2230 } 2231 2232 /** 2233 * arm_iommu_attach_device 2234 * @dev: valid struct device pointer 2235 * @mapping: io address space mapping structure (returned from 2236 * arm_iommu_create_mapping) 2237 * 2238 * Attaches specified io address space mapping to the provided device. 2239 * This replaces the dma operations (dma_map_ops pointer) with the 2240 * IOMMU aware version. 2241 * 2242 * More than one client might be attached to the same io address space 2243 * mapping. 2244 */ 2245 int arm_iommu_attach_device(struct device *dev, 2246 struct dma_iommu_mapping *mapping) 2247 { 2248 int err; 2249 2250 err = __arm_iommu_attach_device(dev, mapping); 2251 if (err) 2252 return err; 2253 2254 set_dma_ops(dev, &iommu_ops); 2255 return 0; 2256 } 2257 EXPORT_SYMBOL_GPL(arm_iommu_attach_device); 2258 2259 /** 2260 * arm_iommu_detach_device 2261 * @dev: valid struct device pointer 2262 * 2263 * Detaches the provided device from a previously attached map. 2264 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops. 2265 */ 2266 void arm_iommu_detach_device(struct device *dev) 2267 { 2268 struct dma_iommu_mapping *mapping; 2269 2270 mapping = to_dma_iommu_mapping(dev); 2271 if (!mapping) { 2272 dev_warn(dev, "Not attached\n"); 2273 return; 2274 } 2275 2276 iommu_detach_device(mapping->domain, dev); 2277 kref_put(&mapping->kref, release_iommu_mapping); 2278 to_dma_iommu_mapping(dev) = NULL; 2279 set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent)); 2280 2281 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev)); 2282 } 2283 EXPORT_SYMBOL_GPL(arm_iommu_detach_device); 2284 2285 static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent) 2286 { 2287 return coherent ? &iommu_coherent_ops : &iommu_ops; 2288 } 2289 2290 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 2291 const struct iommu_ops *iommu) 2292 { 2293 struct dma_iommu_mapping *mapping; 2294 2295 if (!iommu) 2296 return false; 2297 2298 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size); 2299 if (IS_ERR(mapping)) { 2300 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n", 2301 size, dev_name(dev)); 2302 return false; 2303 } 2304 2305 if (__arm_iommu_attach_device(dev, mapping)) { 2306 pr_warn("Failed to attached device %s to IOMMU_mapping\n", 2307 dev_name(dev)); 2308 arm_iommu_release_mapping(mapping); 2309 return false; 2310 } 2311 2312 return true; 2313 } 2314 2315 static void arm_teardown_iommu_dma_ops(struct device *dev) 2316 { 2317 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2318 2319 if (!mapping) 2320 return; 2321 2322 arm_iommu_detach_device(dev); 2323 arm_iommu_release_mapping(mapping); 2324 } 2325 2326 #else 2327 2328 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 2329 const struct iommu_ops *iommu) 2330 { 2331 return false; 2332 } 2333 2334 static void arm_teardown_iommu_dma_ops(struct device *dev) { } 2335 2336 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops 2337 2338 #endif /* CONFIG_ARM_DMA_USE_IOMMU */ 2339 2340 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 2341 const struct iommu_ops *iommu, bool coherent) 2342 { 2343 const struct dma_map_ops *dma_ops; 2344 2345 dev->archdata.dma_coherent = coherent; 2346 #ifdef CONFIG_SWIOTLB 2347 dev->dma_coherent = coherent; 2348 #endif 2349 2350 /* 2351 * Don't override the dma_ops if they have already been set. Ideally 2352 * this should be the only location where dma_ops are set, remove this 2353 * check when all other callers of set_dma_ops will have disappeared. 2354 */ 2355 if (dev->dma_ops) 2356 return; 2357 2358 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu)) 2359 dma_ops = arm_get_iommu_dma_map_ops(coherent); 2360 else 2361 dma_ops = arm_get_dma_map_ops(coherent); 2362 2363 set_dma_ops(dev, dma_ops); 2364 2365 #ifdef CONFIG_XEN 2366 if (xen_initial_domain()) { 2367 dev->archdata.dev_dma_ops = dev->dma_ops; 2368 dev->dma_ops = xen_dma_ops; 2369 } 2370 #endif 2371 dev->archdata.dma_ops_setup = true; 2372 } 2373 2374 void arch_teardown_dma_ops(struct device *dev) 2375 { 2376 if (!dev->archdata.dma_ops_setup) 2377 return; 2378 2379 arm_teardown_iommu_dma_ops(dev); 2380 /* Let arch_setup_dma_ops() start again from scratch upon re-probe */ 2381 set_dma_ops(dev, NULL); 2382 } 2383 2384 #ifdef CONFIG_SWIOTLB 2385 void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr, 2386 size_t size, enum dma_data_direction dir) 2387 { 2388 __dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1), 2389 size, dir); 2390 } 2391 2392 void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr, 2393 size_t size, enum dma_data_direction dir) 2394 { 2395 __dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1), 2396 size, dir); 2397 } 2398 2399 long arch_dma_coherent_to_pfn(struct device *dev, void *cpu_addr, 2400 dma_addr_t dma_addr) 2401 { 2402 return dma_to_pfn(dev, dma_addr); 2403 } 2404 2405 pgprot_t arch_dma_mmap_pgprot(struct device *dev, pgprot_t prot, 2406 unsigned long attrs) 2407 { 2408 if (!dev_is_dma_coherent(dev)) 2409 return __get_dma_pgprot(attrs, prot); 2410 return prot; 2411 } 2412 2413 void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, 2414 gfp_t gfp, unsigned long attrs) 2415 { 2416 return __dma_alloc(dev, size, dma_handle, gfp, 2417 __get_dma_pgprot(attrs, PAGE_KERNEL), false, 2418 attrs, __builtin_return_address(0)); 2419 } 2420 2421 void arch_dma_free(struct device *dev, size_t size, void *cpu_addr, 2422 dma_addr_t dma_handle, unsigned long attrs) 2423 { 2424 __arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false); 2425 } 2426 #endif /* CONFIG_SWIOTLB */ 2427