xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision bc5aa3a0)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/bootmem.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/genalloc.h>
16 #include <linux/gfp.h>
17 #include <linux/errno.h>
18 #include <linux/list.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-contiguous.h>
23 #include <linux/highmem.h>
24 #include <linux/memblock.h>
25 #include <linux/slab.h>
26 #include <linux/iommu.h>
27 #include <linux/io.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sizes.h>
30 #include <linux/cma.h>
31 
32 #include <asm/memory.h>
33 #include <asm/highmem.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mach/arch.h>
37 #include <asm/dma-iommu.h>
38 #include <asm/mach/map.h>
39 #include <asm/system_info.h>
40 #include <asm/dma-contiguous.h>
41 
42 #include "dma.h"
43 #include "mm.h"
44 
45 struct arm_dma_alloc_args {
46 	struct device *dev;
47 	size_t size;
48 	gfp_t gfp;
49 	pgprot_t prot;
50 	const void *caller;
51 	bool want_vaddr;
52 	int coherent_flag;
53 };
54 
55 struct arm_dma_free_args {
56 	struct device *dev;
57 	size_t size;
58 	void *cpu_addr;
59 	struct page *page;
60 	bool want_vaddr;
61 };
62 
63 #define NORMAL	    0
64 #define COHERENT    1
65 
66 struct arm_dma_allocator {
67 	void *(*alloc)(struct arm_dma_alloc_args *args,
68 		       struct page **ret_page);
69 	void (*free)(struct arm_dma_free_args *args);
70 };
71 
72 struct arm_dma_buffer {
73 	struct list_head list;
74 	void *virt;
75 	struct arm_dma_allocator *allocator;
76 };
77 
78 static LIST_HEAD(arm_dma_bufs);
79 static DEFINE_SPINLOCK(arm_dma_bufs_lock);
80 
81 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
82 {
83 	struct arm_dma_buffer *buf, *found = NULL;
84 	unsigned long flags;
85 
86 	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
87 	list_for_each_entry(buf, &arm_dma_bufs, list) {
88 		if (buf->virt == virt) {
89 			list_del(&buf->list);
90 			found = buf;
91 			break;
92 		}
93 	}
94 	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
95 	return found;
96 }
97 
98 /*
99  * The DMA API is built upon the notion of "buffer ownership".  A buffer
100  * is either exclusively owned by the CPU (and therefore may be accessed
101  * by it) or exclusively owned by the DMA device.  These helper functions
102  * represent the transitions between these two ownership states.
103  *
104  * Note, however, that on later ARMs, this notion does not work due to
105  * speculative prefetches.  We model our approach on the assumption that
106  * the CPU does do speculative prefetches, which means we clean caches
107  * before transfers and delay cache invalidation until transfer completion.
108  *
109  */
110 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
111 		size_t, enum dma_data_direction);
112 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
113 		size_t, enum dma_data_direction);
114 
115 /**
116  * arm_dma_map_page - map a portion of a page for streaming DMA
117  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
118  * @page: page that buffer resides in
119  * @offset: offset into page for start of buffer
120  * @size: size of buffer to map
121  * @dir: DMA transfer direction
122  *
123  * Ensure that any data held in the cache is appropriately discarded
124  * or written back.
125  *
126  * The device owns this memory once this call has completed.  The CPU
127  * can regain ownership by calling dma_unmap_page().
128  */
129 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
130 	     unsigned long offset, size_t size, enum dma_data_direction dir,
131 	     unsigned long attrs)
132 {
133 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
134 		__dma_page_cpu_to_dev(page, offset, size, dir);
135 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
136 }
137 
138 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
139 	     unsigned long offset, size_t size, enum dma_data_direction dir,
140 	     unsigned long attrs)
141 {
142 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
143 }
144 
145 /**
146  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
147  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
148  * @handle: DMA address of buffer
149  * @size: size of buffer (same as passed to dma_map_page)
150  * @dir: DMA transfer direction (same as passed to dma_map_page)
151  *
152  * Unmap a page streaming mode DMA translation.  The handle and size
153  * must match what was provided in the previous dma_map_page() call.
154  * All other usages are undefined.
155  *
156  * After this call, reads by the CPU to the buffer are guaranteed to see
157  * whatever the device wrote there.
158  */
159 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
160 		size_t size, enum dma_data_direction dir, unsigned long attrs)
161 {
162 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
163 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
164 				      handle & ~PAGE_MASK, size, dir);
165 }
166 
167 static void arm_dma_sync_single_for_cpu(struct device *dev,
168 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
169 {
170 	unsigned int offset = handle & (PAGE_SIZE - 1);
171 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
172 	__dma_page_dev_to_cpu(page, offset, size, dir);
173 }
174 
175 static void arm_dma_sync_single_for_device(struct device *dev,
176 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
177 {
178 	unsigned int offset = handle & (PAGE_SIZE - 1);
179 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
180 	__dma_page_cpu_to_dev(page, offset, size, dir);
181 }
182 
183 struct dma_map_ops arm_dma_ops = {
184 	.alloc			= arm_dma_alloc,
185 	.free			= arm_dma_free,
186 	.mmap			= arm_dma_mmap,
187 	.get_sgtable		= arm_dma_get_sgtable,
188 	.map_page		= arm_dma_map_page,
189 	.unmap_page		= arm_dma_unmap_page,
190 	.map_sg			= arm_dma_map_sg,
191 	.unmap_sg		= arm_dma_unmap_sg,
192 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
193 	.sync_single_for_device	= arm_dma_sync_single_for_device,
194 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
195 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
196 };
197 EXPORT_SYMBOL(arm_dma_ops);
198 
199 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
200 	dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
201 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
202 				  dma_addr_t handle, unsigned long attrs);
203 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
204 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
205 		 unsigned long attrs);
206 
207 struct dma_map_ops arm_coherent_dma_ops = {
208 	.alloc			= arm_coherent_dma_alloc,
209 	.free			= arm_coherent_dma_free,
210 	.mmap			= arm_coherent_dma_mmap,
211 	.get_sgtable		= arm_dma_get_sgtable,
212 	.map_page		= arm_coherent_dma_map_page,
213 	.map_sg			= arm_dma_map_sg,
214 };
215 EXPORT_SYMBOL(arm_coherent_dma_ops);
216 
217 static int __dma_supported(struct device *dev, u64 mask, bool warn)
218 {
219 	unsigned long max_dma_pfn;
220 
221 	/*
222 	 * If the mask allows for more memory than we can address,
223 	 * and we actually have that much memory, then we must
224 	 * indicate that DMA to this device is not supported.
225 	 */
226 	if (sizeof(mask) != sizeof(dma_addr_t) &&
227 	    mask > (dma_addr_t)~0 &&
228 	    dma_to_pfn(dev, ~0) < max_pfn - 1) {
229 		if (warn) {
230 			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
231 				 mask);
232 			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
233 		}
234 		return 0;
235 	}
236 
237 	max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
238 
239 	/*
240 	 * Translate the device's DMA mask to a PFN limit.  This
241 	 * PFN number includes the page which we can DMA to.
242 	 */
243 	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
244 		if (warn)
245 			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
246 				 mask,
247 				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
248 				 max_dma_pfn + 1);
249 		return 0;
250 	}
251 
252 	return 1;
253 }
254 
255 static u64 get_coherent_dma_mask(struct device *dev)
256 {
257 	u64 mask = (u64)DMA_BIT_MASK(32);
258 
259 	if (dev) {
260 		mask = dev->coherent_dma_mask;
261 
262 		/*
263 		 * Sanity check the DMA mask - it must be non-zero, and
264 		 * must be able to be satisfied by a DMA allocation.
265 		 */
266 		if (mask == 0) {
267 			dev_warn(dev, "coherent DMA mask is unset\n");
268 			return 0;
269 		}
270 
271 		if (!__dma_supported(dev, mask, true))
272 			return 0;
273 	}
274 
275 	return mask;
276 }
277 
278 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
279 {
280 	/*
281 	 * Ensure that the allocated pages are zeroed, and that any data
282 	 * lurking in the kernel direct-mapped region is invalidated.
283 	 */
284 	if (PageHighMem(page)) {
285 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
286 		phys_addr_t end = base + size;
287 		while (size > 0) {
288 			void *ptr = kmap_atomic(page);
289 			memset(ptr, 0, PAGE_SIZE);
290 			if (coherent_flag != COHERENT)
291 				dmac_flush_range(ptr, ptr + PAGE_SIZE);
292 			kunmap_atomic(ptr);
293 			page++;
294 			size -= PAGE_SIZE;
295 		}
296 		if (coherent_flag != COHERENT)
297 			outer_flush_range(base, end);
298 	} else {
299 		void *ptr = page_address(page);
300 		memset(ptr, 0, size);
301 		if (coherent_flag != COHERENT) {
302 			dmac_flush_range(ptr, ptr + size);
303 			outer_flush_range(__pa(ptr), __pa(ptr) + size);
304 		}
305 	}
306 }
307 
308 /*
309  * Allocate a DMA buffer for 'dev' of size 'size' using the
310  * specified gfp mask.  Note that 'size' must be page aligned.
311  */
312 static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
313 				       gfp_t gfp, int coherent_flag)
314 {
315 	unsigned long order = get_order(size);
316 	struct page *page, *p, *e;
317 
318 	page = alloc_pages(gfp, order);
319 	if (!page)
320 		return NULL;
321 
322 	/*
323 	 * Now split the huge page and free the excess pages
324 	 */
325 	split_page(page, order);
326 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
327 		__free_page(p);
328 
329 	__dma_clear_buffer(page, size, coherent_flag);
330 
331 	return page;
332 }
333 
334 /*
335  * Free a DMA buffer.  'size' must be page aligned.
336  */
337 static void __dma_free_buffer(struct page *page, size_t size)
338 {
339 	struct page *e = page + (size >> PAGE_SHIFT);
340 
341 	while (page < e) {
342 		__free_page(page);
343 		page++;
344 	}
345 }
346 
347 #ifdef CONFIG_MMU
348 
349 static void *__alloc_from_contiguous(struct device *dev, size_t size,
350 				     pgprot_t prot, struct page **ret_page,
351 				     const void *caller, bool want_vaddr,
352 				     int coherent_flag);
353 
354 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
355 				 pgprot_t prot, struct page **ret_page,
356 				 const void *caller, bool want_vaddr);
357 
358 static void *
359 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
360 	const void *caller)
361 {
362 	/*
363 	 * DMA allocation can be mapped to user space, so lets
364 	 * set VM_USERMAP flags too.
365 	 */
366 	return dma_common_contiguous_remap(page, size,
367 			VM_ARM_DMA_CONSISTENT | VM_USERMAP,
368 			prot, caller);
369 }
370 
371 static void __dma_free_remap(void *cpu_addr, size_t size)
372 {
373 	dma_common_free_remap(cpu_addr, size,
374 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
375 }
376 
377 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
378 static struct gen_pool *atomic_pool;
379 
380 static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
381 
382 static int __init early_coherent_pool(char *p)
383 {
384 	atomic_pool_size = memparse(p, &p);
385 	return 0;
386 }
387 early_param("coherent_pool", early_coherent_pool);
388 
389 void __init init_dma_coherent_pool_size(unsigned long size)
390 {
391 	/*
392 	 * Catch any attempt to set the pool size too late.
393 	 */
394 	BUG_ON(atomic_pool);
395 
396 	/*
397 	 * Set architecture specific coherent pool size only if
398 	 * it has not been changed by kernel command line parameter.
399 	 */
400 	if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
401 		atomic_pool_size = size;
402 }
403 
404 /*
405  * Initialise the coherent pool for atomic allocations.
406  */
407 static int __init atomic_pool_init(void)
408 {
409 	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
410 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
411 	struct page *page;
412 	void *ptr;
413 
414 	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
415 	if (!atomic_pool)
416 		goto out;
417 	/*
418 	 * The atomic pool is only used for non-coherent allocations
419 	 * so we must pass NORMAL for coherent_flag.
420 	 */
421 	if (dev_get_cma_area(NULL))
422 		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
423 				      &page, atomic_pool_init, true, NORMAL);
424 	else
425 		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
426 					   &page, atomic_pool_init, true);
427 	if (ptr) {
428 		int ret;
429 
430 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
431 					page_to_phys(page),
432 					atomic_pool_size, -1);
433 		if (ret)
434 			goto destroy_genpool;
435 
436 		gen_pool_set_algo(atomic_pool,
437 				gen_pool_first_fit_order_align,
438 				(void *)PAGE_SHIFT);
439 		pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
440 		       atomic_pool_size / 1024);
441 		return 0;
442 	}
443 
444 destroy_genpool:
445 	gen_pool_destroy(atomic_pool);
446 	atomic_pool = NULL;
447 out:
448 	pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
449 	       atomic_pool_size / 1024);
450 	return -ENOMEM;
451 }
452 /*
453  * CMA is activated by core_initcall, so we must be called after it.
454  */
455 postcore_initcall(atomic_pool_init);
456 
457 struct dma_contig_early_reserve {
458 	phys_addr_t base;
459 	unsigned long size;
460 };
461 
462 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
463 
464 static int dma_mmu_remap_num __initdata;
465 
466 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
467 {
468 	dma_mmu_remap[dma_mmu_remap_num].base = base;
469 	dma_mmu_remap[dma_mmu_remap_num].size = size;
470 	dma_mmu_remap_num++;
471 }
472 
473 void __init dma_contiguous_remap(void)
474 {
475 	int i;
476 	for (i = 0; i < dma_mmu_remap_num; i++) {
477 		phys_addr_t start = dma_mmu_remap[i].base;
478 		phys_addr_t end = start + dma_mmu_remap[i].size;
479 		struct map_desc map;
480 		unsigned long addr;
481 
482 		if (end > arm_lowmem_limit)
483 			end = arm_lowmem_limit;
484 		if (start >= end)
485 			continue;
486 
487 		map.pfn = __phys_to_pfn(start);
488 		map.virtual = __phys_to_virt(start);
489 		map.length = end - start;
490 		map.type = MT_MEMORY_DMA_READY;
491 
492 		/*
493 		 * Clear previous low-memory mapping to ensure that the
494 		 * TLB does not see any conflicting entries, then flush
495 		 * the TLB of the old entries before creating new mappings.
496 		 *
497 		 * This ensures that any speculatively loaded TLB entries
498 		 * (even though they may be rare) can not cause any problems,
499 		 * and ensures that this code is architecturally compliant.
500 		 */
501 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
502 		     addr += PMD_SIZE)
503 			pmd_clear(pmd_off_k(addr));
504 
505 		flush_tlb_kernel_range(__phys_to_virt(start),
506 				       __phys_to_virt(end));
507 
508 		iotable_init(&map, 1);
509 	}
510 }
511 
512 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
513 			    void *data)
514 {
515 	struct page *page = virt_to_page(addr);
516 	pgprot_t prot = *(pgprot_t *)data;
517 
518 	set_pte_ext(pte, mk_pte(page, prot), 0);
519 	return 0;
520 }
521 
522 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
523 {
524 	unsigned long start = (unsigned long) page_address(page);
525 	unsigned end = start + size;
526 
527 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
528 	flush_tlb_kernel_range(start, end);
529 }
530 
531 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
532 				 pgprot_t prot, struct page **ret_page,
533 				 const void *caller, bool want_vaddr)
534 {
535 	struct page *page;
536 	void *ptr = NULL;
537 	/*
538 	 * __alloc_remap_buffer is only called when the device is
539 	 * non-coherent
540 	 */
541 	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
542 	if (!page)
543 		return NULL;
544 	if (!want_vaddr)
545 		goto out;
546 
547 	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
548 	if (!ptr) {
549 		__dma_free_buffer(page, size);
550 		return NULL;
551 	}
552 
553  out:
554 	*ret_page = page;
555 	return ptr;
556 }
557 
558 static void *__alloc_from_pool(size_t size, struct page **ret_page)
559 {
560 	unsigned long val;
561 	void *ptr = NULL;
562 
563 	if (!atomic_pool) {
564 		WARN(1, "coherent pool not initialised!\n");
565 		return NULL;
566 	}
567 
568 	val = gen_pool_alloc(atomic_pool, size);
569 	if (val) {
570 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
571 
572 		*ret_page = phys_to_page(phys);
573 		ptr = (void *)val;
574 	}
575 
576 	return ptr;
577 }
578 
579 static bool __in_atomic_pool(void *start, size_t size)
580 {
581 	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
582 }
583 
584 static int __free_from_pool(void *start, size_t size)
585 {
586 	if (!__in_atomic_pool(start, size))
587 		return 0;
588 
589 	gen_pool_free(atomic_pool, (unsigned long)start, size);
590 
591 	return 1;
592 }
593 
594 static void *__alloc_from_contiguous(struct device *dev, size_t size,
595 				     pgprot_t prot, struct page **ret_page,
596 				     const void *caller, bool want_vaddr,
597 				     int coherent_flag)
598 {
599 	unsigned long order = get_order(size);
600 	size_t count = size >> PAGE_SHIFT;
601 	struct page *page;
602 	void *ptr = NULL;
603 
604 	page = dma_alloc_from_contiguous(dev, count, order);
605 	if (!page)
606 		return NULL;
607 
608 	__dma_clear_buffer(page, size, coherent_flag);
609 
610 	if (!want_vaddr)
611 		goto out;
612 
613 	if (PageHighMem(page)) {
614 		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
615 		if (!ptr) {
616 			dma_release_from_contiguous(dev, page, count);
617 			return NULL;
618 		}
619 	} else {
620 		__dma_remap(page, size, prot);
621 		ptr = page_address(page);
622 	}
623 
624  out:
625 	*ret_page = page;
626 	return ptr;
627 }
628 
629 static void __free_from_contiguous(struct device *dev, struct page *page,
630 				   void *cpu_addr, size_t size, bool want_vaddr)
631 {
632 	if (want_vaddr) {
633 		if (PageHighMem(page))
634 			__dma_free_remap(cpu_addr, size);
635 		else
636 			__dma_remap(page, size, PAGE_KERNEL);
637 	}
638 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
639 }
640 
641 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
642 {
643 	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
644 			pgprot_writecombine(prot) :
645 			pgprot_dmacoherent(prot);
646 	return prot;
647 }
648 
649 #define nommu() 0
650 
651 #else	/* !CONFIG_MMU */
652 
653 #define nommu() 1
654 
655 #define __get_dma_pgprot(attrs, prot)				__pgprot(0)
656 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv)	NULL
657 #define __alloc_from_pool(size, ret_page)			NULL
658 #define __alloc_from_contiguous(dev, size, prot, ret, c, wv, coherent_flag)	NULL
659 #define __free_from_pool(cpu_addr, size)			do { } while (0)
660 #define __free_from_contiguous(dev, page, cpu_addr, size, wv)	do { } while (0)
661 #define __dma_free_remap(cpu_addr, size)			do { } while (0)
662 
663 #endif	/* CONFIG_MMU */
664 
665 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
666 				   struct page **ret_page)
667 {
668 	struct page *page;
669 	/* __alloc_simple_buffer is only called when the device is coherent */
670 	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
671 	if (!page)
672 		return NULL;
673 
674 	*ret_page = page;
675 	return page_address(page);
676 }
677 
678 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
679 				    struct page **ret_page)
680 {
681 	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
682 				     ret_page);
683 }
684 
685 static void simple_allocator_free(struct arm_dma_free_args *args)
686 {
687 	__dma_free_buffer(args->page, args->size);
688 }
689 
690 static struct arm_dma_allocator simple_allocator = {
691 	.alloc = simple_allocator_alloc,
692 	.free = simple_allocator_free,
693 };
694 
695 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
696 				 struct page **ret_page)
697 {
698 	return __alloc_from_contiguous(args->dev, args->size, args->prot,
699 				       ret_page, args->caller,
700 				       args->want_vaddr, args->coherent_flag);
701 }
702 
703 static void cma_allocator_free(struct arm_dma_free_args *args)
704 {
705 	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
706 			       args->size, args->want_vaddr);
707 }
708 
709 static struct arm_dma_allocator cma_allocator = {
710 	.alloc = cma_allocator_alloc,
711 	.free = cma_allocator_free,
712 };
713 
714 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
715 				  struct page **ret_page)
716 {
717 	return __alloc_from_pool(args->size, ret_page);
718 }
719 
720 static void pool_allocator_free(struct arm_dma_free_args *args)
721 {
722 	__free_from_pool(args->cpu_addr, args->size);
723 }
724 
725 static struct arm_dma_allocator pool_allocator = {
726 	.alloc = pool_allocator_alloc,
727 	.free = pool_allocator_free,
728 };
729 
730 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
731 				   struct page **ret_page)
732 {
733 	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
734 				    args->prot, ret_page, args->caller,
735 				    args->want_vaddr);
736 }
737 
738 static void remap_allocator_free(struct arm_dma_free_args *args)
739 {
740 	if (args->want_vaddr)
741 		__dma_free_remap(args->cpu_addr, args->size);
742 
743 	__dma_free_buffer(args->page, args->size);
744 }
745 
746 static struct arm_dma_allocator remap_allocator = {
747 	.alloc = remap_allocator_alloc,
748 	.free = remap_allocator_free,
749 };
750 
751 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
752 			 gfp_t gfp, pgprot_t prot, bool is_coherent,
753 			 unsigned long attrs, const void *caller)
754 {
755 	u64 mask = get_coherent_dma_mask(dev);
756 	struct page *page = NULL;
757 	void *addr;
758 	bool allowblock, cma;
759 	struct arm_dma_buffer *buf;
760 	struct arm_dma_alloc_args args = {
761 		.dev = dev,
762 		.size = PAGE_ALIGN(size),
763 		.gfp = gfp,
764 		.prot = prot,
765 		.caller = caller,
766 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
767 		.coherent_flag = is_coherent ? COHERENT : NORMAL,
768 	};
769 
770 #ifdef CONFIG_DMA_API_DEBUG
771 	u64 limit = (mask + 1) & ~mask;
772 	if (limit && size >= limit) {
773 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
774 			size, mask);
775 		return NULL;
776 	}
777 #endif
778 
779 	if (!mask)
780 		return NULL;
781 
782 	buf = kzalloc(sizeof(*buf),
783 		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
784 	if (!buf)
785 		return NULL;
786 
787 	if (mask < 0xffffffffULL)
788 		gfp |= GFP_DMA;
789 
790 	/*
791 	 * Following is a work-around (a.k.a. hack) to prevent pages
792 	 * with __GFP_COMP being passed to split_page() which cannot
793 	 * handle them.  The real problem is that this flag probably
794 	 * should be 0 on ARM as it is not supported on this
795 	 * platform; see CONFIG_HUGETLBFS.
796 	 */
797 	gfp &= ~(__GFP_COMP);
798 	args.gfp = gfp;
799 
800 	*handle = DMA_ERROR_CODE;
801 	allowblock = gfpflags_allow_blocking(gfp);
802 	cma = allowblock ? dev_get_cma_area(dev) : false;
803 
804 	if (cma)
805 		buf->allocator = &cma_allocator;
806 	else if (nommu() || is_coherent)
807 		buf->allocator = &simple_allocator;
808 	else if (allowblock)
809 		buf->allocator = &remap_allocator;
810 	else
811 		buf->allocator = &pool_allocator;
812 
813 	addr = buf->allocator->alloc(&args, &page);
814 
815 	if (page) {
816 		unsigned long flags;
817 
818 		*handle = pfn_to_dma(dev, page_to_pfn(page));
819 		buf->virt = args.want_vaddr ? addr : page;
820 
821 		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
822 		list_add(&buf->list, &arm_dma_bufs);
823 		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
824 	} else {
825 		kfree(buf);
826 	}
827 
828 	return args.want_vaddr ? addr : page;
829 }
830 
831 /*
832  * Allocate DMA-coherent memory space and return both the kernel remapped
833  * virtual and bus address for that space.
834  */
835 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
836 		    gfp_t gfp, unsigned long attrs)
837 {
838 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
839 
840 	return __dma_alloc(dev, size, handle, gfp, prot, false,
841 			   attrs, __builtin_return_address(0));
842 }
843 
844 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
845 	dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
846 {
847 	return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
848 			   attrs, __builtin_return_address(0));
849 }
850 
851 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
852 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
853 		 unsigned long attrs)
854 {
855 	int ret = -ENXIO;
856 #ifdef CONFIG_MMU
857 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
858 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
859 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
860 	unsigned long off = vma->vm_pgoff;
861 
862 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
863 		return ret;
864 
865 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
866 		ret = remap_pfn_range(vma, vma->vm_start,
867 				      pfn + off,
868 				      vma->vm_end - vma->vm_start,
869 				      vma->vm_page_prot);
870 	}
871 #endif	/* CONFIG_MMU */
872 
873 	return ret;
874 }
875 
876 /*
877  * Create userspace mapping for the DMA-coherent memory.
878  */
879 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
880 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
881 		 unsigned long attrs)
882 {
883 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
884 }
885 
886 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
887 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
888 		 unsigned long attrs)
889 {
890 #ifdef CONFIG_MMU
891 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
892 #endif	/* CONFIG_MMU */
893 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
894 }
895 
896 /*
897  * Free a buffer as defined by the above mapping.
898  */
899 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
900 			   dma_addr_t handle, unsigned long attrs,
901 			   bool is_coherent)
902 {
903 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
904 	struct arm_dma_buffer *buf;
905 	struct arm_dma_free_args args = {
906 		.dev = dev,
907 		.size = PAGE_ALIGN(size),
908 		.cpu_addr = cpu_addr,
909 		.page = page,
910 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
911 	};
912 
913 	buf = arm_dma_buffer_find(cpu_addr);
914 	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
915 		return;
916 
917 	buf->allocator->free(&args);
918 	kfree(buf);
919 }
920 
921 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
922 		  dma_addr_t handle, unsigned long attrs)
923 {
924 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
925 }
926 
927 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
928 				  dma_addr_t handle, unsigned long attrs)
929 {
930 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
931 }
932 
933 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
934 		 void *cpu_addr, dma_addr_t handle, size_t size,
935 		 unsigned long attrs)
936 {
937 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
938 	int ret;
939 
940 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
941 	if (unlikely(ret))
942 		return ret;
943 
944 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
945 	return 0;
946 }
947 
948 static void dma_cache_maint_page(struct page *page, unsigned long offset,
949 	size_t size, enum dma_data_direction dir,
950 	void (*op)(const void *, size_t, int))
951 {
952 	unsigned long pfn;
953 	size_t left = size;
954 
955 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
956 	offset %= PAGE_SIZE;
957 
958 	/*
959 	 * A single sg entry may refer to multiple physically contiguous
960 	 * pages.  But we still need to process highmem pages individually.
961 	 * If highmem is not configured then the bulk of this loop gets
962 	 * optimized out.
963 	 */
964 	do {
965 		size_t len = left;
966 		void *vaddr;
967 
968 		page = pfn_to_page(pfn);
969 
970 		if (PageHighMem(page)) {
971 			if (len + offset > PAGE_SIZE)
972 				len = PAGE_SIZE - offset;
973 
974 			if (cache_is_vipt_nonaliasing()) {
975 				vaddr = kmap_atomic(page);
976 				op(vaddr + offset, len, dir);
977 				kunmap_atomic(vaddr);
978 			} else {
979 				vaddr = kmap_high_get(page);
980 				if (vaddr) {
981 					op(vaddr + offset, len, dir);
982 					kunmap_high(page);
983 				}
984 			}
985 		} else {
986 			vaddr = page_address(page) + offset;
987 			op(vaddr, len, dir);
988 		}
989 		offset = 0;
990 		pfn++;
991 		left -= len;
992 	} while (left);
993 }
994 
995 /*
996  * Make an area consistent for devices.
997  * Note: Drivers should NOT use this function directly, as it will break
998  * platforms with CONFIG_DMABOUNCE.
999  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
1000  */
1001 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
1002 	size_t size, enum dma_data_direction dir)
1003 {
1004 	phys_addr_t paddr;
1005 
1006 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
1007 
1008 	paddr = page_to_phys(page) + off;
1009 	if (dir == DMA_FROM_DEVICE) {
1010 		outer_inv_range(paddr, paddr + size);
1011 	} else {
1012 		outer_clean_range(paddr, paddr + size);
1013 	}
1014 	/* FIXME: non-speculating: flush on bidirectional mappings? */
1015 }
1016 
1017 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
1018 	size_t size, enum dma_data_direction dir)
1019 {
1020 	phys_addr_t paddr = page_to_phys(page) + off;
1021 
1022 	/* FIXME: non-speculating: not required */
1023 	/* in any case, don't bother invalidating if DMA to device */
1024 	if (dir != DMA_TO_DEVICE) {
1025 		outer_inv_range(paddr, paddr + size);
1026 
1027 		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
1028 	}
1029 
1030 	/*
1031 	 * Mark the D-cache clean for these pages to avoid extra flushing.
1032 	 */
1033 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
1034 		unsigned long pfn;
1035 		size_t left = size;
1036 
1037 		pfn = page_to_pfn(page) + off / PAGE_SIZE;
1038 		off %= PAGE_SIZE;
1039 		if (off) {
1040 			pfn++;
1041 			left -= PAGE_SIZE - off;
1042 		}
1043 		while (left >= PAGE_SIZE) {
1044 			page = pfn_to_page(pfn++);
1045 			set_bit(PG_dcache_clean, &page->flags);
1046 			left -= PAGE_SIZE;
1047 		}
1048 	}
1049 }
1050 
1051 /**
1052  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1053  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1054  * @sg: list of buffers
1055  * @nents: number of buffers to map
1056  * @dir: DMA transfer direction
1057  *
1058  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1059  * This is the scatter-gather version of the dma_map_single interface.
1060  * Here the scatter gather list elements are each tagged with the
1061  * appropriate dma address and length.  They are obtained via
1062  * sg_dma_{address,length}.
1063  *
1064  * Device ownership issues as mentioned for dma_map_single are the same
1065  * here.
1066  */
1067 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1068 		enum dma_data_direction dir, unsigned long attrs)
1069 {
1070 	struct dma_map_ops *ops = get_dma_ops(dev);
1071 	struct scatterlist *s;
1072 	int i, j;
1073 
1074 	for_each_sg(sg, s, nents, i) {
1075 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1076 		s->dma_length = s->length;
1077 #endif
1078 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1079 						s->length, dir, attrs);
1080 		if (dma_mapping_error(dev, s->dma_address))
1081 			goto bad_mapping;
1082 	}
1083 	return nents;
1084 
1085  bad_mapping:
1086 	for_each_sg(sg, s, i, j)
1087 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1088 	return 0;
1089 }
1090 
1091 /**
1092  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1093  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1094  * @sg: list of buffers
1095  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1096  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1097  *
1098  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1099  * rules concerning calls here are the same as for dma_unmap_single().
1100  */
1101 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1102 		enum dma_data_direction dir, unsigned long attrs)
1103 {
1104 	struct dma_map_ops *ops = get_dma_ops(dev);
1105 	struct scatterlist *s;
1106 
1107 	int i;
1108 
1109 	for_each_sg(sg, s, nents, i)
1110 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1111 }
1112 
1113 /**
1114  * arm_dma_sync_sg_for_cpu
1115  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1116  * @sg: list of buffers
1117  * @nents: number of buffers to map (returned from dma_map_sg)
1118  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1119  */
1120 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1121 			int nents, enum dma_data_direction dir)
1122 {
1123 	struct dma_map_ops *ops = get_dma_ops(dev);
1124 	struct scatterlist *s;
1125 	int i;
1126 
1127 	for_each_sg(sg, s, nents, i)
1128 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1129 					 dir);
1130 }
1131 
1132 /**
1133  * arm_dma_sync_sg_for_device
1134  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1135  * @sg: list of buffers
1136  * @nents: number of buffers to map (returned from dma_map_sg)
1137  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1138  */
1139 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1140 			int nents, enum dma_data_direction dir)
1141 {
1142 	struct dma_map_ops *ops = get_dma_ops(dev);
1143 	struct scatterlist *s;
1144 	int i;
1145 
1146 	for_each_sg(sg, s, nents, i)
1147 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1148 					    dir);
1149 }
1150 
1151 /*
1152  * Return whether the given device DMA address mask can be supported
1153  * properly.  For example, if your device can only drive the low 24-bits
1154  * during bus mastering, then you would pass 0x00ffffff as the mask
1155  * to this function.
1156  */
1157 int dma_supported(struct device *dev, u64 mask)
1158 {
1159 	return __dma_supported(dev, mask, false);
1160 }
1161 EXPORT_SYMBOL(dma_supported);
1162 
1163 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
1164 
1165 static int __init dma_debug_do_init(void)
1166 {
1167 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1168 	return 0;
1169 }
1170 fs_initcall(dma_debug_do_init);
1171 
1172 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1173 
1174 /* IOMMU */
1175 
1176 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1177 
1178 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1179 				      size_t size)
1180 {
1181 	unsigned int order = get_order(size);
1182 	unsigned int align = 0;
1183 	unsigned int count, start;
1184 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1185 	unsigned long flags;
1186 	dma_addr_t iova;
1187 	int i;
1188 
1189 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1190 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1191 
1192 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1193 	align = (1 << order) - 1;
1194 
1195 	spin_lock_irqsave(&mapping->lock, flags);
1196 	for (i = 0; i < mapping->nr_bitmaps; i++) {
1197 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1198 				mapping->bits, 0, count, align);
1199 
1200 		if (start > mapping->bits)
1201 			continue;
1202 
1203 		bitmap_set(mapping->bitmaps[i], start, count);
1204 		break;
1205 	}
1206 
1207 	/*
1208 	 * No unused range found. Try to extend the existing mapping
1209 	 * and perform a second attempt to reserve an IO virtual
1210 	 * address range of size bytes.
1211 	 */
1212 	if (i == mapping->nr_bitmaps) {
1213 		if (extend_iommu_mapping(mapping)) {
1214 			spin_unlock_irqrestore(&mapping->lock, flags);
1215 			return DMA_ERROR_CODE;
1216 		}
1217 
1218 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1219 				mapping->bits, 0, count, align);
1220 
1221 		if (start > mapping->bits) {
1222 			spin_unlock_irqrestore(&mapping->lock, flags);
1223 			return DMA_ERROR_CODE;
1224 		}
1225 
1226 		bitmap_set(mapping->bitmaps[i], start, count);
1227 	}
1228 	spin_unlock_irqrestore(&mapping->lock, flags);
1229 
1230 	iova = mapping->base + (mapping_size * i);
1231 	iova += start << PAGE_SHIFT;
1232 
1233 	return iova;
1234 }
1235 
1236 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1237 			       dma_addr_t addr, size_t size)
1238 {
1239 	unsigned int start, count;
1240 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1241 	unsigned long flags;
1242 	dma_addr_t bitmap_base;
1243 	u32 bitmap_index;
1244 
1245 	if (!size)
1246 		return;
1247 
1248 	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1249 	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1250 
1251 	bitmap_base = mapping->base + mapping_size * bitmap_index;
1252 
1253 	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1254 
1255 	if (addr + size > bitmap_base + mapping_size) {
1256 		/*
1257 		 * The address range to be freed reaches into the iova
1258 		 * range of the next bitmap. This should not happen as
1259 		 * we don't allow this in __alloc_iova (at the
1260 		 * moment).
1261 		 */
1262 		BUG();
1263 	} else
1264 		count = size >> PAGE_SHIFT;
1265 
1266 	spin_lock_irqsave(&mapping->lock, flags);
1267 	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1268 	spin_unlock_irqrestore(&mapping->lock, flags);
1269 }
1270 
1271 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1272 static const int iommu_order_array[] = { 9, 8, 4, 0 };
1273 
1274 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1275 					  gfp_t gfp, unsigned long attrs,
1276 					  int coherent_flag)
1277 {
1278 	struct page **pages;
1279 	int count = size >> PAGE_SHIFT;
1280 	int array_size = count * sizeof(struct page *);
1281 	int i = 0;
1282 	int order_idx = 0;
1283 
1284 	if (array_size <= PAGE_SIZE)
1285 		pages = kzalloc(array_size, GFP_KERNEL);
1286 	else
1287 		pages = vzalloc(array_size);
1288 	if (!pages)
1289 		return NULL;
1290 
1291 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1292 	{
1293 		unsigned long order = get_order(size);
1294 		struct page *page;
1295 
1296 		page = dma_alloc_from_contiguous(dev, count, order);
1297 		if (!page)
1298 			goto error;
1299 
1300 		__dma_clear_buffer(page, size, coherent_flag);
1301 
1302 		for (i = 0; i < count; i++)
1303 			pages[i] = page + i;
1304 
1305 		return pages;
1306 	}
1307 
1308 	/* Go straight to 4K chunks if caller says it's OK. */
1309 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1310 		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1311 
1312 	/*
1313 	 * IOMMU can map any pages, so himem can also be used here
1314 	 */
1315 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1316 
1317 	while (count) {
1318 		int j, order;
1319 
1320 		order = iommu_order_array[order_idx];
1321 
1322 		/* Drop down when we get small */
1323 		if (__fls(count) < order) {
1324 			order_idx++;
1325 			continue;
1326 		}
1327 
1328 		if (order) {
1329 			/* See if it's easy to allocate a high-order chunk */
1330 			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1331 
1332 			/* Go down a notch at first sign of pressure */
1333 			if (!pages[i]) {
1334 				order_idx++;
1335 				continue;
1336 			}
1337 		} else {
1338 			pages[i] = alloc_pages(gfp, 0);
1339 			if (!pages[i])
1340 				goto error;
1341 		}
1342 
1343 		if (order) {
1344 			split_page(pages[i], order);
1345 			j = 1 << order;
1346 			while (--j)
1347 				pages[i + j] = pages[i] + j;
1348 		}
1349 
1350 		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1351 		i += 1 << order;
1352 		count -= 1 << order;
1353 	}
1354 
1355 	return pages;
1356 error:
1357 	while (i--)
1358 		if (pages[i])
1359 			__free_pages(pages[i], 0);
1360 	kvfree(pages);
1361 	return NULL;
1362 }
1363 
1364 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1365 			       size_t size, unsigned long attrs)
1366 {
1367 	int count = size >> PAGE_SHIFT;
1368 	int i;
1369 
1370 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1371 		dma_release_from_contiguous(dev, pages[0], count);
1372 	} else {
1373 		for (i = 0; i < count; i++)
1374 			if (pages[i])
1375 				__free_pages(pages[i], 0);
1376 	}
1377 
1378 	kvfree(pages);
1379 	return 0;
1380 }
1381 
1382 /*
1383  * Create a CPU mapping for a specified pages
1384  */
1385 static void *
1386 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1387 		    const void *caller)
1388 {
1389 	return dma_common_pages_remap(pages, size,
1390 			VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1391 }
1392 
1393 /*
1394  * Create a mapping in device IO address space for specified pages
1395  */
1396 static dma_addr_t
1397 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1398 {
1399 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1400 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1401 	dma_addr_t dma_addr, iova;
1402 	int i;
1403 
1404 	dma_addr = __alloc_iova(mapping, size);
1405 	if (dma_addr == DMA_ERROR_CODE)
1406 		return dma_addr;
1407 
1408 	iova = dma_addr;
1409 	for (i = 0; i < count; ) {
1410 		int ret;
1411 
1412 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1413 		phys_addr_t phys = page_to_phys(pages[i]);
1414 		unsigned int len, j;
1415 
1416 		for (j = i + 1; j < count; j++, next_pfn++)
1417 			if (page_to_pfn(pages[j]) != next_pfn)
1418 				break;
1419 
1420 		len = (j - i) << PAGE_SHIFT;
1421 		ret = iommu_map(mapping->domain, iova, phys, len,
1422 				IOMMU_READ|IOMMU_WRITE);
1423 		if (ret < 0)
1424 			goto fail;
1425 		iova += len;
1426 		i = j;
1427 	}
1428 	return dma_addr;
1429 fail:
1430 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1431 	__free_iova(mapping, dma_addr, size);
1432 	return DMA_ERROR_CODE;
1433 }
1434 
1435 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1436 {
1437 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1438 
1439 	/*
1440 	 * add optional in-page offset from iova to size and align
1441 	 * result to page size
1442 	 */
1443 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1444 	iova &= PAGE_MASK;
1445 
1446 	iommu_unmap(mapping->domain, iova, size);
1447 	__free_iova(mapping, iova, size);
1448 	return 0;
1449 }
1450 
1451 static struct page **__atomic_get_pages(void *addr)
1452 {
1453 	struct page *page;
1454 	phys_addr_t phys;
1455 
1456 	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1457 	page = phys_to_page(phys);
1458 
1459 	return (struct page **)page;
1460 }
1461 
1462 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1463 {
1464 	struct vm_struct *area;
1465 
1466 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1467 		return __atomic_get_pages(cpu_addr);
1468 
1469 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1470 		return cpu_addr;
1471 
1472 	area = find_vm_area(cpu_addr);
1473 	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1474 		return area->pages;
1475 	return NULL;
1476 }
1477 
1478 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1479 				  dma_addr_t *handle, int coherent_flag)
1480 {
1481 	struct page *page;
1482 	void *addr;
1483 
1484 	if (coherent_flag  == COHERENT)
1485 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
1486 	else
1487 		addr = __alloc_from_pool(size, &page);
1488 	if (!addr)
1489 		return NULL;
1490 
1491 	*handle = __iommu_create_mapping(dev, &page, size);
1492 	if (*handle == DMA_ERROR_CODE)
1493 		goto err_mapping;
1494 
1495 	return addr;
1496 
1497 err_mapping:
1498 	__free_from_pool(addr, size);
1499 	return NULL;
1500 }
1501 
1502 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1503 			dma_addr_t handle, size_t size, int coherent_flag)
1504 {
1505 	__iommu_remove_mapping(dev, handle, size);
1506 	if (coherent_flag == COHERENT)
1507 		__dma_free_buffer(virt_to_page(cpu_addr), size);
1508 	else
1509 		__free_from_pool(cpu_addr, size);
1510 }
1511 
1512 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1513 	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1514 	    int coherent_flag)
1515 {
1516 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1517 	struct page **pages;
1518 	void *addr = NULL;
1519 
1520 	*handle = DMA_ERROR_CODE;
1521 	size = PAGE_ALIGN(size);
1522 
1523 	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
1524 		return __iommu_alloc_simple(dev, size, gfp, handle,
1525 					    coherent_flag);
1526 
1527 	/*
1528 	 * Following is a work-around (a.k.a. hack) to prevent pages
1529 	 * with __GFP_COMP being passed to split_page() which cannot
1530 	 * handle them.  The real problem is that this flag probably
1531 	 * should be 0 on ARM as it is not supported on this
1532 	 * platform; see CONFIG_HUGETLBFS.
1533 	 */
1534 	gfp &= ~(__GFP_COMP);
1535 
1536 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1537 	if (!pages)
1538 		return NULL;
1539 
1540 	*handle = __iommu_create_mapping(dev, pages, size);
1541 	if (*handle == DMA_ERROR_CODE)
1542 		goto err_buffer;
1543 
1544 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1545 		return pages;
1546 
1547 	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1548 				   __builtin_return_address(0));
1549 	if (!addr)
1550 		goto err_mapping;
1551 
1552 	return addr;
1553 
1554 err_mapping:
1555 	__iommu_remove_mapping(dev, *handle, size);
1556 err_buffer:
1557 	__iommu_free_buffer(dev, pages, size, attrs);
1558 	return NULL;
1559 }
1560 
1561 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1562 	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1563 {
1564 	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1565 }
1566 
1567 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1568 		    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1569 {
1570 	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1571 }
1572 
1573 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1574 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1575 		    unsigned long attrs)
1576 {
1577 	unsigned long uaddr = vma->vm_start;
1578 	unsigned long usize = vma->vm_end - vma->vm_start;
1579 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1580 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1581 	unsigned long off = vma->vm_pgoff;
1582 
1583 	if (!pages)
1584 		return -ENXIO;
1585 
1586 	if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1587 		return -ENXIO;
1588 
1589 	pages += off;
1590 
1591 	do {
1592 		int ret = vm_insert_page(vma, uaddr, *pages++);
1593 		if (ret) {
1594 			pr_err("Remapping memory failed: %d\n", ret);
1595 			return ret;
1596 		}
1597 		uaddr += PAGE_SIZE;
1598 		usize -= PAGE_SIZE;
1599 	} while (usize > 0);
1600 
1601 	return 0;
1602 }
1603 static int arm_iommu_mmap_attrs(struct device *dev,
1604 		struct vm_area_struct *vma, void *cpu_addr,
1605 		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1606 {
1607 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1608 
1609 	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1610 }
1611 
1612 static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1613 		struct vm_area_struct *vma, void *cpu_addr,
1614 		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1615 {
1616 	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1617 }
1618 
1619 /*
1620  * free a page as defined by the above mapping.
1621  * Must not be called with IRQs disabled.
1622  */
1623 void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1624 	dma_addr_t handle, unsigned long attrs, int coherent_flag)
1625 {
1626 	struct page **pages;
1627 	size = PAGE_ALIGN(size);
1628 
1629 	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1630 		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1631 		return;
1632 	}
1633 
1634 	pages = __iommu_get_pages(cpu_addr, attrs);
1635 	if (!pages) {
1636 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1637 		return;
1638 	}
1639 
1640 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) {
1641 		dma_common_free_remap(cpu_addr, size,
1642 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1643 	}
1644 
1645 	__iommu_remove_mapping(dev, handle, size);
1646 	__iommu_free_buffer(dev, pages, size, attrs);
1647 }
1648 
1649 void arm_iommu_free_attrs(struct device *dev, size_t size,
1650 		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1651 {
1652 	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1653 }
1654 
1655 void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1656 		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1657 {
1658 	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1659 }
1660 
1661 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1662 				 void *cpu_addr, dma_addr_t dma_addr,
1663 				 size_t size, unsigned long attrs)
1664 {
1665 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1666 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1667 
1668 	if (!pages)
1669 		return -ENXIO;
1670 
1671 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1672 					 GFP_KERNEL);
1673 }
1674 
1675 static int __dma_direction_to_prot(enum dma_data_direction dir)
1676 {
1677 	int prot;
1678 
1679 	switch (dir) {
1680 	case DMA_BIDIRECTIONAL:
1681 		prot = IOMMU_READ | IOMMU_WRITE;
1682 		break;
1683 	case DMA_TO_DEVICE:
1684 		prot = IOMMU_READ;
1685 		break;
1686 	case DMA_FROM_DEVICE:
1687 		prot = IOMMU_WRITE;
1688 		break;
1689 	default:
1690 		prot = 0;
1691 	}
1692 
1693 	return prot;
1694 }
1695 
1696 /*
1697  * Map a part of the scatter-gather list into contiguous io address space
1698  */
1699 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1700 			  size_t size, dma_addr_t *handle,
1701 			  enum dma_data_direction dir, unsigned long attrs,
1702 			  bool is_coherent)
1703 {
1704 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1705 	dma_addr_t iova, iova_base;
1706 	int ret = 0;
1707 	unsigned int count;
1708 	struct scatterlist *s;
1709 	int prot;
1710 
1711 	size = PAGE_ALIGN(size);
1712 	*handle = DMA_ERROR_CODE;
1713 
1714 	iova_base = iova = __alloc_iova(mapping, size);
1715 	if (iova == DMA_ERROR_CODE)
1716 		return -ENOMEM;
1717 
1718 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1719 		phys_addr_t phys = page_to_phys(sg_page(s));
1720 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1721 
1722 		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1723 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1724 
1725 		prot = __dma_direction_to_prot(dir);
1726 
1727 		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1728 		if (ret < 0)
1729 			goto fail;
1730 		count += len >> PAGE_SHIFT;
1731 		iova += len;
1732 	}
1733 	*handle = iova_base;
1734 
1735 	return 0;
1736 fail:
1737 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1738 	__free_iova(mapping, iova_base, size);
1739 	return ret;
1740 }
1741 
1742 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1743 		     enum dma_data_direction dir, unsigned long attrs,
1744 		     bool is_coherent)
1745 {
1746 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1747 	int i, count = 0;
1748 	unsigned int offset = s->offset;
1749 	unsigned int size = s->offset + s->length;
1750 	unsigned int max = dma_get_max_seg_size(dev);
1751 
1752 	for (i = 1; i < nents; i++) {
1753 		s = sg_next(s);
1754 
1755 		s->dma_address = DMA_ERROR_CODE;
1756 		s->dma_length = 0;
1757 
1758 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1759 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1760 			    dir, attrs, is_coherent) < 0)
1761 				goto bad_mapping;
1762 
1763 			dma->dma_address += offset;
1764 			dma->dma_length = size - offset;
1765 
1766 			size = offset = s->offset;
1767 			start = s;
1768 			dma = sg_next(dma);
1769 			count += 1;
1770 		}
1771 		size += s->length;
1772 	}
1773 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1774 		is_coherent) < 0)
1775 		goto bad_mapping;
1776 
1777 	dma->dma_address += offset;
1778 	dma->dma_length = size - offset;
1779 
1780 	return count+1;
1781 
1782 bad_mapping:
1783 	for_each_sg(sg, s, count, i)
1784 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1785 	return 0;
1786 }
1787 
1788 /**
1789  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1790  * @dev: valid struct device pointer
1791  * @sg: list of buffers
1792  * @nents: number of buffers to map
1793  * @dir: DMA transfer direction
1794  *
1795  * Map a set of i/o coherent buffers described by scatterlist in streaming
1796  * mode for DMA. The scatter gather list elements are merged together (if
1797  * possible) and tagged with the appropriate dma address and length. They are
1798  * obtained via sg_dma_{address,length}.
1799  */
1800 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1801 		int nents, enum dma_data_direction dir, unsigned long attrs)
1802 {
1803 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1804 }
1805 
1806 /**
1807  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1808  * @dev: valid struct device pointer
1809  * @sg: list of buffers
1810  * @nents: number of buffers to map
1811  * @dir: DMA transfer direction
1812  *
1813  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1814  * The scatter gather list elements are merged together (if possible) and
1815  * tagged with the appropriate dma address and length. They are obtained via
1816  * sg_dma_{address,length}.
1817  */
1818 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1819 		int nents, enum dma_data_direction dir, unsigned long attrs)
1820 {
1821 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1822 }
1823 
1824 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1825 		int nents, enum dma_data_direction dir,
1826 		unsigned long attrs, bool is_coherent)
1827 {
1828 	struct scatterlist *s;
1829 	int i;
1830 
1831 	for_each_sg(sg, s, nents, i) {
1832 		if (sg_dma_len(s))
1833 			__iommu_remove_mapping(dev, sg_dma_address(s),
1834 					       sg_dma_len(s));
1835 		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1836 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1837 					      s->length, dir);
1838 	}
1839 }
1840 
1841 /**
1842  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1843  * @dev: valid struct device pointer
1844  * @sg: list of buffers
1845  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1846  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1847  *
1848  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1849  * rules concerning calls here are the same as for dma_unmap_single().
1850  */
1851 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1852 		int nents, enum dma_data_direction dir,
1853 		unsigned long attrs)
1854 {
1855 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1856 }
1857 
1858 /**
1859  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1860  * @dev: valid struct device pointer
1861  * @sg: list of buffers
1862  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1863  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1864  *
1865  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1866  * rules concerning calls here are the same as for dma_unmap_single().
1867  */
1868 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1869 			enum dma_data_direction dir,
1870 			unsigned long attrs)
1871 {
1872 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1873 }
1874 
1875 /**
1876  * arm_iommu_sync_sg_for_cpu
1877  * @dev: valid struct device pointer
1878  * @sg: list of buffers
1879  * @nents: number of buffers to map (returned from dma_map_sg)
1880  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1881  */
1882 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1883 			int nents, enum dma_data_direction dir)
1884 {
1885 	struct scatterlist *s;
1886 	int i;
1887 
1888 	for_each_sg(sg, s, nents, i)
1889 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1890 
1891 }
1892 
1893 /**
1894  * arm_iommu_sync_sg_for_device
1895  * @dev: valid struct device pointer
1896  * @sg: list of buffers
1897  * @nents: number of buffers to map (returned from dma_map_sg)
1898  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1899  */
1900 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1901 			int nents, enum dma_data_direction dir)
1902 {
1903 	struct scatterlist *s;
1904 	int i;
1905 
1906 	for_each_sg(sg, s, nents, i)
1907 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1908 }
1909 
1910 
1911 /**
1912  * arm_coherent_iommu_map_page
1913  * @dev: valid struct device pointer
1914  * @page: page that buffer resides in
1915  * @offset: offset into page for start of buffer
1916  * @size: size of buffer to map
1917  * @dir: DMA transfer direction
1918  *
1919  * Coherent IOMMU aware version of arm_dma_map_page()
1920  */
1921 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1922 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1923 	     unsigned long attrs)
1924 {
1925 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1926 	dma_addr_t dma_addr;
1927 	int ret, prot, len = PAGE_ALIGN(size + offset);
1928 
1929 	dma_addr = __alloc_iova(mapping, len);
1930 	if (dma_addr == DMA_ERROR_CODE)
1931 		return dma_addr;
1932 
1933 	prot = __dma_direction_to_prot(dir);
1934 
1935 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1936 	if (ret < 0)
1937 		goto fail;
1938 
1939 	return dma_addr + offset;
1940 fail:
1941 	__free_iova(mapping, dma_addr, len);
1942 	return DMA_ERROR_CODE;
1943 }
1944 
1945 /**
1946  * arm_iommu_map_page
1947  * @dev: valid struct device pointer
1948  * @page: page that buffer resides in
1949  * @offset: offset into page for start of buffer
1950  * @size: size of buffer to map
1951  * @dir: DMA transfer direction
1952  *
1953  * IOMMU aware version of arm_dma_map_page()
1954  */
1955 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1956 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1957 	     unsigned long attrs)
1958 {
1959 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1960 		__dma_page_cpu_to_dev(page, offset, size, dir);
1961 
1962 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1963 }
1964 
1965 /**
1966  * arm_coherent_iommu_unmap_page
1967  * @dev: valid struct device pointer
1968  * @handle: DMA address of buffer
1969  * @size: size of buffer (same as passed to dma_map_page)
1970  * @dir: DMA transfer direction (same as passed to dma_map_page)
1971  *
1972  * Coherent IOMMU aware version of arm_dma_unmap_page()
1973  */
1974 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1975 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1976 {
1977 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1978 	dma_addr_t iova = handle & PAGE_MASK;
1979 	int offset = handle & ~PAGE_MASK;
1980 	int len = PAGE_ALIGN(size + offset);
1981 
1982 	if (!iova)
1983 		return;
1984 
1985 	iommu_unmap(mapping->domain, iova, len);
1986 	__free_iova(mapping, iova, len);
1987 }
1988 
1989 /**
1990  * arm_iommu_unmap_page
1991  * @dev: valid struct device pointer
1992  * @handle: DMA address of buffer
1993  * @size: size of buffer (same as passed to dma_map_page)
1994  * @dir: DMA transfer direction (same as passed to dma_map_page)
1995  *
1996  * IOMMU aware version of arm_dma_unmap_page()
1997  */
1998 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1999 		size_t size, enum dma_data_direction dir, unsigned long attrs)
2000 {
2001 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2002 	dma_addr_t iova = handle & PAGE_MASK;
2003 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2004 	int offset = handle & ~PAGE_MASK;
2005 	int len = PAGE_ALIGN(size + offset);
2006 
2007 	if (!iova)
2008 		return;
2009 
2010 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
2011 		__dma_page_dev_to_cpu(page, offset, size, dir);
2012 
2013 	iommu_unmap(mapping->domain, iova, len);
2014 	__free_iova(mapping, iova, len);
2015 }
2016 
2017 static void arm_iommu_sync_single_for_cpu(struct device *dev,
2018 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
2019 {
2020 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2021 	dma_addr_t iova = handle & PAGE_MASK;
2022 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2023 	unsigned int offset = handle & ~PAGE_MASK;
2024 
2025 	if (!iova)
2026 		return;
2027 
2028 	__dma_page_dev_to_cpu(page, offset, size, dir);
2029 }
2030 
2031 static void arm_iommu_sync_single_for_device(struct device *dev,
2032 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
2033 {
2034 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2035 	dma_addr_t iova = handle & PAGE_MASK;
2036 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2037 	unsigned int offset = handle & ~PAGE_MASK;
2038 
2039 	if (!iova)
2040 		return;
2041 
2042 	__dma_page_cpu_to_dev(page, offset, size, dir);
2043 }
2044 
2045 struct dma_map_ops iommu_ops = {
2046 	.alloc		= arm_iommu_alloc_attrs,
2047 	.free		= arm_iommu_free_attrs,
2048 	.mmap		= arm_iommu_mmap_attrs,
2049 	.get_sgtable	= arm_iommu_get_sgtable,
2050 
2051 	.map_page		= arm_iommu_map_page,
2052 	.unmap_page		= arm_iommu_unmap_page,
2053 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
2054 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
2055 
2056 	.map_sg			= arm_iommu_map_sg,
2057 	.unmap_sg		= arm_iommu_unmap_sg,
2058 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
2059 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
2060 };
2061 
2062 struct dma_map_ops iommu_coherent_ops = {
2063 	.alloc		= arm_coherent_iommu_alloc_attrs,
2064 	.free		= arm_coherent_iommu_free_attrs,
2065 	.mmap		= arm_coherent_iommu_mmap_attrs,
2066 	.get_sgtable	= arm_iommu_get_sgtable,
2067 
2068 	.map_page	= arm_coherent_iommu_map_page,
2069 	.unmap_page	= arm_coherent_iommu_unmap_page,
2070 
2071 	.map_sg		= arm_coherent_iommu_map_sg,
2072 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
2073 };
2074 
2075 /**
2076  * arm_iommu_create_mapping
2077  * @bus: pointer to the bus holding the client device (for IOMMU calls)
2078  * @base: start address of the valid IO address space
2079  * @size: maximum size of the valid IO address space
2080  *
2081  * Creates a mapping structure which holds information about used/unused
2082  * IO address ranges, which is required to perform memory allocation and
2083  * mapping with IOMMU aware functions.
2084  *
2085  * The client device need to be attached to the mapping with
2086  * arm_iommu_attach_device function.
2087  */
2088 struct dma_iommu_mapping *
2089 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2090 {
2091 	unsigned int bits = size >> PAGE_SHIFT;
2092 	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2093 	struct dma_iommu_mapping *mapping;
2094 	int extensions = 1;
2095 	int err = -ENOMEM;
2096 
2097 	/* currently only 32-bit DMA address space is supported */
2098 	if (size > DMA_BIT_MASK(32) + 1)
2099 		return ERR_PTR(-ERANGE);
2100 
2101 	if (!bitmap_size)
2102 		return ERR_PTR(-EINVAL);
2103 
2104 	if (bitmap_size > PAGE_SIZE) {
2105 		extensions = bitmap_size / PAGE_SIZE;
2106 		bitmap_size = PAGE_SIZE;
2107 	}
2108 
2109 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2110 	if (!mapping)
2111 		goto err;
2112 
2113 	mapping->bitmap_size = bitmap_size;
2114 	mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
2115 				GFP_KERNEL);
2116 	if (!mapping->bitmaps)
2117 		goto err2;
2118 
2119 	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2120 	if (!mapping->bitmaps[0])
2121 		goto err3;
2122 
2123 	mapping->nr_bitmaps = 1;
2124 	mapping->extensions = extensions;
2125 	mapping->base = base;
2126 	mapping->bits = BITS_PER_BYTE * bitmap_size;
2127 
2128 	spin_lock_init(&mapping->lock);
2129 
2130 	mapping->domain = iommu_domain_alloc(bus);
2131 	if (!mapping->domain)
2132 		goto err4;
2133 
2134 	kref_init(&mapping->kref);
2135 	return mapping;
2136 err4:
2137 	kfree(mapping->bitmaps[0]);
2138 err3:
2139 	kfree(mapping->bitmaps);
2140 err2:
2141 	kfree(mapping);
2142 err:
2143 	return ERR_PTR(err);
2144 }
2145 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2146 
2147 static void release_iommu_mapping(struct kref *kref)
2148 {
2149 	int i;
2150 	struct dma_iommu_mapping *mapping =
2151 		container_of(kref, struct dma_iommu_mapping, kref);
2152 
2153 	iommu_domain_free(mapping->domain);
2154 	for (i = 0; i < mapping->nr_bitmaps; i++)
2155 		kfree(mapping->bitmaps[i]);
2156 	kfree(mapping->bitmaps);
2157 	kfree(mapping);
2158 }
2159 
2160 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2161 {
2162 	int next_bitmap;
2163 
2164 	if (mapping->nr_bitmaps >= mapping->extensions)
2165 		return -EINVAL;
2166 
2167 	next_bitmap = mapping->nr_bitmaps;
2168 	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2169 						GFP_ATOMIC);
2170 	if (!mapping->bitmaps[next_bitmap])
2171 		return -ENOMEM;
2172 
2173 	mapping->nr_bitmaps++;
2174 
2175 	return 0;
2176 }
2177 
2178 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2179 {
2180 	if (mapping)
2181 		kref_put(&mapping->kref, release_iommu_mapping);
2182 }
2183 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2184 
2185 static int __arm_iommu_attach_device(struct device *dev,
2186 				     struct dma_iommu_mapping *mapping)
2187 {
2188 	int err;
2189 
2190 	err = iommu_attach_device(mapping->domain, dev);
2191 	if (err)
2192 		return err;
2193 
2194 	kref_get(&mapping->kref);
2195 	to_dma_iommu_mapping(dev) = mapping;
2196 
2197 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2198 	return 0;
2199 }
2200 
2201 /**
2202  * arm_iommu_attach_device
2203  * @dev: valid struct device pointer
2204  * @mapping: io address space mapping structure (returned from
2205  *	arm_iommu_create_mapping)
2206  *
2207  * Attaches specified io address space mapping to the provided device.
2208  * This replaces the dma operations (dma_map_ops pointer) with the
2209  * IOMMU aware version.
2210  *
2211  * More than one client might be attached to the same io address space
2212  * mapping.
2213  */
2214 int arm_iommu_attach_device(struct device *dev,
2215 			    struct dma_iommu_mapping *mapping)
2216 {
2217 	int err;
2218 
2219 	err = __arm_iommu_attach_device(dev, mapping);
2220 	if (err)
2221 		return err;
2222 
2223 	set_dma_ops(dev, &iommu_ops);
2224 	return 0;
2225 }
2226 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2227 
2228 static void __arm_iommu_detach_device(struct device *dev)
2229 {
2230 	struct dma_iommu_mapping *mapping;
2231 
2232 	mapping = to_dma_iommu_mapping(dev);
2233 	if (!mapping) {
2234 		dev_warn(dev, "Not attached\n");
2235 		return;
2236 	}
2237 
2238 	iommu_detach_device(mapping->domain, dev);
2239 	kref_put(&mapping->kref, release_iommu_mapping);
2240 	to_dma_iommu_mapping(dev) = NULL;
2241 
2242 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2243 }
2244 
2245 /**
2246  * arm_iommu_detach_device
2247  * @dev: valid struct device pointer
2248  *
2249  * Detaches the provided device from a previously attached map.
2250  * This voids the dma operations (dma_map_ops pointer)
2251  */
2252 void arm_iommu_detach_device(struct device *dev)
2253 {
2254 	__arm_iommu_detach_device(dev);
2255 	set_dma_ops(dev, NULL);
2256 }
2257 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2258 
2259 static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2260 {
2261 	return coherent ? &iommu_coherent_ops : &iommu_ops;
2262 }
2263 
2264 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2265 				    const struct iommu_ops *iommu)
2266 {
2267 	struct dma_iommu_mapping *mapping;
2268 
2269 	if (!iommu)
2270 		return false;
2271 
2272 	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2273 	if (IS_ERR(mapping)) {
2274 		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2275 				size, dev_name(dev));
2276 		return false;
2277 	}
2278 
2279 	if (__arm_iommu_attach_device(dev, mapping)) {
2280 		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2281 				dev_name(dev));
2282 		arm_iommu_release_mapping(mapping);
2283 		return false;
2284 	}
2285 
2286 	return true;
2287 }
2288 
2289 static void arm_teardown_iommu_dma_ops(struct device *dev)
2290 {
2291 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2292 
2293 	if (!mapping)
2294 		return;
2295 
2296 	__arm_iommu_detach_device(dev);
2297 	arm_iommu_release_mapping(mapping);
2298 }
2299 
2300 #else
2301 
2302 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2303 				    const struct iommu_ops *iommu)
2304 {
2305 	return false;
2306 }
2307 
2308 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2309 
2310 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2311 
2312 #endif	/* CONFIG_ARM_DMA_USE_IOMMU */
2313 
2314 static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2315 {
2316 	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2317 }
2318 
2319 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2320 			const struct iommu_ops *iommu, bool coherent)
2321 {
2322 	struct dma_map_ops *dma_ops;
2323 
2324 	dev->archdata.dma_coherent = coherent;
2325 	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2326 		dma_ops = arm_get_iommu_dma_map_ops(coherent);
2327 	else
2328 		dma_ops = arm_get_dma_map_ops(coherent);
2329 
2330 	set_dma_ops(dev, dma_ops);
2331 }
2332 
2333 void arch_teardown_dma_ops(struct device *dev)
2334 {
2335 	arm_teardown_iommu_dma_ops(dev);
2336 }
2337