1 /* 2 * linux/arch/arm/mm/dma-mapping.c 3 * 4 * Copyright (C) 2000-2004 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * DMA uncached mapping support. 11 */ 12 #include <linux/bootmem.h> 13 #include <linux/module.h> 14 #include <linux/mm.h> 15 #include <linux/genalloc.h> 16 #include <linux/gfp.h> 17 #include <linux/errno.h> 18 #include <linux/list.h> 19 #include <linux/init.h> 20 #include <linux/device.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/dma-contiguous.h> 23 #include <linux/highmem.h> 24 #include <linux/memblock.h> 25 #include <linux/slab.h> 26 #include <linux/iommu.h> 27 #include <linux/io.h> 28 #include <linux/vmalloc.h> 29 #include <linux/sizes.h> 30 #include <linux/cma.h> 31 32 #include <asm/memory.h> 33 #include <asm/highmem.h> 34 #include <asm/cacheflush.h> 35 #include <asm/tlbflush.h> 36 #include <asm/mach/arch.h> 37 #include <asm/dma-iommu.h> 38 #include <asm/mach/map.h> 39 #include <asm/system_info.h> 40 #include <asm/dma-contiguous.h> 41 42 #include "dma.h" 43 #include "mm.h" 44 45 struct arm_dma_alloc_args { 46 struct device *dev; 47 size_t size; 48 gfp_t gfp; 49 pgprot_t prot; 50 const void *caller; 51 bool want_vaddr; 52 int coherent_flag; 53 }; 54 55 struct arm_dma_free_args { 56 struct device *dev; 57 size_t size; 58 void *cpu_addr; 59 struct page *page; 60 bool want_vaddr; 61 }; 62 63 #define NORMAL 0 64 #define COHERENT 1 65 66 struct arm_dma_allocator { 67 void *(*alloc)(struct arm_dma_alloc_args *args, 68 struct page **ret_page); 69 void (*free)(struct arm_dma_free_args *args); 70 }; 71 72 struct arm_dma_buffer { 73 struct list_head list; 74 void *virt; 75 struct arm_dma_allocator *allocator; 76 }; 77 78 static LIST_HEAD(arm_dma_bufs); 79 static DEFINE_SPINLOCK(arm_dma_bufs_lock); 80 81 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt) 82 { 83 struct arm_dma_buffer *buf, *found = NULL; 84 unsigned long flags; 85 86 spin_lock_irqsave(&arm_dma_bufs_lock, flags); 87 list_for_each_entry(buf, &arm_dma_bufs, list) { 88 if (buf->virt == virt) { 89 list_del(&buf->list); 90 found = buf; 91 break; 92 } 93 } 94 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); 95 return found; 96 } 97 98 /* 99 * The DMA API is built upon the notion of "buffer ownership". A buffer 100 * is either exclusively owned by the CPU (and therefore may be accessed 101 * by it) or exclusively owned by the DMA device. These helper functions 102 * represent the transitions between these two ownership states. 103 * 104 * Note, however, that on later ARMs, this notion does not work due to 105 * speculative prefetches. We model our approach on the assumption that 106 * the CPU does do speculative prefetches, which means we clean caches 107 * before transfers and delay cache invalidation until transfer completion. 108 * 109 */ 110 static void __dma_page_cpu_to_dev(struct page *, unsigned long, 111 size_t, enum dma_data_direction); 112 static void __dma_page_dev_to_cpu(struct page *, unsigned long, 113 size_t, enum dma_data_direction); 114 115 /** 116 * arm_dma_map_page - map a portion of a page for streaming DMA 117 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 118 * @page: page that buffer resides in 119 * @offset: offset into page for start of buffer 120 * @size: size of buffer to map 121 * @dir: DMA transfer direction 122 * 123 * Ensure that any data held in the cache is appropriately discarded 124 * or written back. 125 * 126 * The device owns this memory once this call has completed. The CPU 127 * can regain ownership by calling dma_unmap_page(). 128 */ 129 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page, 130 unsigned long offset, size_t size, enum dma_data_direction dir, 131 unsigned long attrs) 132 { 133 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 134 __dma_page_cpu_to_dev(page, offset, size, dir); 135 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 136 } 137 138 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page, 139 unsigned long offset, size_t size, enum dma_data_direction dir, 140 unsigned long attrs) 141 { 142 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 143 } 144 145 /** 146 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page() 147 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 148 * @handle: DMA address of buffer 149 * @size: size of buffer (same as passed to dma_map_page) 150 * @dir: DMA transfer direction (same as passed to dma_map_page) 151 * 152 * Unmap a page streaming mode DMA translation. The handle and size 153 * must match what was provided in the previous dma_map_page() call. 154 * All other usages are undefined. 155 * 156 * After this call, reads by the CPU to the buffer are guaranteed to see 157 * whatever the device wrote there. 158 */ 159 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle, 160 size_t size, enum dma_data_direction dir, unsigned long attrs) 161 { 162 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 163 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)), 164 handle & ~PAGE_MASK, size, dir); 165 } 166 167 static void arm_dma_sync_single_for_cpu(struct device *dev, 168 dma_addr_t handle, size_t size, enum dma_data_direction dir) 169 { 170 unsigned int offset = handle & (PAGE_SIZE - 1); 171 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 172 __dma_page_dev_to_cpu(page, offset, size, dir); 173 } 174 175 static void arm_dma_sync_single_for_device(struct device *dev, 176 dma_addr_t handle, size_t size, enum dma_data_direction dir) 177 { 178 unsigned int offset = handle & (PAGE_SIZE - 1); 179 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 180 __dma_page_cpu_to_dev(page, offset, size, dir); 181 } 182 183 static int arm_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 184 { 185 return dma_addr == ARM_MAPPING_ERROR; 186 } 187 188 const struct dma_map_ops arm_dma_ops = { 189 .alloc = arm_dma_alloc, 190 .free = arm_dma_free, 191 .mmap = arm_dma_mmap, 192 .get_sgtable = arm_dma_get_sgtable, 193 .map_page = arm_dma_map_page, 194 .unmap_page = arm_dma_unmap_page, 195 .map_sg = arm_dma_map_sg, 196 .unmap_sg = arm_dma_unmap_sg, 197 .sync_single_for_cpu = arm_dma_sync_single_for_cpu, 198 .sync_single_for_device = arm_dma_sync_single_for_device, 199 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu, 200 .sync_sg_for_device = arm_dma_sync_sg_for_device, 201 .mapping_error = arm_dma_mapping_error, 202 .dma_supported = arm_dma_supported, 203 }; 204 EXPORT_SYMBOL(arm_dma_ops); 205 206 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 207 dma_addr_t *handle, gfp_t gfp, unsigned long attrs); 208 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 209 dma_addr_t handle, unsigned long attrs); 210 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma, 211 void *cpu_addr, dma_addr_t dma_addr, size_t size, 212 unsigned long attrs); 213 214 const struct dma_map_ops arm_coherent_dma_ops = { 215 .alloc = arm_coherent_dma_alloc, 216 .free = arm_coherent_dma_free, 217 .mmap = arm_coherent_dma_mmap, 218 .get_sgtable = arm_dma_get_sgtable, 219 .map_page = arm_coherent_dma_map_page, 220 .map_sg = arm_dma_map_sg, 221 .mapping_error = arm_dma_mapping_error, 222 .dma_supported = arm_dma_supported, 223 }; 224 EXPORT_SYMBOL(arm_coherent_dma_ops); 225 226 static int __dma_supported(struct device *dev, u64 mask, bool warn) 227 { 228 unsigned long max_dma_pfn; 229 230 /* 231 * If the mask allows for more memory than we can address, 232 * and we actually have that much memory, then we must 233 * indicate that DMA to this device is not supported. 234 */ 235 if (sizeof(mask) != sizeof(dma_addr_t) && 236 mask > (dma_addr_t)~0 && 237 dma_to_pfn(dev, ~0) < max_pfn - 1) { 238 if (warn) { 239 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n", 240 mask); 241 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n"); 242 } 243 return 0; 244 } 245 246 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit); 247 248 /* 249 * Translate the device's DMA mask to a PFN limit. This 250 * PFN number includes the page which we can DMA to. 251 */ 252 if (dma_to_pfn(dev, mask) < max_dma_pfn) { 253 if (warn) 254 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n", 255 mask, 256 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1, 257 max_dma_pfn + 1); 258 return 0; 259 } 260 261 return 1; 262 } 263 264 static u64 get_coherent_dma_mask(struct device *dev) 265 { 266 u64 mask = (u64)DMA_BIT_MASK(32); 267 268 if (dev) { 269 mask = dev->coherent_dma_mask; 270 271 /* 272 * Sanity check the DMA mask - it must be non-zero, and 273 * must be able to be satisfied by a DMA allocation. 274 */ 275 if (mask == 0) { 276 dev_warn(dev, "coherent DMA mask is unset\n"); 277 return 0; 278 } 279 280 if (!__dma_supported(dev, mask, true)) 281 return 0; 282 } 283 284 return mask; 285 } 286 287 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag) 288 { 289 /* 290 * Ensure that the allocated pages are zeroed, and that any data 291 * lurking in the kernel direct-mapped region is invalidated. 292 */ 293 if (PageHighMem(page)) { 294 phys_addr_t base = __pfn_to_phys(page_to_pfn(page)); 295 phys_addr_t end = base + size; 296 while (size > 0) { 297 void *ptr = kmap_atomic(page); 298 memset(ptr, 0, PAGE_SIZE); 299 if (coherent_flag != COHERENT) 300 dmac_flush_range(ptr, ptr + PAGE_SIZE); 301 kunmap_atomic(ptr); 302 page++; 303 size -= PAGE_SIZE; 304 } 305 if (coherent_flag != COHERENT) 306 outer_flush_range(base, end); 307 } else { 308 void *ptr = page_address(page); 309 memset(ptr, 0, size); 310 if (coherent_flag != COHERENT) { 311 dmac_flush_range(ptr, ptr + size); 312 outer_flush_range(__pa(ptr), __pa(ptr) + size); 313 } 314 } 315 } 316 317 /* 318 * Allocate a DMA buffer for 'dev' of size 'size' using the 319 * specified gfp mask. Note that 'size' must be page aligned. 320 */ 321 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, 322 gfp_t gfp, int coherent_flag) 323 { 324 unsigned long order = get_order(size); 325 struct page *page, *p, *e; 326 327 page = alloc_pages(gfp, order); 328 if (!page) 329 return NULL; 330 331 /* 332 * Now split the huge page and free the excess pages 333 */ 334 split_page(page, order); 335 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) 336 __free_page(p); 337 338 __dma_clear_buffer(page, size, coherent_flag); 339 340 return page; 341 } 342 343 /* 344 * Free a DMA buffer. 'size' must be page aligned. 345 */ 346 static void __dma_free_buffer(struct page *page, size_t size) 347 { 348 struct page *e = page + (size >> PAGE_SHIFT); 349 350 while (page < e) { 351 __free_page(page); 352 page++; 353 } 354 } 355 356 static void *__alloc_from_contiguous(struct device *dev, size_t size, 357 pgprot_t prot, struct page **ret_page, 358 const void *caller, bool want_vaddr, 359 int coherent_flag, gfp_t gfp); 360 361 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 362 pgprot_t prot, struct page **ret_page, 363 const void *caller, bool want_vaddr); 364 365 static void * 366 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot, 367 const void *caller) 368 { 369 /* 370 * DMA allocation can be mapped to user space, so lets 371 * set VM_USERMAP flags too. 372 */ 373 return dma_common_contiguous_remap(page, size, 374 VM_ARM_DMA_CONSISTENT | VM_USERMAP, 375 prot, caller); 376 } 377 378 static void __dma_free_remap(void *cpu_addr, size_t size) 379 { 380 dma_common_free_remap(cpu_addr, size, 381 VM_ARM_DMA_CONSISTENT | VM_USERMAP); 382 } 383 384 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K 385 static struct gen_pool *atomic_pool __ro_after_init; 386 387 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE; 388 389 static int __init early_coherent_pool(char *p) 390 { 391 atomic_pool_size = memparse(p, &p); 392 return 0; 393 } 394 early_param("coherent_pool", early_coherent_pool); 395 396 /* 397 * Initialise the coherent pool for atomic allocations. 398 */ 399 static int __init atomic_pool_init(void) 400 { 401 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL); 402 gfp_t gfp = GFP_KERNEL | GFP_DMA; 403 struct page *page; 404 void *ptr; 405 406 atomic_pool = gen_pool_create(PAGE_SHIFT, -1); 407 if (!atomic_pool) 408 goto out; 409 /* 410 * The atomic pool is only used for non-coherent allocations 411 * so we must pass NORMAL for coherent_flag. 412 */ 413 if (dev_get_cma_area(NULL)) 414 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot, 415 &page, atomic_pool_init, true, NORMAL, 416 GFP_KERNEL); 417 else 418 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot, 419 &page, atomic_pool_init, true); 420 if (ptr) { 421 int ret; 422 423 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr, 424 page_to_phys(page), 425 atomic_pool_size, -1); 426 if (ret) 427 goto destroy_genpool; 428 429 gen_pool_set_algo(atomic_pool, 430 gen_pool_first_fit_order_align, 431 NULL); 432 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n", 433 atomic_pool_size / 1024); 434 return 0; 435 } 436 437 destroy_genpool: 438 gen_pool_destroy(atomic_pool); 439 atomic_pool = NULL; 440 out: 441 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n", 442 atomic_pool_size / 1024); 443 return -ENOMEM; 444 } 445 /* 446 * CMA is activated by core_initcall, so we must be called after it. 447 */ 448 postcore_initcall(atomic_pool_init); 449 450 struct dma_contig_early_reserve { 451 phys_addr_t base; 452 unsigned long size; 453 }; 454 455 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata; 456 457 static int dma_mmu_remap_num __initdata; 458 459 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) 460 { 461 dma_mmu_remap[dma_mmu_remap_num].base = base; 462 dma_mmu_remap[dma_mmu_remap_num].size = size; 463 dma_mmu_remap_num++; 464 } 465 466 void __init dma_contiguous_remap(void) 467 { 468 int i; 469 for (i = 0; i < dma_mmu_remap_num; i++) { 470 phys_addr_t start = dma_mmu_remap[i].base; 471 phys_addr_t end = start + dma_mmu_remap[i].size; 472 struct map_desc map; 473 unsigned long addr; 474 475 if (end > arm_lowmem_limit) 476 end = arm_lowmem_limit; 477 if (start >= end) 478 continue; 479 480 map.pfn = __phys_to_pfn(start); 481 map.virtual = __phys_to_virt(start); 482 map.length = end - start; 483 map.type = MT_MEMORY_DMA_READY; 484 485 /* 486 * Clear previous low-memory mapping to ensure that the 487 * TLB does not see any conflicting entries, then flush 488 * the TLB of the old entries before creating new mappings. 489 * 490 * This ensures that any speculatively loaded TLB entries 491 * (even though they may be rare) can not cause any problems, 492 * and ensures that this code is architecturally compliant. 493 */ 494 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end); 495 addr += PMD_SIZE) 496 pmd_clear(pmd_off_k(addr)); 497 498 flush_tlb_kernel_range(__phys_to_virt(start), 499 __phys_to_virt(end)); 500 501 iotable_init(&map, 1); 502 } 503 } 504 505 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr, 506 void *data) 507 { 508 struct page *page = virt_to_page(addr); 509 pgprot_t prot = *(pgprot_t *)data; 510 511 set_pte_ext(pte, mk_pte(page, prot), 0); 512 return 0; 513 } 514 515 static void __dma_remap(struct page *page, size_t size, pgprot_t prot) 516 { 517 unsigned long start = (unsigned long) page_address(page); 518 unsigned end = start + size; 519 520 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot); 521 flush_tlb_kernel_range(start, end); 522 } 523 524 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 525 pgprot_t prot, struct page **ret_page, 526 const void *caller, bool want_vaddr) 527 { 528 struct page *page; 529 void *ptr = NULL; 530 /* 531 * __alloc_remap_buffer is only called when the device is 532 * non-coherent 533 */ 534 page = __dma_alloc_buffer(dev, size, gfp, NORMAL); 535 if (!page) 536 return NULL; 537 if (!want_vaddr) 538 goto out; 539 540 ptr = __dma_alloc_remap(page, size, gfp, prot, caller); 541 if (!ptr) { 542 __dma_free_buffer(page, size); 543 return NULL; 544 } 545 546 out: 547 *ret_page = page; 548 return ptr; 549 } 550 551 static void *__alloc_from_pool(size_t size, struct page **ret_page) 552 { 553 unsigned long val; 554 void *ptr = NULL; 555 556 if (!atomic_pool) { 557 WARN(1, "coherent pool not initialised!\n"); 558 return NULL; 559 } 560 561 val = gen_pool_alloc(atomic_pool, size); 562 if (val) { 563 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); 564 565 *ret_page = phys_to_page(phys); 566 ptr = (void *)val; 567 } 568 569 return ptr; 570 } 571 572 static bool __in_atomic_pool(void *start, size_t size) 573 { 574 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size); 575 } 576 577 static int __free_from_pool(void *start, size_t size) 578 { 579 if (!__in_atomic_pool(start, size)) 580 return 0; 581 582 gen_pool_free(atomic_pool, (unsigned long)start, size); 583 584 return 1; 585 } 586 587 static void *__alloc_from_contiguous(struct device *dev, size_t size, 588 pgprot_t prot, struct page **ret_page, 589 const void *caller, bool want_vaddr, 590 int coherent_flag, gfp_t gfp) 591 { 592 unsigned long order = get_order(size); 593 size_t count = size >> PAGE_SHIFT; 594 struct page *page; 595 void *ptr = NULL; 596 597 page = dma_alloc_from_contiguous(dev, count, order, gfp); 598 if (!page) 599 return NULL; 600 601 __dma_clear_buffer(page, size, coherent_flag); 602 603 if (!want_vaddr) 604 goto out; 605 606 if (PageHighMem(page)) { 607 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller); 608 if (!ptr) { 609 dma_release_from_contiguous(dev, page, count); 610 return NULL; 611 } 612 } else { 613 __dma_remap(page, size, prot); 614 ptr = page_address(page); 615 } 616 617 out: 618 *ret_page = page; 619 return ptr; 620 } 621 622 static void __free_from_contiguous(struct device *dev, struct page *page, 623 void *cpu_addr, size_t size, bool want_vaddr) 624 { 625 if (want_vaddr) { 626 if (PageHighMem(page)) 627 __dma_free_remap(cpu_addr, size); 628 else 629 __dma_remap(page, size, PAGE_KERNEL); 630 } 631 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); 632 } 633 634 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot) 635 { 636 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ? 637 pgprot_writecombine(prot) : 638 pgprot_dmacoherent(prot); 639 return prot; 640 } 641 642 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp, 643 struct page **ret_page) 644 { 645 struct page *page; 646 /* __alloc_simple_buffer is only called when the device is coherent */ 647 page = __dma_alloc_buffer(dev, size, gfp, COHERENT); 648 if (!page) 649 return NULL; 650 651 *ret_page = page; 652 return page_address(page); 653 } 654 655 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args, 656 struct page **ret_page) 657 { 658 return __alloc_simple_buffer(args->dev, args->size, args->gfp, 659 ret_page); 660 } 661 662 static void simple_allocator_free(struct arm_dma_free_args *args) 663 { 664 __dma_free_buffer(args->page, args->size); 665 } 666 667 static struct arm_dma_allocator simple_allocator = { 668 .alloc = simple_allocator_alloc, 669 .free = simple_allocator_free, 670 }; 671 672 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args, 673 struct page **ret_page) 674 { 675 return __alloc_from_contiguous(args->dev, args->size, args->prot, 676 ret_page, args->caller, 677 args->want_vaddr, args->coherent_flag, 678 args->gfp); 679 } 680 681 static void cma_allocator_free(struct arm_dma_free_args *args) 682 { 683 __free_from_contiguous(args->dev, args->page, args->cpu_addr, 684 args->size, args->want_vaddr); 685 } 686 687 static struct arm_dma_allocator cma_allocator = { 688 .alloc = cma_allocator_alloc, 689 .free = cma_allocator_free, 690 }; 691 692 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args, 693 struct page **ret_page) 694 { 695 return __alloc_from_pool(args->size, ret_page); 696 } 697 698 static void pool_allocator_free(struct arm_dma_free_args *args) 699 { 700 __free_from_pool(args->cpu_addr, args->size); 701 } 702 703 static struct arm_dma_allocator pool_allocator = { 704 .alloc = pool_allocator_alloc, 705 .free = pool_allocator_free, 706 }; 707 708 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args, 709 struct page **ret_page) 710 { 711 return __alloc_remap_buffer(args->dev, args->size, args->gfp, 712 args->prot, ret_page, args->caller, 713 args->want_vaddr); 714 } 715 716 static void remap_allocator_free(struct arm_dma_free_args *args) 717 { 718 if (args->want_vaddr) 719 __dma_free_remap(args->cpu_addr, args->size); 720 721 __dma_free_buffer(args->page, args->size); 722 } 723 724 static struct arm_dma_allocator remap_allocator = { 725 .alloc = remap_allocator_alloc, 726 .free = remap_allocator_free, 727 }; 728 729 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 730 gfp_t gfp, pgprot_t prot, bool is_coherent, 731 unsigned long attrs, const void *caller) 732 { 733 u64 mask = get_coherent_dma_mask(dev); 734 struct page *page = NULL; 735 void *addr; 736 bool allowblock, cma; 737 struct arm_dma_buffer *buf; 738 struct arm_dma_alloc_args args = { 739 .dev = dev, 740 .size = PAGE_ALIGN(size), 741 .gfp = gfp, 742 .prot = prot, 743 .caller = caller, 744 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), 745 .coherent_flag = is_coherent ? COHERENT : NORMAL, 746 }; 747 748 #ifdef CONFIG_DMA_API_DEBUG 749 u64 limit = (mask + 1) & ~mask; 750 if (limit && size >= limit) { 751 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", 752 size, mask); 753 return NULL; 754 } 755 #endif 756 757 if (!mask) 758 return NULL; 759 760 buf = kzalloc(sizeof(*buf), 761 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)); 762 if (!buf) 763 return NULL; 764 765 if (mask < 0xffffffffULL) 766 gfp |= GFP_DMA; 767 768 /* 769 * Following is a work-around (a.k.a. hack) to prevent pages 770 * with __GFP_COMP being passed to split_page() which cannot 771 * handle them. The real problem is that this flag probably 772 * should be 0 on ARM as it is not supported on this 773 * platform; see CONFIG_HUGETLBFS. 774 */ 775 gfp &= ~(__GFP_COMP); 776 args.gfp = gfp; 777 778 *handle = ARM_MAPPING_ERROR; 779 allowblock = gfpflags_allow_blocking(gfp); 780 cma = allowblock ? dev_get_cma_area(dev) : false; 781 782 if (cma) 783 buf->allocator = &cma_allocator; 784 else if (is_coherent) 785 buf->allocator = &simple_allocator; 786 else if (allowblock) 787 buf->allocator = &remap_allocator; 788 else 789 buf->allocator = &pool_allocator; 790 791 addr = buf->allocator->alloc(&args, &page); 792 793 if (page) { 794 unsigned long flags; 795 796 *handle = pfn_to_dma(dev, page_to_pfn(page)); 797 buf->virt = args.want_vaddr ? addr : page; 798 799 spin_lock_irqsave(&arm_dma_bufs_lock, flags); 800 list_add(&buf->list, &arm_dma_bufs); 801 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); 802 } else { 803 kfree(buf); 804 } 805 806 return args.want_vaddr ? addr : page; 807 } 808 809 /* 810 * Allocate DMA-coherent memory space and return both the kernel remapped 811 * virtual and bus address for that space. 812 */ 813 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 814 gfp_t gfp, unsigned long attrs) 815 { 816 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 817 818 return __dma_alloc(dev, size, handle, gfp, prot, false, 819 attrs, __builtin_return_address(0)); 820 } 821 822 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 823 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 824 { 825 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true, 826 attrs, __builtin_return_address(0)); 827 } 828 829 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 830 void *cpu_addr, dma_addr_t dma_addr, size_t size, 831 unsigned long attrs) 832 { 833 int ret; 834 unsigned long nr_vma_pages = vma_pages(vma); 835 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 836 unsigned long pfn = dma_to_pfn(dev, dma_addr); 837 unsigned long off = vma->vm_pgoff; 838 839 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 840 return ret; 841 842 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 843 ret = remap_pfn_range(vma, vma->vm_start, 844 pfn + off, 845 vma->vm_end - vma->vm_start, 846 vma->vm_page_prot); 847 } 848 849 return ret; 850 } 851 852 /* 853 * Create userspace mapping for the DMA-coherent memory. 854 */ 855 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma, 856 void *cpu_addr, dma_addr_t dma_addr, size_t size, 857 unsigned long attrs) 858 { 859 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 860 } 861 862 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 863 void *cpu_addr, dma_addr_t dma_addr, size_t size, 864 unsigned long attrs) 865 { 866 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 867 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 868 } 869 870 /* 871 * Free a buffer as defined by the above mapping. 872 */ 873 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 874 dma_addr_t handle, unsigned long attrs, 875 bool is_coherent) 876 { 877 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 878 struct arm_dma_buffer *buf; 879 struct arm_dma_free_args args = { 880 .dev = dev, 881 .size = PAGE_ALIGN(size), 882 .cpu_addr = cpu_addr, 883 .page = page, 884 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), 885 }; 886 887 buf = arm_dma_buffer_find(cpu_addr); 888 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr)) 889 return; 890 891 buf->allocator->free(&args); 892 kfree(buf); 893 } 894 895 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 896 dma_addr_t handle, unsigned long attrs) 897 { 898 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false); 899 } 900 901 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 902 dma_addr_t handle, unsigned long attrs) 903 { 904 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true); 905 } 906 907 /* 908 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems 909 * that the intention is to allow exporting memory allocated via the 910 * coherent DMA APIs through the dma_buf API, which only accepts a 911 * scattertable. This presents a couple of problems: 912 * 1. Not all memory allocated via the coherent DMA APIs is backed by 913 * a struct page 914 * 2. Passing coherent DMA memory into the streaming APIs is not allowed 915 * as we will try to flush the memory through a different alias to that 916 * actually being used (and the flushes are redundant.) 917 */ 918 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 919 void *cpu_addr, dma_addr_t handle, size_t size, 920 unsigned long attrs) 921 { 922 unsigned long pfn = dma_to_pfn(dev, handle); 923 struct page *page; 924 int ret; 925 926 /* If the PFN is not valid, we do not have a struct page */ 927 if (!pfn_valid(pfn)) 928 return -ENXIO; 929 930 page = pfn_to_page(pfn); 931 932 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 933 if (unlikely(ret)) 934 return ret; 935 936 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 937 return 0; 938 } 939 940 static void dma_cache_maint_page(struct page *page, unsigned long offset, 941 size_t size, enum dma_data_direction dir, 942 void (*op)(const void *, size_t, int)) 943 { 944 unsigned long pfn; 945 size_t left = size; 946 947 pfn = page_to_pfn(page) + offset / PAGE_SIZE; 948 offset %= PAGE_SIZE; 949 950 /* 951 * A single sg entry may refer to multiple physically contiguous 952 * pages. But we still need to process highmem pages individually. 953 * If highmem is not configured then the bulk of this loop gets 954 * optimized out. 955 */ 956 do { 957 size_t len = left; 958 void *vaddr; 959 960 page = pfn_to_page(pfn); 961 962 if (PageHighMem(page)) { 963 if (len + offset > PAGE_SIZE) 964 len = PAGE_SIZE - offset; 965 966 if (cache_is_vipt_nonaliasing()) { 967 vaddr = kmap_atomic(page); 968 op(vaddr + offset, len, dir); 969 kunmap_atomic(vaddr); 970 } else { 971 vaddr = kmap_high_get(page); 972 if (vaddr) { 973 op(vaddr + offset, len, dir); 974 kunmap_high(page); 975 } 976 } 977 } else { 978 vaddr = page_address(page) + offset; 979 op(vaddr, len, dir); 980 } 981 offset = 0; 982 pfn++; 983 left -= len; 984 } while (left); 985 } 986 987 /* 988 * Make an area consistent for devices. 989 * Note: Drivers should NOT use this function directly, as it will break 990 * platforms with CONFIG_DMABOUNCE. 991 * Use the driver DMA support - see dma-mapping.h (dma_sync_*) 992 */ 993 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off, 994 size_t size, enum dma_data_direction dir) 995 { 996 phys_addr_t paddr; 997 998 dma_cache_maint_page(page, off, size, dir, dmac_map_area); 999 1000 paddr = page_to_phys(page) + off; 1001 if (dir == DMA_FROM_DEVICE) { 1002 outer_inv_range(paddr, paddr + size); 1003 } else { 1004 outer_clean_range(paddr, paddr + size); 1005 } 1006 /* FIXME: non-speculating: flush on bidirectional mappings? */ 1007 } 1008 1009 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off, 1010 size_t size, enum dma_data_direction dir) 1011 { 1012 phys_addr_t paddr = page_to_phys(page) + off; 1013 1014 /* FIXME: non-speculating: not required */ 1015 /* in any case, don't bother invalidating if DMA to device */ 1016 if (dir != DMA_TO_DEVICE) { 1017 outer_inv_range(paddr, paddr + size); 1018 1019 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); 1020 } 1021 1022 /* 1023 * Mark the D-cache clean for these pages to avoid extra flushing. 1024 */ 1025 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) { 1026 unsigned long pfn; 1027 size_t left = size; 1028 1029 pfn = page_to_pfn(page) + off / PAGE_SIZE; 1030 off %= PAGE_SIZE; 1031 if (off) { 1032 pfn++; 1033 left -= PAGE_SIZE - off; 1034 } 1035 while (left >= PAGE_SIZE) { 1036 page = pfn_to_page(pfn++); 1037 set_bit(PG_dcache_clean, &page->flags); 1038 left -= PAGE_SIZE; 1039 } 1040 } 1041 } 1042 1043 /** 1044 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA 1045 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1046 * @sg: list of buffers 1047 * @nents: number of buffers to map 1048 * @dir: DMA transfer direction 1049 * 1050 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1051 * This is the scatter-gather version of the dma_map_single interface. 1052 * Here the scatter gather list elements are each tagged with the 1053 * appropriate dma address and length. They are obtained via 1054 * sg_dma_{address,length}. 1055 * 1056 * Device ownership issues as mentioned for dma_map_single are the same 1057 * here. 1058 */ 1059 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1060 enum dma_data_direction dir, unsigned long attrs) 1061 { 1062 const struct dma_map_ops *ops = get_dma_ops(dev); 1063 struct scatterlist *s; 1064 int i, j; 1065 1066 for_each_sg(sg, s, nents, i) { 1067 #ifdef CONFIG_NEED_SG_DMA_LENGTH 1068 s->dma_length = s->length; 1069 #endif 1070 s->dma_address = ops->map_page(dev, sg_page(s), s->offset, 1071 s->length, dir, attrs); 1072 if (dma_mapping_error(dev, s->dma_address)) 1073 goto bad_mapping; 1074 } 1075 return nents; 1076 1077 bad_mapping: 1078 for_each_sg(sg, s, i, j) 1079 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 1080 return 0; 1081 } 1082 1083 /** 1084 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1085 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1086 * @sg: list of buffers 1087 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1088 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1089 * 1090 * Unmap a set of streaming mode DMA translations. Again, CPU access 1091 * rules concerning calls here are the same as for dma_unmap_single(). 1092 */ 1093 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1094 enum dma_data_direction dir, unsigned long attrs) 1095 { 1096 const struct dma_map_ops *ops = get_dma_ops(dev); 1097 struct scatterlist *s; 1098 1099 int i; 1100 1101 for_each_sg(sg, s, nents, i) 1102 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 1103 } 1104 1105 /** 1106 * arm_dma_sync_sg_for_cpu 1107 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1108 * @sg: list of buffers 1109 * @nents: number of buffers to map (returned from dma_map_sg) 1110 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1111 */ 1112 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1113 int nents, enum dma_data_direction dir) 1114 { 1115 const struct dma_map_ops *ops = get_dma_ops(dev); 1116 struct scatterlist *s; 1117 int i; 1118 1119 for_each_sg(sg, s, nents, i) 1120 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length, 1121 dir); 1122 } 1123 1124 /** 1125 * arm_dma_sync_sg_for_device 1126 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1127 * @sg: list of buffers 1128 * @nents: number of buffers to map (returned from dma_map_sg) 1129 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1130 */ 1131 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1132 int nents, enum dma_data_direction dir) 1133 { 1134 const struct dma_map_ops *ops = get_dma_ops(dev); 1135 struct scatterlist *s; 1136 int i; 1137 1138 for_each_sg(sg, s, nents, i) 1139 ops->sync_single_for_device(dev, sg_dma_address(s), s->length, 1140 dir); 1141 } 1142 1143 /* 1144 * Return whether the given device DMA address mask can be supported 1145 * properly. For example, if your device can only drive the low 24-bits 1146 * during bus mastering, then you would pass 0x00ffffff as the mask 1147 * to this function. 1148 */ 1149 int arm_dma_supported(struct device *dev, u64 mask) 1150 { 1151 return __dma_supported(dev, mask, false); 1152 } 1153 1154 #ifdef CONFIG_ARM_DMA_USE_IOMMU 1155 1156 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs) 1157 { 1158 int prot = 0; 1159 1160 if (attrs & DMA_ATTR_PRIVILEGED) 1161 prot |= IOMMU_PRIV; 1162 1163 switch (dir) { 1164 case DMA_BIDIRECTIONAL: 1165 return prot | IOMMU_READ | IOMMU_WRITE; 1166 case DMA_TO_DEVICE: 1167 return prot | IOMMU_READ; 1168 case DMA_FROM_DEVICE: 1169 return prot | IOMMU_WRITE; 1170 default: 1171 return prot; 1172 } 1173 } 1174 1175 /* IOMMU */ 1176 1177 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping); 1178 1179 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, 1180 size_t size) 1181 { 1182 unsigned int order = get_order(size); 1183 unsigned int align = 0; 1184 unsigned int count, start; 1185 size_t mapping_size = mapping->bits << PAGE_SHIFT; 1186 unsigned long flags; 1187 dma_addr_t iova; 1188 int i; 1189 1190 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT) 1191 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT; 1192 1193 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1194 align = (1 << order) - 1; 1195 1196 spin_lock_irqsave(&mapping->lock, flags); 1197 for (i = 0; i < mapping->nr_bitmaps; i++) { 1198 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1199 mapping->bits, 0, count, align); 1200 1201 if (start > mapping->bits) 1202 continue; 1203 1204 bitmap_set(mapping->bitmaps[i], start, count); 1205 break; 1206 } 1207 1208 /* 1209 * No unused range found. Try to extend the existing mapping 1210 * and perform a second attempt to reserve an IO virtual 1211 * address range of size bytes. 1212 */ 1213 if (i == mapping->nr_bitmaps) { 1214 if (extend_iommu_mapping(mapping)) { 1215 spin_unlock_irqrestore(&mapping->lock, flags); 1216 return ARM_MAPPING_ERROR; 1217 } 1218 1219 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1220 mapping->bits, 0, count, align); 1221 1222 if (start > mapping->bits) { 1223 spin_unlock_irqrestore(&mapping->lock, flags); 1224 return ARM_MAPPING_ERROR; 1225 } 1226 1227 bitmap_set(mapping->bitmaps[i], start, count); 1228 } 1229 spin_unlock_irqrestore(&mapping->lock, flags); 1230 1231 iova = mapping->base + (mapping_size * i); 1232 iova += start << PAGE_SHIFT; 1233 1234 return iova; 1235 } 1236 1237 static inline void __free_iova(struct dma_iommu_mapping *mapping, 1238 dma_addr_t addr, size_t size) 1239 { 1240 unsigned int start, count; 1241 size_t mapping_size = mapping->bits << PAGE_SHIFT; 1242 unsigned long flags; 1243 dma_addr_t bitmap_base; 1244 u32 bitmap_index; 1245 1246 if (!size) 1247 return; 1248 1249 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size; 1250 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions); 1251 1252 bitmap_base = mapping->base + mapping_size * bitmap_index; 1253 1254 start = (addr - bitmap_base) >> PAGE_SHIFT; 1255 1256 if (addr + size > bitmap_base + mapping_size) { 1257 /* 1258 * The address range to be freed reaches into the iova 1259 * range of the next bitmap. This should not happen as 1260 * we don't allow this in __alloc_iova (at the 1261 * moment). 1262 */ 1263 BUG(); 1264 } else 1265 count = size >> PAGE_SHIFT; 1266 1267 spin_lock_irqsave(&mapping->lock, flags); 1268 bitmap_clear(mapping->bitmaps[bitmap_index], start, count); 1269 spin_unlock_irqrestore(&mapping->lock, flags); 1270 } 1271 1272 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */ 1273 static const int iommu_order_array[] = { 9, 8, 4, 0 }; 1274 1275 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, 1276 gfp_t gfp, unsigned long attrs, 1277 int coherent_flag) 1278 { 1279 struct page **pages; 1280 int count = size >> PAGE_SHIFT; 1281 int array_size = count * sizeof(struct page *); 1282 int i = 0; 1283 int order_idx = 0; 1284 1285 if (array_size <= PAGE_SIZE) 1286 pages = kzalloc(array_size, GFP_KERNEL); 1287 else 1288 pages = vzalloc(array_size); 1289 if (!pages) 1290 return NULL; 1291 1292 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) 1293 { 1294 unsigned long order = get_order(size); 1295 struct page *page; 1296 1297 page = dma_alloc_from_contiguous(dev, count, order, gfp); 1298 if (!page) 1299 goto error; 1300 1301 __dma_clear_buffer(page, size, coherent_flag); 1302 1303 for (i = 0; i < count; i++) 1304 pages[i] = page + i; 1305 1306 return pages; 1307 } 1308 1309 /* Go straight to 4K chunks if caller says it's OK. */ 1310 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 1311 order_idx = ARRAY_SIZE(iommu_order_array) - 1; 1312 1313 /* 1314 * IOMMU can map any pages, so himem can also be used here 1315 */ 1316 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 1317 1318 while (count) { 1319 int j, order; 1320 1321 order = iommu_order_array[order_idx]; 1322 1323 /* Drop down when we get small */ 1324 if (__fls(count) < order) { 1325 order_idx++; 1326 continue; 1327 } 1328 1329 if (order) { 1330 /* See if it's easy to allocate a high-order chunk */ 1331 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order); 1332 1333 /* Go down a notch at first sign of pressure */ 1334 if (!pages[i]) { 1335 order_idx++; 1336 continue; 1337 } 1338 } else { 1339 pages[i] = alloc_pages(gfp, 0); 1340 if (!pages[i]) 1341 goto error; 1342 } 1343 1344 if (order) { 1345 split_page(pages[i], order); 1346 j = 1 << order; 1347 while (--j) 1348 pages[i + j] = pages[i] + j; 1349 } 1350 1351 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag); 1352 i += 1 << order; 1353 count -= 1 << order; 1354 } 1355 1356 return pages; 1357 error: 1358 while (i--) 1359 if (pages[i]) 1360 __free_pages(pages[i], 0); 1361 kvfree(pages); 1362 return NULL; 1363 } 1364 1365 static int __iommu_free_buffer(struct device *dev, struct page **pages, 1366 size_t size, unsigned long attrs) 1367 { 1368 int count = size >> PAGE_SHIFT; 1369 int i; 1370 1371 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 1372 dma_release_from_contiguous(dev, pages[0], count); 1373 } else { 1374 for (i = 0; i < count; i++) 1375 if (pages[i]) 1376 __free_pages(pages[i], 0); 1377 } 1378 1379 kvfree(pages); 1380 return 0; 1381 } 1382 1383 /* 1384 * Create a CPU mapping for a specified pages 1385 */ 1386 static void * 1387 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot, 1388 const void *caller) 1389 { 1390 return dma_common_pages_remap(pages, size, 1391 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller); 1392 } 1393 1394 /* 1395 * Create a mapping in device IO address space for specified pages 1396 */ 1397 static dma_addr_t 1398 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size, 1399 unsigned long attrs) 1400 { 1401 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1402 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1403 dma_addr_t dma_addr, iova; 1404 int i; 1405 1406 dma_addr = __alloc_iova(mapping, size); 1407 if (dma_addr == ARM_MAPPING_ERROR) 1408 return dma_addr; 1409 1410 iova = dma_addr; 1411 for (i = 0; i < count; ) { 1412 int ret; 1413 1414 unsigned int next_pfn = page_to_pfn(pages[i]) + 1; 1415 phys_addr_t phys = page_to_phys(pages[i]); 1416 unsigned int len, j; 1417 1418 for (j = i + 1; j < count; j++, next_pfn++) 1419 if (page_to_pfn(pages[j]) != next_pfn) 1420 break; 1421 1422 len = (j - i) << PAGE_SHIFT; 1423 ret = iommu_map(mapping->domain, iova, phys, len, 1424 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs)); 1425 if (ret < 0) 1426 goto fail; 1427 iova += len; 1428 i = j; 1429 } 1430 return dma_addr; 1431 fail: 1432 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); 1433 __free_iova(mapping, dma_addr, size); 1434 return ARM_MAPPING_ERROR; 1435 } 1436 1437 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) 1438 { 1439 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1440 1441 /* 1442 * add optional in-page offset from iova to size and align 1443 * result to page size 1444 */ 1445 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); 1446 iova &= PAGE_MASK; 1447 1448 iommu_unmap(mapping->domain, iova, size); 1449 __free_iova(mapping, iova, size); 1450 return 0; 1451 } 1452 1453 static struct page **__atomic_get_pages(void *addr) 1454 { 1455 struct page *page; 1456 phys_addr_t phys; 1457 1458 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr); 1459 page = phys_to_page(phys); 1460 1461 return (struct page **)page; 1462 } 1463 1464 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs) 1465 { 1466 struct vm_struct *area; 1467 1468 if (__in_atomic_pool(cpu_addr, PAGE_SIZE)) 1469 return __atomic_get_pages(cpu_addr); 1470 1471 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) 1472 return cpu_addr; 1473 1474 area = find_vm_area(cpu_addr); 1475 if (area && (area->flags & VM_ARM_DMA_CONSISTENT)) 1476 return area->pages; 1477 return NULL; 1478 } 1479 1480 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp, 1481 dma_addr_t *handle, int coherent_flag, 1482 unsigned long attrs) 1483 { 1484 struct page *page; 1485 void *addr; 1486 1487 if (coherent_flag == COHERENT) 1488 addr = __alloc_simple_buffer(dev, size, gfp, &page); 1489 else 1490 addr = __alloc_from_pool(size, &page); 1491 if (!addr) 1492 return NULL; 1493 1494 *handle = __iommu_create_mapping(dev, &page, size, attrs); 1495 if (*handle == ARM_MAPPING_ERROR) 1496 goto err_mapping; 1497 1498 return addr; 1499 1500 err_mapping: 1501 __free_from_pool(addr, size); 1502 return NULL; 1503 } 1504 1505 static void __iommu_free_atomic(struct device *dev, void *cpu_addr, 1506 dma_addr_t handle, size_t size, int coherent_flag) 1507 { 1508 __iommu_remove_mapping(dev, handle, size); 1509 if (coherent_flag == COHERENT) 1510 __dma_free_buffer(virt_to_page(cpu_addr), size); 1511 else 1512 __free_from_pool(cpu_addr, size); 1513 } 1514 1515 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size, 1516 dma_addr_t *handle, gfp_t gfp, unsigned long attrs, 1517 int coherent_flag) 1518 { 1519 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 1520 struct page **pages; 1521 void *addr = NULL; 1522 1523 *handle = ARM_MAPPING_ERROR; 1524 size = PAGE_ALIGN(size); 1525 1526 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp)) 1527 return __iommu_alloc_simple(dev, size, gfp, handle, 1528 coherent_flag, attrs); 1529 1530 /* 1531 * Following is a work-around (a.k.a. hack) to prevent pages 1532 * with __GFP_COMP being passed to split_page() which cannot 1533 * handle them. The real problem is that this flag probably 1534 * should be 0 on ARM as it is not supported on this 1535 * platform; see CONFIG_HUGETLBFS. 1536 */ 1537 gfp &= ~(__GFP_COMP); 1538 1539 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag); 1540 if (!pages) 1541 return NULL; 1542 1543 *handle = __iommu_create_mapping(dev, pages, size, attrs); 1544 if (*handle == ARM_MAPPING_ERROR) 1545 goto err_buffer; 1546 1547 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) 1548 return pages; 1549 1550 addr = __iommu_alloc_remap(pages, size, gfp, prot, 1551 __builtin_return_address(0)); 1552 if (!addr) 1553 goto err_mapping; 1554 1555 return addr; 1556 1557 err_mapping: 1558 __iommu_remove_mapping(dev, *handle, size); 1559 err_buffer: 1560 __iommu_free_buffer(dev, pages, size, attrs); 1561 return NULL; 1562 } 1563 1564 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, 1565 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1566 { 1567 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL); 1568 } 1569 1570 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size, 1571 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1572 { 1573 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT); 1574 } 1575 1576 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 1577 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1578 unsigned long attrs) 1579 { 1580 unsigned long uaddr = vma->vm_start; 1581 unsigned long usize = vma->vm_end - vma->vm_start; 1582 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1583 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1584 unsigned long off = vma->vm_pgoff; 1585 1586 if (!pages) 1587 return -ENXIO; 1588 1589 if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off) 1590 return -ENXIO; 1591 1592 pages += off; 1593 1594 do { 1595 int ret = vm_insert_page(vma, uaddr, *pages++); 1596 if (ret) { 1597 pr_err("Remapping memory failed: %d\n", ret); 1598 return ret; 1599 } 1600 uaddr += PAGE_SIZE; 1601 usize -= PAGE_SIZE; 1602 } while (usize > 0); 1603 1604 return 0; 1605 } 1606 static int arm_iommu_mmap_attrs(struct device *dev, 1607 struct vm_area_struct *vma, void *cpu_addr, 1608 dma_addr_t dma_addr, size_t size, unsigned long attrs) 1609 { 1610 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 1611 1612 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs); 1613 } 1614 1615 static int arm_coherent_iommu_mmap_attrs(struct device *dev, 1616 struct vm_area_struct *vma, void *cpu_addr, 1617 dma_addr_t dma_addr, size_t size, unsigned long attrs) 1618 { 1619 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs); 1620 } 1621 1622 /* 1623 * free a page as defined by the above mapping. 1624 * Must not be called with IRQs disabled. 1625 */ 1626 void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 1627 dma_addr_t handle, unsigned long attrs, int coherent_flag) 1628 { 1629 struct page **pages; 1630 size = PAGE_ALIGN(size); 1631 1632 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) { 1633 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag); 1634 return; 1635 } 1636 1637 pages = __iommu_get_pages(cpu_addr, attrs); 1638 if (!pages) { 1639 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 1640 return; 1641 } 1642 1643 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) { 1644 dma_common_free_remap(cpu_addr, size, 1645 VM_ARM_DMA_CONSISTENT | VM_USERMAP); 1646 } 1647 1648 __iommu_remove_mapping(dev, handle, size); 1649 __iommu_free_buffer(dev, pages, size, attrs); 1650 } 1651 1652 void arm_iommu_free_attrs(struct device *dev, size_t size, 1653 void *cpu_addr, dma_addr_t handle, unsigned long attrs) 1654 { 1655 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL); 1656 } 1657 1658 void arm_coherent_iommu_free_attrs(struct device *dev, size_t size, 1659 void *cpu_addr, dma_addr_t handle, unsigned long attrs) 1660 { 1661 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT); 1662 } 1663 1664 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 1665 void *cpu_addr, dma_addr_t dma_addr, 1666 size_t size, unsigned long attrs) 1667 { 1668 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1669 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1670 1671 if (!pages) 1672 return -ENXIO; 1673 1674 return sg_alloc_table_from_pages(sgt, pages, count, 0, size, 1675 GFP_KERNEL); 1676 } 1677 1678 /* 1679 * Map a part of the scatter-gather list into contiguous io address space 1680 */ 1681 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg, 1682 size_t size, dma_addr_t *handle, 1683 enum dma_data_direction dir, unsigned long attrs, 1684 bool is_coherent) 1685 { 1686 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1687 dma_addr_t iova, iova_base; 1688 int ret = 0; 1689 unsigned int count; 1690 struct scatterlist *s; 1691 int prot; 1692 1693 size = PAGE_ALIGN(size); 1694 *handle = ARM_MAPPING_ERROR; 1695 1696 iova_base = iova = __alloc_iova(mapping, size); 1697 if (iova == ARM_MAPPING_ERROR) 1698 return -ENOMEM; 1699 1700 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) { 1701 phys_addr_t phys = page_to_phys(sg_page(s)); 1702 unsigned int len = PAGE_ALIGN(s->offset + s->length); 1703 1704 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1705 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1706 1707 prot = __dma_info_to_prot(dir, attrs); 1708 1709 ret = iommu_map(mapping->domain, iova, phys, len, prot); 1710 if (ret < 0) 1711 goto fail; 1712 count += len >> PAGE_SHIFT; 1713 iova += len; 1714 } 1715 *handle = iova_base; 1716 1717 return 0; 1718 fail: 1719 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE); 1720 __free_iova(mapping, iova_base, size); 1721 return ret; 1722 } 1723 1724 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1725 enum dma_data_direction dir, unsigned long attrs, 1726 bool is_coherent) 1727 { 1728 struct scatterlist *s = sg, *dma = sg, *start = sg; 1729 int i, count = 0; 1730 unsigned int offset = s->offset; 1731 unsigned int size = s->offset + s->length; 1732 unsigned int max = dma_get_max_seg_size(dev); 1733 1734 for (i = 1; i < nents; i++) { 1735 s = sg_next(s); 1736 1737 s->dma_address = ARM_MAPPING_ERROR; 1738 s->dma_length = 0; 1739 1740 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { 1741 if (__map_sg_chunk(dev, start, size, &dma->dma_address, 1742 dir, attrs, is_coherent) < 0) 1743 goto bad_mapping; 1744 1745 dma->dma_address += offset; 1746 dma->dma_length = size - offset; 1747 1748 size = offset = s->offset; 1749 start = s; 1750 dma = sg_next(dma); 1751 count += 1; 1752 } 1753 size += s->length; 1754 } 1755 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs, 1756 is_coherent) < 0) 1757 goto bad_mapping; 1758 1759 dma->dma_address += offset; 1760 dma->dma_length = size - offset; 1761 1762 return count+1; 1763 1764 bad_mapping: 1765 for_each_sg(sg, s, count, i) 1766 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); 1767 return 0; 1768 } 1769 1770 /** 1771 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1772 * @dev: valid struct device pointer 1773 * @sg: list of buffers 1774 * @nents: number of buffers to map 1775 * @dir: DMA transfer direction 1776 * 1777 * Map a set of i/o coherent buffers described by scatterlist in streaming 1778 * mode for DMA. The scatter gather list elements are merged together (if 1779 * possible) and tagged with the appropriate dma address and length. They are 1780 * obtained via sg_dma_{address,length}. 1781 */ 1782 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1783 int nents, enum dma_data_direction dir, unsigned long attrs) 1784 { 1785 return __iommu_map_sg(dev, sg, nents, dir, attrs, true); 1786 } 1787 1788 /** 1789 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1790 * @dev: valid struct device pointer 1791 * @sg: list of buffers 1792 * @nents: number of buffers to map 1793 * @dir: DMA transfer direction 1794 * 1795 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1796 * The scatter gather list elements are merged together (if possible) and 1797 * tagged with the appropriate dma address and length. They are obtained via 1798 * sg_dma_{address,length}. 1799 */ 1800 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1801 int nents, enum dma_data_direction dir, unsigned long attrs) 1802 { 1803 return __iommu_map_sg(dev, sg, nents, dir, attrs, false); 1804 } 1805 1806 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1807 int nents, enum dma_data_direction dir, 1808 unsigned long attrs, bool is_coherent) 1809 { 1810 struct scatterlist *s; 1811 int i; 1812 1813 for_each_sg(sg, s, nents, i) { 1814 if (sg_dma_len(s)) 1815 __iommu_remove_mapping(dev, sg_dma_address(s), 1816 sg_dma_len(s)); 1817 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1818 __dma_page_dev_to_cpu(sg_page(s), s->offset, 1819 s->length, dir); 1820 } 1821 } 1822 1823 /** 1824 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1825 * @dev: valid struct device pointer 1826 * @sg: list of buffers 1827 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1828 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1829 * 1830 * Unmap a set of streaming mode DMA translations. Again, CPU access 1831 * rules concerning calls here are the same as for dma_unmap_single(). 1832 */ 1833 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1834 int nents, enum dma_data_direction dir, 1835 unsigned long attrs) 1836 { 1837 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true); 1838 } 1839 1840 /** 1841 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1842 * @dev: valid struct device pointer 1843 * @sg: list of buffers 1844 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1845 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1846 * 1847 * Unmap a set of streaming mode DMA translations. Again, CPU access 1848 * rules concerning calls here are the same as for dma_unmap_single(). 1849 */ 1850 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1851 enum dma_data_direction dir, 1852 unsigned long attrs) 1853 { 1854 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false); 1855 } 1856 1857 /** 1858 * arm_iommu_sync_sg_for_cpu 1859 * @dev: valid struct device pointer 1860 * @sg: list of buffers 1861 * @nents: number of buffers to map (returned from dma_map_sg) 1862 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1863 */ 1864 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1865 int nents, enum dma_data_direction dir) 1866 { 1867 struct scatterlist *s; 1868 int i; 1869 1870 for_each_sg(sg, s, nents, i) 1871 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); 1872 1873 } 1874 1875 /** 1876 * arm_iommu_sync_sg_for_device 1877 * @dev: valid struct device pointer 1878 * @sg: list of buffers 1879 * @nents: number of buffers to map (returned from dma_map_sg) 1880 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1881 */ 1882 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1883 int nents, enum dma_data_direction dir) 1884 { 1885 struct scatterlist *s; 1886 int i; 1887 1888 for_each_sg(sg, s, nents, i) 1889 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1890 } 1891 1892 1893 /** 1894 * arm_coherent_iommu_map_page 1895 * @dev: valid struct device pointer 1896 * @page: page that buffer resides in 1897 * @offset: offset into page for start of buffer 1898 * @size: size of buffer to map 1899 * @dir: DMA transfer direction 1900 * 1901 * Coherent IOMMU aware version of arm_dma_map_page() 1902 */ 1903 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page, 1904 unsigned long offset, size_t size, enum dma_data_direction dir, 1905 unsigned long attrs) 1906 { 1907 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1908 dma_addr_t dma_addr; 1909 int ret, prot, len = PAGE_ALIGN(size + offset); 1910 1911 dma_addr = __alloc_iova(mapping, len); 1912 if (dma_addr == ARM_MAPPING_ERROR) 1913 return dma_addr; 1914 1915 prot = __dma_info_to_prot(dir, attrs); 1916 1917 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot); 1918 if (ret < 0) 1919 goto fail; 1920 1921 return dma_addr + offset; 1922 fail: 1923 __free_iova(mapping, dma_addr, len); 1924 return ARM_MAPPING_ERROR; 1925 } 1926 1927 /** 1928 * arm_iommu_map_page 1929 * @dev: valid struct device pointer 1930 * @page: page that buffer resides in 1931 * @offset: offset into page for start of buffer 1932 * @size: size of buffer to map 1933 * @dir: DMA transfer direction 1934 * 1935 * IOMMU aware version of arm_dma_map_page() 1936 */ 1937 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page, 1938 unsigned long offset, size_t size, enum dma_data_direction dir, 1939 unsigned long attrs) 1940 { 1941 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1942 __dma_page_cpu_to_dev(page, offset, size, dir); 1943 1944 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs); 1945 } 1946 1947 /** 1948 * arm_coherent_iommu_unmap_page 1949 * @dev: valid struct device pointer 1950 * @handle: DMA address of buffer 1951 * @size: size of buffer (same as passed to dma_map_page) 1952 * @dir: DMA transfer direction (same as passed to dma_map_page) 1953 * 1954 * Coherent IOMMU aware version of arm_dma_unmap_page() 1955 */ 1956 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1957 size_t size, enum dma_data_direction dir, unsigned long attrs) 1958 { 1959 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1960 dma_addr_t iova = handle & PAGE_MASK; 1961 int offset = handle & ~PAGE_MASK; 1962 int len = PAGE_ALIGN(size + offset); 1963 1964 if (!iova) 1965 return; 1966 1967 iommu_unmap(mapping->domain, iova, len); 1968 __free_iova(mapping, iova, len); 1969 } 1970 1971 /** 1972 * arm_iommu_unmap_page 1973 * @dev: valid struct device pointer 1974 * @handle: DMA address of buffer 1975 * @size: size of buffer (same as passed to dma_map_page) 1976 * @dir: DMA transfer direction (same as passed to dma_map_page) 1977 * 1978 * IOMMU aware version of arm_dma_unmap_page() 1979 */ 1980 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1981 size_t size, enum dma_data_direction dir, unsigned long attrs) 1982 { 1983 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1984 dma_addr_t iova = handle & PAGE_MASK; 1985 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1986 int offset = handle & ~PAGE_MASK; 1987 int len = PAGE_ALIGN(size + offset); 1988 1989 if (!iova) 1990 return; 1991 1992 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1993 __dma_page_dev_to_cpu(page, offset, size, dir); 1994 1995 iommu_unmap(mapping->domain, iova, len); 1996 __free_iova(mapping, iova, len); 1997 } 1998 1999 /** 2000 * arm_iommu_map_resource - map a device resource for DMA 2001 * @dev: valid struct device pointer 2002 * @phys_addr: physical address of resource 2003 * @size: size of resource to map 2004 * @dir: DMA transfer direction 2005 */ 2006 static dma_addr_t arm_iommu_map_resource(struct device *dev, 2007 phys_addr_t phys_addr, size_t size, 2008 enum dma_data_direction dir, unsigned long attrs) 2009 { 2010 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2011 dma_addr_t dma_addr; 2012 int ret, prot; 2013 phys_addr_t addr = phys_addr & PAGE_MASK; 2014 unsigned int offset = phys_addr & ~PAGE_MASK; 2015 size_t len = PAGE_ALIGN(size + offset); 2016 2017 dma_addr = __alloc_iova(mapping, len); 2018 if (dma_addr == ARM_MAPPING_ERROR) 2019 return dma_addr; 2020 2021 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO; 2022 2023 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot); 2024 if (ret < 0) 2025 goto fail; 2026 2027 return dma_addr + offset; 2028 fail: 2029 __free_iova(mapping, dma_addr, len); 2030 return ARM_MAPPING_ERROR; 2031 } 2032 2033 /** 2034 * arm_iommu_unmap_resource - unmap a device DMA resource 2035 * @dev: valid struct device pointer 2036 * @dma_handle: DMA address to resource 2037 * @size: size of resource to map 2038 * @dir: DMA transfer direction 2039 */ 2040 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle, 2041 size_t size, enum dma_data_direction dir, 2042 unsigned long attrs) 2043 { 2044 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2045 dma_addr_t iova = dma_handle & PAGE_MASK; 2046 unsigned int offset = dma_handle & ~PAGE_MASK; 2047 size_t len = PAGE_ALIGN(size + offset); 2048 2049 if (!iova) 2050 return; 2051 2052 iommu_unmap(mapping->domain, iova, len); 2053 __free_iova(mapping, iova, len); 2054 } 2055 2056 static void arm_iommu_sync_single_for_cpu(struct device *dev, 2057 dma_addr_t handle, size_t size, enum dma_data_direction dir) 2058 { 2059 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2060 dma_addr_t iova = handle & PAGE_MASK; 2061 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 2062 unsigned int offset = handle & ~PAGE_MASK; 2063 2064 if (!iova) 2065 return; 2066 2067 __dma_page_dev_to_cpu(page, offset, size, dir); 2068 } 2069 2070 static void arm_iommu_sync_single_for_device(struct device *dev, 2071 dma_addr_t handle, size_t size, enum dma_data_direction dir) 2072 { 2073 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2074 dma_addr_t iova = handle & PAGE_MASK; 2075 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 2076 unsigned int offset = handle & ~PAGE_MASK; 2077 2078 if (!iova) 2079 return; 2080 2081 __dma_page_cpu_to_dev(page, offset, size, dir); 2082 } 2083 2084 const struct dma_map_ops iommu_ops = { 2085 .alloc = arm_iommu_alloc_attrs, 2086 .free = arm_iommu_free_attrs, 2087 .mmap = arm_iommu_mmap_attrs, 2088 .get_sgtable = arm_iommu_get_sgtable, 2089 2090 .map_page = arm_iommu_map_page, 2091 .unmap_page = arm_iommu_unmap_page, 2092 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu, 2093 .sync_single_for_device = arm_iommu_sync_single_for_device, 2094 2095 .map_sg = arm_iommu_map_sg, 2096 .unmap_sg = arm_iommu_unmap_sg, 2097 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu, 2098 .sync_sg_for_device = arm_iommu_sync_sg_for_device, 2099 2100 .map_resource = arm_iommu_map_resource, 2101 .unmap_resource = arm_iommu_unmap_resource, 2102 2103 .mapping_error = arm_dma_mapping_error, 2104 .dma_supported = arm_dma_supported, 2105 }; 2106 2107 const struct dma_map_ops iommu_coherent_ops = { 2108 .alloc = arm_coherent_iommu_alloc_attrs, 2109 .free = arm_coherent_iommu_free_attrs, 2110 .mmap = arm_coherent_iommu_mmap_attrs, 2111 .get_sgtable = arm_iommu_get_sgtable, 2112 2113 .map_page = arm_coherent_iommu_map_page, 2114 .unmap_page = arm_coherent_iommu_unmap_page, 2115 2116 .map_sg = arm_coherent_iommu_map_sg, 2117 .unmap_sg = arm_coherent_iommu_unmap_sg, 2118 2119 .map_resource = arm_iommu_map_resource, 2120 .unmap_resource = arm_iommu_unmap_resource, 2121 2122 .mapping_error = arm_dma_mapping_error, 2123 .dma_supported = arm_dma_supported, 2124 }; 2125 2126 /** 2127 * arm_iommu_create_mapping 2128 * @bus: pointer to the bus holding the client device (for IOMMU calls) 2129 * @base: start address of the valid IO address space 2130 * @size: maximum size of the valid IO address space 2131 * 2132 * Creates a mapping structure which holds information about used/unused 2133 * IO address ranges, which is required to perform memory allocation and 2134 * mapping with IOMMU aware functions. 2135 * 2136 * The client device need to be attached to the mapping with 2137 * arm_iommu_attach_device function. 2138 */ 2139 struct dma_iommu_mapping * 2140 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size) 2141 { 2142 unsigned int bits = size >> PAGE_SHIFT; 2143 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long); 2144 struct dma_iommu_mapping *mapping; 2145 int extensions = 1; 2146 int err = -ENOMEM; 2147 2148 /* currently only 32-bit DMA address space is supported */ 2149 if (size > DMA_BIT_MASK(32) + 1) 2150 return ERR_PTR(-ERANGE); 2151 2152 if (!bitmap_size) 2153 return ERR_PTR(-EINVAL); 2154 2155 if (bitmap_size > PAGE_SIZE) { 2156 extensions = bitmap_size / PAGE_SIZE; 2157 bitmap_size = PAGE_SIZE; 2158 } 2159 2160 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); 2161 if (!mapping) 2162 goto err; 2163 2164 mapping->bitmap_size = bitmap_size; 2165 mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *), 2166 GFP_KERNEL); 2167 if (!mapping->bitmaps) 2168 goto err2; 2169 2170 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL); 2171 if (!mapping->bitmaps[0]) 2172 goto err3; 2173 2174 mapping->nr_bitmaps = 1; 2175 mapping->extensions = extensions; 2176 mapping->base = base; 2177 mapping->bits = BITS_PER_BYTE * bitmap_size; 2178 2179 spin_lock_init(&mapping->lock); 2180 2181 mapping->domain = iommu_domain_alloc(bus); 2182 if (!mapping->domain) 2183 goto err4; 2184 2185 kref_init(&mapping->kref); 2186 return mapping; 2187 err4: 2188 kfree(mapping->bitmaps[0]); 2189 err3: 2190 kfree(mapping->bitmaps); 2191 err2: 2192 kfree(mapping); 2193 err: 2194 return ERR_PTR(err); 2195 } 2196 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping); 2197 2198 static void release_iommu_mapping(struct kref *kref) 2199 { 2200 int i; 2201 struct dma_iommu_mapping *mapping = 2202 container_of(kref, struct dma_iommu_mapping, kref); 2203 2204 iommu_domain_free(mapping->domain); 2205 for (i = 0; i < mapping->nr_bitmaps; i++) 2206 kfree(mapping->bitmaps[i]); 2207 kfree(mapping->bitmaps); 2208 kfree(mapping); 2209 } 2210 2211 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping) 2212 { 2213 int next_bitmap; 2214 2215 if (mapping->nr_bitmaps >= mapping->extensions) 2216 return -EINVAL; 2217 2218 next_bitmap = mapping->nr_bitmaps; 2219 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size, 2220 GFP_ATOMIC); 2221 if (!mapping->bitmaps[next_bitmap]) 2222 return -ENOMEM; 2223 2224 mapping->nr_bitmaps++; 2225 2226 return 0; 2227 } 2228 2229 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) 2230 { 2231 if (mapping) 2232 kref_put(&mapping->kref, release_iommu_mapping); 2233 } 2234 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping); 2235 2236 static int __arm_iommu_attach_device(struct device *dev, 2237 struct dma_iommu_mapping *mapping) 2238 { 2239 int err; 2240 2241 err = iommu_attach_device(mapping->domain, dev); 2242 if (err) 2243 return err; 2244 2245 kref_get(&mapping->kref); 2246 to_dma_iommu_mapping(dev) = mapping; 2247 2248 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev)); 2249 return 0; 2250 } 2251 2252 /** 2253 * arm_iommu_attach_device 2254 * @dev: valid struct device pointer 2255 * @mapping: io address space mapping structure (returned from 2256 * arm_iommu_create_mapping) 2257 * 2258 * Attaches specified io address space mapping to the provided device. 2259 * This replaces the dma operations (dma_map_ops pointer) with the 2260 * IOMMU aware version. 2261 * 2262 * More than one client might be attached to the same io address space 2263 * mapping. 2264 */ 2265 int arm_iommu_attach_device(struct device *dev, 2266 struct dma_iommu_mapping *mapping) 2267 { 2268 int err; 2269 2270 err = __arm_iommu_attach_device(dev, mapping); 2271 if (err) 2272 return err; 2273 2274 set_dma_ops(dev, &iommu_ops); 2275 return 0; 2276 } 2277 EXPORT_SYMBOL_GPL(arm_iommu_attach_device); 2278 2279 /** 2280 * arm_iommu_detach_device 2281 * @dev: valid struct device pointer 2282 * 2283 * Detaches the provided device from a previously attached map. 2284 * This voids the dma operations (dma_map_ops pointer) 2285 */ 2286 void arm_iommu_detach_device(struct device *dev) 2287 { 2288 struct dma_iommu_mapping *mapping; 2289 2290 mapping = to_dma_iommu_mapping(dev); 2291 if (!mapping) { 2292 dev_warn(dev, "Not attached\n"); 2293 return; 2294 } 2295 2296 iommu_detach_device(mapping->domain, dev); 2297 kref_put(&mapping->kref, release_iommu_mapping); 2298 to_dma_iommu_mapping(dev) = NULL; 2299 set_dma_ops(dev, NULL); 2300 2301 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev)); 2302 } 2303 EXPORT_SYMBOL_GPL(arm_iommu_detach_device); 2304 2305 static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent) 2306 { 2307 return coherent ? &iommu_coherent_ops : &iommu_ops; 2308 } 2309 2310 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 2311 const struct iommu_ops *iommu) 2312 { 2313 struct dma_iommu_mapping *mapping; 2314 2315 if (!iommu) 2316 return false; 2317 2318 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size); 2319 if (IS_ERR(mapping)) { 2320 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n", 2321 size, dev_name(dev)); 2322 return false; 2323 } 2324 2325 if (__arm_iommu_attach_device(dev, mapping)) { 2326 pr_warn("Failed to attached device %s to IOMMU_mapping\n", 2327 dev_name(dev)); 2328 arm_iommu_release_mapping(mapping); 2329 return false; 2330 } 2331 2332 return true; 2333 } 2334 2335 static void arm_teardown_iommu_dma_ops(struct device *dev) 2336 { 2337 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2338 2339 if (!mapping) 2340 return; 2341 2342 arm_iommu_detach_device(dev); 2343 arm_iommu_release_mapping(mapping); 2344 } 2345 2346 #else 2347 2348 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 2349 const struct iommu_ops *iommu) 2350 { 2351 return false; 2352 } 2353 2354 static void arm_teardown_iommu_dma_ops(struct device *dev) { } 2355 2356 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops 2357 2358 #endif /* CONFIG_ARM_DMA_USE_IOMMU */ 2359 2360 static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent) 2361 { 2362 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops; 2363 } 2364 2365 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 2366 const struct iommu_ops *iommu, bool coherent) 2367 { 2368 const struct dma_map_ops *dma_ops; 2369 2370 dev->archdata.dma_coherent = coherent; 2371 2372 /* 2373 * Don't override the dma_ops if they have already been set. Ideally 2374 * this should be the only location where dma_ops are set, remove this 2375 * check when all other callers of set_dma_ops will have disappeared. 2376 */ 2377 if (dev->dma_ops) 2378 return; 2379 2380 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu)) 2381 dma_ops = arm_get_iommu_dma_map_ops(coherent); 2382 else 2383 dma_ops = arm_get_dma_map_ops(coherent); 2384 2385 set_dma_ops(dev, dma_ops); 2386 2387 #ifdef CONFIG_XEN 2388 if (xen_initial_domain()) { 2389 dev->archdata.dev_dma_ops = dev->dma_ops; 2390 dev->dma_ops = xen_dma_ops; 2391 } 2392 #endif 2393 dev->archdata.dma_ops_setup = true; 2394 } 2395 2396 void arch_teardown_dma_ops(struct device *dev) 2397 { 2398 if (!dev->archdata.dma_ops_setup) 2399 return; 2400 2401 arm_teardown_iommu_dma_ops(dev); 2402 } 2403