xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision b627b4ed)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/slab.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 
21 #include <asm/memory.h>
22 #include <asm/highmem.h>
23 #include <asm/cacheflush.h>
24 #include <asm/tlbflush.h>
25 #include <asm/sizes.h>
26 
27 /* Sanity check size */
28 #if (CONSISTENT_DMA_SIZE % SZ_2M)
29 #error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
30 #endif
31 
32 #define CONSISTENT_END	(0xffe00000)
33 #define CONSISTENT_BASE	(CONSISTENT_END - CONSISTENT_DMA_SIZE)
34 
35 #define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
36 #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
37 #define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)
38 
39 
40 /*
41  * These are the page tables (2MB each) covering uncached, DMA consistent allocations
42  */
43 static pte_t *consistent_pte[NUM_CONSISTENT_PTES];
44 static DEFINE_SPINLOCK(consistent_lock);
45 
46 /*
47  * VM region handling support.
48  *
49  * This should become something generic, handling VM region allocations for
50  * vmalloc and similar (ioremap, module space, etc).
51  *
52  * I envisage vmalloc()'s supporting vm_struct becoming:
53  *
54  *  struct vm_struct {
55  *    struct vm_region	region;
56  *    unsigned long	flags;
57  *    struct page	**pages;
58  *    unsigned int	nr_pages;
59  *    unsigned long	phys_addr;
60  *  };
61  *
62  * get_vm_area() would then call vm_region_alloc with an appropriate
63  * struct vm_region head (eg):
64  *
65  *  struct vm_region vmalloc_head = {
66  *	.vm_list	= LIST_HEAD_INIT(vmalloc_head.vm_list),
67  *	.vm_start	= VMALLOC_START,
68  *	.vm_end		= VMALLOC_END,
69  *  };
70  *
71  * However, vmalloc_head.vm_start is variable (typically, it is dependent on
72  * the amount of RAM found at boot time.)  I would imagine that get_vm_area()
73  * would have to initialise this each time prior to calling vm_region_alloc().
74  */
75 struct arm_vm_region {
76 	struct list_head	vm_list;
77 	unsigned long		vm_start;
78 	unsigned long		vm_end;
79 	struct page		*vm_pages;
80 	int			vm_active;
81 };
82 
83 static struct arm_vm_region consistent_head = {
84 	.vm_list	= LIST_HEAD_INIT(consistent_head.vm_list),
85 	.vm_start	= CONSISTENT_BASE,
86 	.vm_end		= CONSISTENT_END,
87 };
88 
89 static struct arm_vm_region *
90 arm_vm_region_alloc(struct arm_vm_region *head, size_t size, gfp_t gfp)
91 {
92 	unsigned long addr = head->vm_start, end = head->vm_end - size;
93 	unsigned long flags;
94 	struct arm_vm_region *c, *new;
95 
96 	new = kmalloc(sizeof(struct arm_vm_region), gfp);
97 	if (!new)
98 		goto out;
99 
100 	spin_lock_irqsave(&consistent_lock, flags);
101 
102 	list_for_each_entry(c, &head->vm_list, vm_list) {
103 		if ((addr + size) < addr)
104 			goto nospc;
105 		if ((addr + size) <= c->vm_start)
106 			goto found;
107 		addr = c->vm_end;
108 		if (addr > end)
109 			goto nospc;
110 	}
111 
112  found:
113 	/*
114 	 * Insert this entry _before_ the one we found.
115 	 */
116 	list_add_tail(&new->vm_list, &c->vm_list);
117 	new->vm_start = addr;
118 	new->vm_end = addr + size;
119 	new->vm_active = 1;
120 
121 	spin_unlock_irqrestore(&consistent_lock, flags);
122 	return new;
123 
124  nospc:
125 	spin_unlock_irqrestore(&consistent_lock, flags);
126 	kfree(new);
127  out:
128 	return NULL;
129 }
130 
131 static struct arm_vm_region *arm_vm_region_find(struct arm_vm_region *head, unsigned long addr)
132 {
133 	struct arm_vm_region *c;
134 
135 	list_for_each_entry(c, &head->vm_list, vm_list) {
136 		if (c->vm_active && c->vm_start == addr)
137 			goto out;
138 	}
139 	c = NULL;
140  out:
141 	return c;
142 }
143 
144 #ifdef CONFIG_HUGETLB_PAGE
145 #error ARM Coherent DMA allocator does not (yet) support huge TLB
146 #endif
147 
148 static void *
149 __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
150 	    pgprot_t prot)
151 {
152 	struct page *page;
153 	struct arm_vm_region *c;
154 	unsigned long order;
155 	u64 mask = ISA_DMA_THRESHOLD, limit;
156 
157 	if (!consistent_pte[0]) {
158 		printk(KERN_ERR "%s: not initialised\n", __func__);
159 		dump_stack();
160 		return NULL;
161 	}
162 
163 	if (dev) {
164 		mask = dev->coherent_dma_mask;
165 
166 		/*
167 		 * Sanity check the DMA mask - it must be non-zero, and
168 		 * must be able to be satisfied by a DMA allocation.
169 		 */
170 		if (mask == 0) {
171 			dev_warn(dev, "coherent DMA mask is unset\n");
172 			goto no_page;
173 		}
174 
175 		if ((~mask) & ISA_DMA_THRESHOLD) {
176 			dev_warn(dev, "coherent DMA mask %#llx is smaller "
177 				 "than system GFP_DMA mask %#llx\n",
178 				 mask, (unsigned long long)ISA_DMA_THRESHOLD);
179 			goto no_page;
180 		}
181 	}
182 
183 	/*
184 	 * Sanity check the allocation size.
185 	 */
186 	size = PAGE_ALIGN(size);
187 	limit = (mask + 1) & ~mask;
188 	if ((limit && size >= limit) ||
189 	    size >= (CONSISTENT_END - CONSISTENT_BASE)) {
190 		printk(KERN_WARNING "coherent allocation too big "
191 		       "(requested %#x mask %#llx)\n", size, mask);
192 		goto no_page;
193 	}
194 
195 	order = get_order(size);
196 
197 	if (mask != 0xffffffff)
198 		gfp |= GFP_DMA;
199 
200 	page = alloc_pages(gfp, order);
201 	if (!page)
202 		goto no_page;
203 
204 	/*
205 	 * Invalidate any data that might be lurking in the
206 	 * kernel direct-mapped region for device DMA.
207 	 */
208 	{
209 		void *ptr = page_address(page);
210 		memset(ptr, 0, size);
211 		dmac_flush_range(ptr, ptr + size);
212 		outer_flush_range(__pa(ptr), __pa(ptr) + size);
213 	}
214 
215 	/*
216 	 * Allocate a virtual address in the consistent mapping region.
217 	 */
218 	c = arm_vm_region_alloc(&consistent_head, size,
219 			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
220 	if (c) {
221 		pte_t *pte;
222 		struct page *end = page + (1 << order);
223 		int idx = CONSISTENT_PTE_INDEX(c->vm_start);
224 		u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
225 
226 		pte = consistent_pte[idx] + off;
227 		c->vm_pages = page;
228 
229 		split_page(page, order);
230 
231 		/*
232 		 * Set the "dma handle"
233 		 */
234 		*handle = page_to_dma(dev, page);
235 
236 		do {
237 			BUG_ON(!pte_none(*pte));
238 
239 			/*
240 			 * x86 does not mark the pages reserved...
241 			 */
242 			SetPageReserved(page);
243 			set_pte_ext(pte, mk_pte(page, prot), 0);
244 			page++;
245 			pte++;
246 			off++;
247 			if (off >= PTRS_PER_PTE) {
248 				off = 0;
249 				pte = consistent_pte[++idx];
250 			}
251 		} while (size -= PAGE_SIZE);
252 
253 		/*
254 		 * Free the otherwise unused pages.
255 		 */
256 		while (page < end) {
257 			__free_page(page);
258 			page++;
259 		}
260 
261 		return (void *)c->vm_start;
262 	}
263 
264 	if (page)
265 		__free_pages(page, order);
266  no_page:
267 	*handle = ~0;
268 	return NULL;
269 }
270 
271 /*
272  * Allocate DMA-coherent memory space and return both the kernel remapped
273  * virtual and bus address for that space.
274  */
275 void *
276 dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
277 {
278 	void *memory;
279 
280 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
281 		return memory;
282 
283 	if (arch_is_coherent()) {
284 		void *virt;
285 
286 		virt = kmalloc(size, gfp);
287 		if (!virt)
288 			return NULL;
289 		*handle =  virt_to_dma(dev, virt);
290 
291 		return virt;
292 	}
293 
294 	return __dma_alloc(dev, size, handle, gfp,
295 			   pgprot_noncached(pgprot_kernel));
296 }
297 EXPORT_SYMBOL(dma_alloc_coherent);
298 
299 /*
300  * Allocate a writecombining region, in much the same way as
301  * dma_alloc_coherent above.
302  */
303 void *
304 dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
305 {
306 	return __dma_alloc(dev, size, handle, gfp,
307 			   pgprot_writecombine(pgprot_kernel));
308 }
309 EXPORT_SYMBOL(dma_alloc_writecombine);
310 
311 static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
312 		    void *cpu_addr, dma_addr_t dma_addr, size_t size)
313 {
314 	unsigned long flags, user_size, kern_size;
315 	struct arm_vm_region *c;
316 	int ret = -ENXIO;
317 
318 	user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
319 
320 	spin_lock_irqsave(&consistent_lock, flags);
321 	c = arm_vm_region_find(&consistent_head, (unsigned long)cpu_addr);
322 	spin_unlock_irqrestore(&consistent_lock, flags);
323 
324 	if (c) {
325 		unsigned long off = vma->vm_pgoff;
326 
327 		kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
328 
329 		if (off < kern_size &&
330 		    user_size <= (kern_size - off)) {
331 			ret = remap_pfn_range(vma, vma->vm_start,
332 					      page_to_pfn(c->vm_pages) + off,
333 					      user_size << PAGE_SHIFT,
334 					      vma->vm_page_prot);
335 		}
336 	}
337 
338 	return ret;
339 }
340 
341 int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
342 		      void *cpu_addr, dma_addr_t dma_addr, size_t size)
343 {
344 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
345 	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
346 }
347 EXPORT_SYMBOL(dma_mmap_coherent);
348 
349 int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
350 			  void *cpu_addr, dma_addr_t dma_addr, size_t size)
351 {
352 	vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
353 	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
354 }
355 EXPORT_SYMBOL(dma_mmap_writecombine);
356 
357 /*
358  * free a page as defined by the above mapping.
359  * Must not be called with IRQs disabled.
360  */
361 void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
362 {
363 	struct arm_vm_region *c;
364 	unsigned long flags, addr;
365 	pte_t *ptep;
366 	int idx;
367 	u32 off;
368 
369 	WARN_ON(irqs_disabled());
370 
371 	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
372 		return;
373 
374 	if (arch_is_coherent()) {
375 		kfree(cpu_addr);
376 		return;
377 	}
378 
379 	size = PAGE_ALIGN(size);
380 
381 	spin_lock_irqsave(&consistent_lock, flags);
382 	c = arm_vm_region_find(&consistent_head, (unsigned long)cpu_addr);
383 	if (!c)
384 		goto no_area;
385 
386 	c->vm_active = 0;
387 	spin_unlock_irqrestore(&consistent_lock, flags);
388 
389 	if ((c->vm_end - c->vm_start) != size) {
390 		printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
391 		       __func__, c->vm_end - c->vm_start, size);
392 		dump_stack();
393 		size = c->vm_end - c->vm_start;
394 	}
395 
396 	idx = CONSISTENT_PTE_INDEX(c->vm_start);
397 	off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
398 	ptep = consistent_pte[idx] + off;
399 	addr = c->vm_start;
400 	do {
401 		pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
402 		unsigned long pfn;
403 
404 		ptep++;
405 		addr += PAGE_SIZE;
406 		off++;
407 		if (off >= PTRS_PER_PTE) {
408 			off = 0;
409 			ptep = consistent_pte[++idx];
410 		}
411 
412 		if (!pte_none(pte) && pte_present(pte)) {
413 			pfn = pte_pfn(pte);
414 
415 			if (pfn_valid(pfn)) {
416 				struct page *page = pfn_to_page(pfn);
417 
418 				/*
419 				 * x86 does not mark the pages reserved...
420 				 */
421 				ClearPageReserved(page);
422 
423 				__free_page(page);
424 				continue;
425 			}
426 		}
427 
428 		printk(KERN_CRIT "%s: bad page in kernel page table\n",
429 		       __func__);
430 	} while (size -= PAGE_SIZE);
431 
432 	flush_tlb_kernel_range(c->vm_start, c->vm_end);
433 
434 	spin_lock_irqsave(&consistent_lock, flags);
435 	list_del(&c->vm_list);
436 	spin_unlock_irqrestore(&consistent_lock, flags);
437 
438 	kfree(c);
439 	return;
440 
441  no_area:
442 	spin_unlock_irqrestore(&consistent_lock, flags);
443 	printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
444 	       __func__, cpu_addr);
445 	dump_stack();
446 }
447 EXPORT_SYMBOL(dma_free_coherent);
448 
449 /*
450  * Initialise the consistent memory allocation.
451  */
452 static int __init consistent_init(void)
453 {
454 	pgd_t *pgd;
455 	pmd_t *pmd;
456 	pte_t *pte;
457 	int ret = 0, i = 0;
458 	u32 base = CONSISTENT_BASE;
459 
460 	do {
461 		pgd = pgd_offset(&init_mm, base);
462 		pmd = pmd_alloc(&init_mm, pgd, base);
463 		if (!pmd) {
464 			printk(KERN_ERR "%s: no pmd tables\n", __func__);
465 			ret = -ENOMEM;
466 			break;
467 		}
468 		WARN_ON(!pmd_none(*pmd));
469 
470 		pte = pte_alloc_kernel(pmd, base);
471 		if (!pte) {
472 			printk(KERN_ERR "%s: no pte tables\n", __func__);
473 			ret = -ENOMEM;
474 			break;
475 		}
476 
477 		consistent_pte[i++] = pte;
478 		base += (1 << PGDIR_SHIFT);
479 	} while (base < CONSISTENT_END);
480 
481 	return ret;
482 }
483 
484 core_initcall(consistent_init);
485 
486 /*
487  * Make an area consistent for devices.
488  * Note: Drivers should NOT use this function directly, as it will break
489  * platforms with CONFIG_DMABOUNCE.
490  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
491  */
492 void dma_cache_maint(const void *start, size_t size, int direction)
493 {
494 	void (*inner_op)(const void *, const void *);
495 	void (*outer_op)(unsigned long, unsigned long);
496 
497 	BUG_ON(!virt_addr_valid(start) || !virt_addr_valid(start + size - 1));
498 
499 	switch (direction) {
500 	case DMA_FROM_DEVICE:		/* invalidate only */
501 		inner_op = dmac_inv_range;
502 		outer_op = outer_inv_range;
503 		break;
504 	case DMA_TO_DEVICE:		/* writeback only */
505 		inner_op = dmac_clean_range;
506 		outer_op = outer_clean_range;
507 		break;
508 	case DMA_BIDIRECTIONAL:		/* writeback and invalidate */
509 		inner_op = dmac_flush_range;
510 		outer_op = outer_flush_range;
511 		break;
512 	default:
513 		BUG();
514 	}
515 
516 	inner_op(start, start + size);
517 	outer_op(__pa(start), __pa(start) + size);
518 }
519 EXPORT_SYMBOL(dma_cache_maint);
520 
521 static void dma_cache_maint_contiguous(struct page *page, unsigned long offset,
522 				       size_t size, int direction)
523 {
524 	void *vaddr;
525 	unsigned long paddr;
526 	void (*inner_op)(const void *, const void *);
527 	void (*outer_op)(unsigned long, unsigned long);
528 
529 	switch (direction) {
530 	case DMA_FROM_DEVICE:		/* invalidate only */
531 		inner_op = dmac_inv_range;
532 		outer_op = outer_inv_range;
533 		break;
534 	case DMA_TO_DEVICE:		/* writeback only */
535 		inner_op = dmac_clean_range;
536 		outer_op = outer_clean_range;
537 		break;
538 	case DMA_BIDIRECTIONAL:		/* writeback and invalidate */
539 		inner_op = dmac_flush_range;
540 		outer_op = outer_flush_range;
541 		break;
542 	default:
543 		BUG();
544 	}
545 
546 	if (!PageHighMem(page)) {
547 		vaddr = page_address(page) + offset;
548 		inner_op(vaddr, vaddr + size);
549 	} else {
550 		vaddr = kmap_high_get(page);
551 		if (vaddr) {
552 			vaddr += offset;
553 			inner_op(vaddr, vaddr + size);
554 			kunmap_high(page);
555 		}
556 	}
557 
558 	paddr = page_to_phys(page) + offset;
559 	outer_op(paddr, paddr + size);
560 }
561 
562 void dma_cache_maint_page(struct page *page, unsigned long offset,
563 			  size_t size, int dir)
564 {
565 	/*
566 	 * A single sg entry may refer to multiple physically contiguous
567 	 * pages.  But we still need to process highmem pages individually.
568 	 * If highmem is not configured then the bulk of this loop gets
569 	 * optimized out.
570 	 */
571 	size_t left = size;
572 	do {
573 		size_t len = left;
574 		if (PageHighMem(page) && len + offset > PAGE_SIZE) {
575 			if (offset >= PAGE_SIZE) {
576 				page += offset / PAGE_SIZE;
577 				offset %= PAGE_SIZE;
578 			}
579 			len = PAGE_SIZE - offset;
580 		}
581 		dma_cache_maint_contiguous(page, offset, len, dir);
582 		offset = 0;
583 		page++;
584 		left -= len;
585 	} while (left);
586 }
587 EXPORT_SYMBOL(dma_cache_maint_page);
588 
589 /**
590  * dma_map_sg - map a set of SG buffers for streaming mode DMA
591  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
592  * @sg: list of buffers
593  * @nents: number of buffers to map
594  * @dir: DMA transfer direction
595  *
596  * Map a set of buffers described by scatterlist in streaming mode for DMA.
597  * This is the scatter-gather version of the dma_map_single interface.
598  * Here the scatter gather list elements are each tagged with the
599  * appropriate dma address and length.  They are obtained via
600  * sg_dma_{address,length}.
601  *
602  * Device ownership issues as mentioned for dma_map_single are the same
603  * here.
604  */
605 int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
606 		enum dma_data_direction dir)
607 {
608 	struct scatterlist *s;
609 	int i, j;
610 
611 	for_each_sg(sg, s, nents, i) {
612 		s->dma_address = dma_map_page(dev, sg_page(s), s->offset,
613 						s->length, dir);
614 		if (dma_mapping_error(dev, s->dma_address))
615 			goto bad_mapping;
616 	}
617 	return nents;
618 
619  bad_mapping:
620 	for_each_sg(sg, s, i, j)
621 		dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
622 	return 0;
623 }
624 EXPORT_SYMBOL(dma_map_sg);
625 
626 /**
627  * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
628  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
629  * @sg: list of buffers
630  * @nents: number of buffers to unmap (returned from dma_map_sg)
631  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
632  *
633  * Unmap a set of streaming mode DMA translations.  Again, CPU access
634  * rules concerning calls here are the same as for dma_unmap_single().
635  */
636 void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
637 		enum dma_data_direction dir)
638 {
639 	struct scatterlist *s;
640 	int i;
641 
642 	for_each_sg(sg, s, nents, i)
643 		dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
644 }
645 EXPORT_SYMBOL(dma_unmap_sg);
646 
647 /**
648  * dma_sync_sg_for_cpu
649  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
650  * @sg: list of buffers
651  * @nents: number of buffers to map (returned from dma_map_sg)
652  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
653  */
654 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
655 			int nents, enum dma_data_direction dir)
656 {
657 	struct scatterlist *s;
658 	int i;
659 
660 	for_each_sg(sg, s, nents, i) {
661 		dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
662 					sg_dma_len(s), dir);
663 	}
664 }
665 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
666 
667 /**
668  * dma_sync_sg_for_device
669  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
670  * @sg: list of buffers
671  * @nents: number of buffers to map (returned from dma_map_sg)
672  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
673  */
674 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
675 			int nents, enum dma_data_direction dir)
676 {
677 	struct scatterlist *s;
678 	int i;
679 
680 	for_each_sg(sg, s, nents, i) {
681 		if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
682 					sg_dma_len(s), dir))
683 			continue;
684 
685 		if (!arch_is_coherent())
686 			dma_cache_maint_page(sg_page(s), s->offset,
687 					     s->length, dir);
688 	}
689 }
690 EXPORT_SYMBOL(dma_sync_sg_for_device);
691