xref: /openbmc/linux/arch/arm/mm/dma-mapping.c (revision b4268676)
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/bootmem.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/genalloc.h>
16 #include <linux/gfp.h>
17 #include <linux/errno.h>
18 #include <linux/list.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-contiguous.h>
23 #include <linux/highmem.h>
24 #include <linux/memblock.h>
25 #include <linux/slab.h>
26 #include <linux/iommu.h>
27 #include <linux/io.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sizes.h>
30 #include <linux/cma.h>
31 
32 #include <asm/memory.h>
33 #include <asm/highmem.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mach/arch.h>
37 #include <asm/dma-iommu.h>
38 #include <asm/mach/map.h>
39 #include <asm/system_info.h>
40 #include <asm/dma-contiguous.h>
41 
42 #include "dma.h"
43 #include "mm.h"
44 
45 struct arm_dma_alloc_args {
46 	struct device *dev;
47 	size_t size;
48 	gfp_t gfp;
49 	pgprot_t prot;
50 	const void *caller;
51 	bool want_vaddr;
52 };
53 
54 struct arm_dma_free_args {
55 	struct device *dev;
56 	size_t size;
57 	void *cpu_addr;
58 	struct page *page;
59 	bool want_vaddr;
60 };
61 
62 struct arm_dma_allocator {
63 	void *(*alloc)(struct arm_dma_alloc_args *args,
64 		       struct page **ret_page);
65 	void (*free)(struct arm_dma_free_args *args);
66 };
67 
68 struct arm_dma_buffer {
69 	struct list_head list;
70 	void *virt;
71 	struct arm_dma_allocator *allocator;
72 };
73 
74 static LIST_HEAD(arm_dma_bufs);
75 static DEFINE_SPINLOCK(arm_dma_bufs_lock);
76 
77 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
78 {
79 	struct arm_dma_buffer *buf, *found = NULL;
80 	unsigned long flags;
81 
82 	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
83 	list_for_each_entry(buf, &arm_dma_bufs, list) {
84 		if (buf->virt == virt) {
85 			list_del(&buf->list);
86 			found = buf;
87 			break;
88 		}
89 	}
90 	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
91 	return found;
92 }
93 
94 /*
95  * The DMA API is built upon the notion of "buffer ownership".  A buffer
96  * is either exclusively owned by the CPU (and therefore may be accessed
97  * by it) or exclusively owned by the DMA device.  These helper functions
98  * represent the transitions between these two ownership states.
99  *
100  * Note, however, that on later ARMs, this notion does not work due to
101  * speculative prefetches.  We model our approach on the assumption that
102  * the CPU does do speculative prefetches, which means we clean caches
103  * before transfers and delay cache invalidation until transfer completion.
104  *
105  */
106 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
107 		size_t, enum dma_data_direction);
108 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
109 		size_t, enum dma_data_direction);
110 
111 /**
112  * arm_dma_map_page - map a portion of a page for streaming DMA
113  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
114  * @page: page that buffer resides in
115  * @offset: offset into page for start of buffer
116  * @size: size of buffer to map
117  * @dir: DMA transfer direction
118  *
119  * Ensure that any data held in the cache is appropriately discarded
120  * or written back.
121  *
122  * The device owns this memory once this call has completed.  The CPU
123  * can regain ownership by calling dma_unmap_page().
124  */
125 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
126 	     unsigned long offset, size_t size, enum dma_data_direction dir,
127 	     struct dma_attrs *attrs)
128 {
129 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
130 		__dma_page_cpu_to_dev(page, offset, size, dir);
131 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
132 }
133 
134 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
135 	     unsigned long offset, size_t size, enum dma_data_direction dir,
136 	     struct dma_attrs *attrs)
137 {
138 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
139 }
140 
141 /**
142  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
143  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
144  * @handle: DMA address of buffer
145  * @size: size of buffer (same as passed to dma_map_page)
146  * @dir: DMA transfer direction (same as passed to dma_map_page)
147  *
148  * Unmap a page streaming mode DMA translation.  The handle and size
149  * must match what was provided in the previous dma_map_page() call.
150  * All other usages are undefined.
151  *
152  * After this call, reads by the CPU to the buffer are guaranteed to see
153  * whatever the device wrote there.
154  */
155 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
156 		size_t size, enum dma_data_direction dir,
157 		struct dma_attrs *attrs)
158 {
159 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
160 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
161 				      handle & ~PAGE_MASK, size, dir);
162 }
163 
164 static void arm_dma_sync_single_for_cpu(struct device *dev,
165 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
166 {
167 	unsigned int offset = handle & (PAGE_SIZE - 1);
168 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
169 	__dma_page_dev_to_cpu(page, offset, size, dir);
170 }
171 
172 static void arm_dma_sync_single_for_device(struct device *dev,
173 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
174 {
175 	unsigned int offset = handle & (PAGE_SIZE - 1);
176 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
177 	__dma_page_cpu_to_dev(page, offset, size, dir);
178 }
179 
180 struct dma_map_ops arm_dma_ops = {
181 	.alloc			= arm_dma_alloc,
182 	.free			= arm_dma_free,
183 	.mmap			= arm_dma_mmap,
184 	.get_sgtable		= arm_dma_get_sgtable,
185 	.map_page		= arm_dma_map_page,
186 	.unmap_page		= arm_dma_unmap_page,
187 	.map_sg			= arm_dma_map_sg,
188 	.unmap_sg		= arm_dma_unmap_sg,
189 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
190 	.sync_single_for_device	= arm_dma_sync_single_for_device,
191 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
192 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
193 	.set_dma_mask		= arm_dma_set_mask,
194 };
195 EXPORT_SYMBOL(arm_dma_ops);
196 
197 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
198 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
199 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
200 				  dma_addr_t handle, struct dma_attrs *attrs);
201 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
202 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
203 		 struct dma_attrs *attrs);
204 
205 struct dma_map_ops arm_coherent_dma_ops = {
206 	.alloc			= arm_coherent_dma_alloc,
207 	.free			= arm_coherent_dma_free,
208 	.mmap			= arm_coherent_dma_mmap,
209 	.get_sgtable		= arm_dma_get_sgtable,
210 	.map_page		= arm_coherent_dma_map_page,
211 	.map_sg			= arm_dma_map_sg,
212 	.set_dma_mask		= arm_dma_set_mask,
213 };
214 EXPORT_SYMBOL(arm_coherent_dma_ops);
215 
216 static int __dma_supported(struct device *dev, u64 mask, bool warn)
217 {
218 	unsigned long max_dma_pfn;
219 
220 	/*
221 	 * If the mask allows for more memory than we can address,
222 	 * and we actually have that much memory, then we must
223 	 * indicate that DMA to this device is not supported.
224 	 */
225 	if (sizeof(mask) != sizeof(dma_addr_t) &&
226 	    mask > (dma_addr_t)~0 &&
227 	    dma_to_pfn(dev, ~0) < max_pfn - 1) {
228 		if (warn) {
229 			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
230 				 mask);
231 			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
232 		}
233 		return 0;
234 	}
235 
236 	max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
237 
238 	/*
239 	 * Translate the device's DMA mask to a PFN limit.  This
240 	 * PFN number includes the page which we can DMA to.
241 	 */
242 	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
243 		if (warn)
244 			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
245 				 mask,
246 				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
247 				 max_dma_pfn + 1);
248 		return 0;
249 	}
250 
251 	return 1;
252 }
253 
254 static u64 get_coherent_dma_mask(struct device *dev)
255 {
256 	u64 mask = (u64)DMA_BIT_MASK(32);
257 
258 	if (dev) {
259 		mask = dev->coherent_dma_mask;
260 
261 		/*
262 		 * Sanity check the DMA mask - it must be non-zero, and
263 		 * must be able to be satisfied by a DMA allocation.
264 		 */
265 		if (mask == 0) {
266 			dev_warn(dev, "coherent DMA mask is unset\n");
267 			return 0;
268 		}
269 
270 		if (!__dma_supported(dev, mask, true))
271 			return 0;
272 	}
273 
274 	return mask;
275 }
276 
277 static void __dma_clear_buffer(struct page *page, size_t size)
278 {
279 	/*
280 	 * Ensure that the allocated pages are zeroed, and that any data
281 	 * lurking in the kernel direct-mapped region is invalidated.
282 	 */
283 	if (PageHighMem(page)) {
284 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
285 		phys_addr_t end = base + size;
286 		while (size > 0) {
287 			void *ptr = kmap_atomic(page);
288 			memset(ptr, 0, PAGE_SIZE);
289 			dmac_flush_range(ptr, ptr + PAGE_SIZE);
290 			kunmap_atomic(ptr);
291 			page++;
292 			size -= PAGE_SIZE;
293 		}
294 		outer_flush_range(base, end);
295 	} else {
296 		void *ptr = page_address(page);
297 		memset(ptr, 0, size);
298 		dmac_flush_range(ptr, ptr + size);
299 		outer_flush_range(__pa(ptr), __pa(ptr) + size);
300 	}
301 }
302 
303 /*
304  * Allocate a DMA buffer for 'dev' of size 'size' using the
305  * specified gfp mask.  Note that 'size' must be page aligned.
306  */
307 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
308 {
309 	unsigned long order = get_order(size);
310 	struct page *page, *p, *e;
311 
312 	page = alloc_pages(gfp, order);
313 	if (!page)
314 		return NULL;
315 
316 	/*
317 	 * Now split the huge page and free the excess pages
318 	 */
319 	split_page(page, order);
320 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
321 		__free_page(p);
322 
323 	__dma_clear_buffer(page, size);
324 
325 	return page;
326 }
327 
328 /*
329  * Free a DMA buffer.  'size' must be page aligned.
330  */
331 static void __dma_free_buffer(struct page *page, size_t size)
332 {
333 	struct page *e = page + (size >> PAGE_SHIFT);
334 
335 	while (page < e) {
336 		__free_page(page);
337 		page++;
338 	}
339 }
340 
341 #ifdef CONFIG_MMU
342 
343 static void *__alloc_from_contiguous(struct device *dev, size_t size,
344 				     pgprot_t prot, struct page **ret_page,
345 				     const void *caller, bool want_vaddr);
346 
347 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
348 				 pgprot_t prot, struct page **ret_page,
349 				 const void *caller, bool want_vaddr);
350 
351 static void *
352 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
353 	const void *caller)
354 {
355 	/*
356 	 * DMA allocation can be mapped to user space, so lets
357 	 * set VM_USERMAP flags too.
358 	 */
359 	return dma_common_contiguous_remap(page, size,
360 			VM_ARM_DMA_CONSISTENT | VM_USERMAP,
361 			prot, caller);
362 }
363 
364 static void __dma_free_remap(void *cpu_addr, size_t size)
365 {
366 	dma_common_free_remap(cpu_addr, size,
367 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
368 }
369 
370 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
371 static struct gen_pool *atomic_pool;
372 
373 static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
374 
375 static int __init early_coherent_pool(char *p)
376 {
377 	atomic_pool_size = memparse(p, &p);
378 	return 0;
379 }
380 early_param("coherent_pool", early_coherent_pool);
381 
382 void __init init_dma_coherent_pool_size(unsigned long size)
383 {
384 	/*
385 	 * Catch any attempt to set the pool size too late.
386 	 */
387 	BUG_ON(atomic_pool);
388 
389 	/*
390 	 * Set architecture specific coherent pool size only if
391 	 * it has not been changed by kernel command line parameter.
392 	 */
393 	if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
394 		atomic_pool_size = size;
395 }
396 
397 /*
398  * Initialise the coherent pool for atomic allocations.
399  */
400 static int __init atomic_pool_init(void)
401 {
402 	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
403 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
404 	struct page *page;
405 	void *ptr;
406 
407 	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
408 	if (!atomic_pool)
409 		goto out;
410 
411 	if (dev_get_cma_area(NULL))
412 		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
413 					      &page, atomic_pool_init, true);
414 	else
415 		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
416 					   &page, atomic_pool_init, true);
417 	if (ptr) {
418 		int ret;
419 
420 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
421 					page_to_phys(page),
422 					atomic_pool_size, -1);
423 		if (ret)
424 			goto destroy_genpool;
425 
426 		gen_pool_set_algo(atomic_pool,
427 				gen_pool_first_fit_order_align,
428 				(void *)PAGE_SHIFT);
429 		pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
430 		       atomic_pool_size / 1024);
431 		return 0;
432 	}
433 
434 destroy_genpool:
435 	gen_pool_destroy(atomic_pool);
436 	atomic_pool = NULL;
437 out:
438 	pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
439 	       atomic_pool_size / 1024);
440 	return -ENOMEM;
441 }
442 /*
443  * CMA is activated by core_initcall, so we must be called after it.
444  */
445 postcore_initcall(atomic_pool_init);
446 
447 struct dma_contig_early_reserve {
448 	phys_addr_t base;
449 	unsigned long size;
450 };
451 
452 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
453 
454 static int dma_mmu_remap_num __initdata;
455 
456 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
457 {
458 	dma_mmu_remap[dma_mmu_remap_num].base = base;
459 	dma_mmu_remap[dma_mmu_remap_num].size = size;
460 	dma_mmu_remap_num++;
461 }
462 
463 void __init dma_contiguous_remap(void)
464 {
465 	int i;
466 	for (i = 0; i < dma_mmu_remap_num; i++) {
467 		phys_addr_t start = dma_mmu_remap[i].base;
468 		phys_addr_t end = start + dma_mmu_remap[i].size;
469 		struct map_desc map;
470 		unsigned long addr;
471 
472 		if (end > arm_lowmem_limit)
473 			end = arm_lowmem_limit;
474 		if (start >= end)
475 			continue;
476 
477 		map.pfn = __phys_to_pfn(start);
478 		map.virtual = __phys_to_virt(start);
479 		map.length = end - start;
480 		map.type = MT_MEMORY_DMA_READY;
481 
482 		/*
483 		 * Clear previous low-memory mapping to ensure that the
484 		 * TLB does not see any conflicting entries, then flush
485 		 * the TLB of the old entries before creating new mappings.
486 		 *
487 		 * This ensures that any speculatively loaded TLB entries
488 		 * (even though they may be rare) can not cause any problems,
489 		 * and ensures that this code is architecturally compliant.
490 		 */
491 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
492 		     addr += PMD_SIZE)
493 			pmd_clear(pmd_off_k(addr));
494 
495 		flush_tlb_kernel_range(__phys_to_virt(start),
496 				       __phys_to_virt(end));
497 
498 		iotable_init(&map, 1);
499 	}
500 }
501 
502 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
503 			    void *data)
504 {
505 	struct page *page = virt_to_page(addr);
506 	pgprot_t prot = *(pgprot_t *)data;
507 
508 	set_pte_ext(pte, mk_pte(page, prot), 0);
509 	return 0;
510 }
511 
512 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
513 {
514 	unsigned long start = (unsigned long) page_address(page);
515 	unsigned end = start + size;
516 
517 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
518 	flush_tlb_kernel_range(start, end);
519 }
520 
521 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
522 				 pgprot_t prot, struct page **ret_page,
523 				 const void *caller, bool want_vaddr)
524 {
525 	struct page *page;
526 	void *ptr = NULL;
527 	page = __dma_alloc_buffer(dev, size, gfp);
528 	if (!page)
529 		return NULL;
530 	if (!want_vaddr)
531 		goto out;
532 
533 	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
534 	if (!ptr) {
535 		__dma_free_buffer(page, size);
536 		return NULL;
537 	}
538 
539  out:
540 	*ret_page = page;
541 	return ptr;
542 }
543 
544 static void *__alloc_from_pool(size_t size, struct page **ret_page)
545 {
546 	unsigned long val;
547 	void *ptr = NULL;
548 
549 	if (!atomic_pool) {
550 		WARN(1, "coherent pool not initialised!\n");
551 		return NULL;
552 	}
553 
554 	val = gen_pool_alloc(atomic_pool, size);
555 	if (val) {
556 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
557 
558 		*ret_page = phys_to_page(phys);
559 		ptr = (void *)val;
560 	}
561 
562 	return ptr;
563 }
564 
565 static bool __in_atomic_pool(void *start, size_t size)
566 {
567 	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
568 }
569 
570 static int __free_from_pool(void *start, size_t size)
571 {
572 	if (!__in_atomic_pool(start, size))
573 		return 0;
574 
575 	gen_pool_free(atomic_pool, (unsigned long)start, size);
576 
577 	return 1;
578 }
579 
580 static void *__alloc_from_contiguous(struct device *dev, size_t size,
581 				     pgprot_t prot, struct page **ret_page,
582 				     const void *caller, bool want_vaddr)
583 {
584 	unsigned long order = get_order(size);
585 	size_t count = size >> PAGE_SHIFT;
586 	struct page *page;
587 	void *ptr = NULL;
588 
589 	page = dma_alloc_from_contiguous(dev, count, order);
590 	if (!page)
591 		return NULL;
592 
593 	__dma_clear_buffer(page, size);
594 
595 	if (!want_vaddr)
596 		goto out;
597 
598 	if (PageHighMem(page)) {
599 		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
600 		if (!ptr) {
601 			dma_release_from_contiguous(dev, page, count);
602 			return NULL;
603 		}
604 	} else {
605 		__dma_remap(page, size, prot);
606 		ptr = page_address(page);
607 	}
608 
609  out:
610 	*ret_page = page;
611 	return ptr;
612 }
613 
614 static void __free_from_contiguous(struct device *dev, struct page *page,
615 				   void *cpu_addr, size_t size, bool want_vaddr)
616 {
617 	if (want_vaddr) {
618 		if (PageHighMem(page))
619 			__dma_free_remap(cpu_addr, size);
620 		else
621 			__dma_remap(page, size, PAGE_KERNEL);
622 	}
623 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
624 }
625 
626 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
627 {
628 	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
629 			    pgprot_writecombine(prot) :
630 			    pgprot_dmacoherent(prot);
631 	return prot;
632 }
633 
634 #define nommu() 0
635 
636 #else	/* !CONFIG_MMU */
637 
638 #define nommu() 1
639 
640 #define __get_dma_pgprot(attrs, prot)				__pgprot(0)
641 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv)	NULL
642 #define __alloc_from_pool(size, ret_page)			NULL
643 #define __alloc_from_contiguous(dev, size, prot, ret, c, wv)	NULL
644 #define __free_from_pool(cpu_addr, size)			do { } while (0)
645 #define __free_from_contiguous(dev, page, cpu_addr, size, wv)	do { } while (0)
646 #define __dma_free_remap(cpu_addr, size)			do { } while (0)
647 
648 #endif	/* CONFIG_MMU */
649 
650 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
651 				   struct page **ret_page)
652 {
653 	struct page *page;
654 	page = __dma_alloc_buffer(dev, size, gfp);
655 	if (!page)
656 		return NULL;
657 
658 	*ret_page = page;
659 	return page_address(page);
660 }
661 
662 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
663 				    struct page **ret_page)
664 {
665 	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
666 				     ret_page);
667 }
668 
669 static void simple_allocator_free(struct arm_dma_free_args *args)
670 {
671 	__dma_free_buffer(args->page, args->size);
672 }
673 
674 static struct arm_dma_allocator simple_allocator = {
675 	.alloc = simple_allocator_alloc,
676 	.free = simple_allocator_free,
677 };
678 
679 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
680 				 struct page **ret_page)
681 {
682 	return __alloc_from_contiguous(args->dev, args->size, args->prot,
683 				       ret_page, args->caller,
684 				       args->want_vaddr);
685 }
686 
687 static void cma_allocator_free(struct arm_dma_free_args *args)
688 {
689 	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
690 			       args->size, args->want_vaddr);
691 }
692 
693 static struct arm_dma_allocator cma_allocator = {
694 	.alloc = cma_allocator_alloc,
695 	.free = cma_allocator_free,
696 };
697 
698 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
699 				  struct page **ret_page)
700 {
701 	return __alloc_from_pool(args->size, ret_page);
702 }
703 
704 static void pool_allocator_free(struct arm_dma_free_args *args)
705 {
706 	__free_from_pool(args->cpu_addr, args->size);
707 }
708 
709 static struct arm_dma_allocator pool_allocator = {
710 	.alloc = pool_allocator_alloc,
711 	.free = pool_allocator_free,
712 };
713 
714 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
715 				   struct page **ret_page)
716 {
717 	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
718 				    args->prot, ret_page, args->caller,
719 				    args->want_vaddr);
720 }
721 
722 static void remap_allocator_free(struct arm_dma_free_args *args)
723 {
724 	if (args->want_vaddr)
725 		__dma_free_remap(args->cpu_addr, args->size);
726 
727 	__dma_free_buffer(args->page, args->size);
728 }
729 
730 static struct arm_dma_allocator remap_allocator = {
731 	.alloc = remap_allocator_alloc,
732 	.free = remap_allocator_free,
733 };
734 
735 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
736 			 gfp_t gfp, pgprot_t prot, bool is_coherent,
737 			 struct dma_attrs *attrs, const void *caller)
738 {
739 	u64 mask = get_coherent_dma_mask(dev);
740 	struct page *page = NULL;
741 	void *addr;
742 	bool allowblock, cma;
743 	struct arm_dma_buffer *buf;
744 	struct arm_dma_alloc_args args = {
745 		.dev = dev,
746 		.size = PAGE_ALIGN(size),
747 		.gfp = gfp,
748 		.prot = prot,
749 		.caller = caller,
750 		.want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs),
751 	};
752 
753 #ifdef CONFIG_DMA_API_DEBUG
754 	u64 limit = (mask + 1) & ~mask;
755 	if (limit && size >= limit) {
756 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
757 			size, mask);
758 		return NULL;
759 	}
760 #endif
761 
762 	if (!mask)
763 		return NULL;
764 
765 	buf = kzalloc(sizeof(*buf), gfp);
766 	if (!buf)
767 		return NULL;
768 
769 	if (mask < 0xffffffffULL)
770 		gfp |= GFP_DMA;
771 
772 	/*
773 	 * Following is a work-around (a.k.a. hack) to prevent pages
774 	 * with __GFP_COMP being passed to split_page() which cannot
775 	 * handle them.  The real problem is that this flag probably
776 	 * should be 0 on ARM as it is not supported on this
777 	 * platform; see CONFIG_HUGETLBFS.
778 	 */
779 	gfp &= ~(__GFP_COMP);
780 	args.gfp = gfp;
781 
782 	*handle = DMA_ERROR_CODE;
783 	allowblock = gfpflags_allow_blocking(gfp);
784 	cma = allowblock ? dev_get_cma_area(dev) : false;
785 
786 	if (cma)
787 		buf->allocator = &cma_allocator;
788 	else if (nommu() || is_coherent)
789 		buf->allocator = &simple_allocator;
790 	else if (allowblock)
791 		buf->allocator = &remap_allocator;
792 	else
793 		buf->allocator = &pool_allocator;
794 
795 	addr = buf->allocator->alloc(&args, &page);
796 
797 	if (page) {
798 		unsigned long flags;
799 
800 		*handle = pfn_to_dma(dev, page_to_pfn(page));
801 		buf->virt = args.want_vaddr ? addr : page;
802 
803 		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
804 		list_add(&buf->list, &arm_dma_bufs);
805 		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
806 	} else {
807 		kfree(buf);
808 	}
809 
810 	return args.want_vaddr ? addr : page;
811 }
812 
813 /*
814  * Allocate DMA-coherent memory space and return both the kernel remapped
815  * virtual and bus address for that space.
816  */
817 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
818 		    gfp_t gfp, struct dma_attrs *attrs)
819 {
820 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
821 
822 	return __dma_alloc(dev, size, handle, gfp, prot, false,
823 			   attrs, __builtin_return_address(0));
824 }
825 
826 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
827 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
828 {
829 	return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
830 			   attrs, __builtin_return_address(0));
831 }
832 
833 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
834 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
835 		 struct dma_attrs *attrs)
836 {
837 	int ret = -ENXIO;
838 #ifdef CONFIG_MMU
839 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
840 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
841 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
842 	unsigned long off = vma->vm_pgoff;
843 
844 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
845 		return ret;
846 
847 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
848 		ret = remap_pfn_range(vma, vma->vm_start,
849 				      pfn + off,
850 				      vma->vm_end - vma->vm_start,
851 				      vma->vm_page_prot);
852 	}
853 #endif	/* CONFIG_MMU */
854 
855 	return ret;
856 }
857 
858 /*
859  * Create userspace mapping for the DMA-coherent memory.
860  */
861 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
862 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
863 		 struct dma_attrs *attrs)
864 {
865 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
866 }
867 
868 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
869 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
870 		 struct dma_attrs *attrs)
871 {
872 #ifdef CONFIG_MMU
873 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
874 #endif	/* CONFIG_MMU */
875 	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
876 }
877 
878 /*
879  * Free a buffer as defined by the above mapping.
880  */
881 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
882 			   dma_addr_t handle, struct dma_attrs *attrs,
883 			   bool is_coherent)
884 {
885 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
886 	struct arm_dma_buffer *buf;
887 	struct arm_dma_free_args args = {
888 		.dev = dev,
889 		.size = PAGE_ALIGN(size),
890 		.cpu_addr = cpu_addr,
891 		.page = page,
892 		.want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs),
893 	};
894 
895 	buf = arm_dma_buffer_find(cpu_addr);
896 	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
897 		return;
898 
899 	buf->allocator->free(&args);
900 	kfree(buf);
901 }
902 
903 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
904 		  dma_addr_t handle, struct dma_attrs *attrs)
905 {
906 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
907 }
908 
909 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
910 				  dma_addr_t handle, struct dma_attrs *attrs)
911 {
912 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
913 }
914 
915 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
916 		 void *cpu_addr, dma_addr_t handle, size_t size,
917 		 struct dma_attrs *attrs)
918 {
919 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
920 	int ret;
921 
922 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
923 	if (unlikely(ret))
924 		return ret;
925 
926 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
927 	return 0;
928 }
929 
930 static void dma_cache_maint_page(struct page *page, unsigned long offset,
931 	size_t size, enum dma_data_direction dir,
932 	void (*op)(const void *, size_t, int))
933 {
934 	unsigned long pfn;
935 	size_t left = size;
936 
937 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
938 	offset %= PAGE_SIZE;
939 
940 	/*
941 	 * A single sg entry may refer to multiple physically contiguous
942 	 * pages.  But we still need to process highmem pages individually.
943 	 * If highmem is not configured then the bulk of this loop gets
944 	 * optimized out.
945 	 */
946 	do {
947 		size_t len = left;
948 		void *vaddr;
949 
950 		page = pfn_to_page(pfn);
951 
952 		if (PageHighMem(page)) {
953 			if (len + offset > PAGE_SIZE)
954 				len = PAGE_SIZE - offset;
955 
956 			if (cache_is_vipt_nonaliasing()) {
957 				vaddr = kmap_atomic(page);
958 				op(vaddr + offset, len, dir);
959 				kunmap_atomic(vaddr);
960 			} else {
961 				vaddr = kmap_high_get(page);
962 				if (vaddr) {
963 					op(vaddr + offset, len, dir);
964 					kunmap_high(page);
965 				}
966 			}
967 		} else {
968 			vaddr = page_address(page) + offset;
969 			op(vaddr, len, dir);
970 		}
971 		offset = 0;
972 		pfn++;
973 		left -= len;
974 	} while (left);
975 }
976 
977 /*
978  * Make an area consistent for devices.
979  * Note: Drivers should NOT use this function directly, as it will break
980  * platforms with CONFIG_DMABOUNCE.
981  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
982  */
983 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
984 	size_t size, enum dma_data_direction dir)
985 {
986 	phys_addr_t paddr;
987 
988 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
989 
990 	paddr = page_to_phys(page) + off;
991 	if (dir == DMA_FROM_DEVICE) {
992 		outer_inv_range(paddr, paddr + size);
993 	} else {
994 		outer_clean_range(paddr, paddr + size);
995 	}
996 	/* FIXME: non-speculating: flush on bidirectional mappings? */
997 }
998 
999 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
1000 	size_t size, enum dma_data_direction dir)
1001 {
1002 	phys_addr_t paddr = page_to_phys(page) + off;
1003 
1004 	/* FIXME: non-speculating: not required */
1005 	/* in any case, don't bother invalidating if DMA to device */
1006 	if (dir != DMA_TO_DEVICE) {
1007 		outer_inv_range(paddr, paddr + size);
1008 
1009 		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
1010 	}
1011 
1012 	/*
1013 	 * Mark the D-cache clean for these pages to avoid extra flushing.
1014 	 */
1015 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
1016 		unsigned long pfn;
1017 		size_t left = size;
1018 
1019 		pfn = page_to_pfn(page) + off / PAGE_SIZE;
1020 		off %= PAGE_SIZE;
1021 		if (off) {
1022 			pfn++;
1023 			left -= PAGE_SIZE - off;
1024 		}
1025 		while (left >= PAGE_SIZE) {
1026 			page = pfn_to_page(pfn++);
1027 			set_bit(PG_dcache_clean, &page->flags);
1028 			left -= PAGE_SIZE;
1029 		}
1030 	}
1031 }
1032 
1033 /**
1034  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1035  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1036  * @sg: list of buffers
1037  * @nents: number of buffers to map
1038  * @dir: DMA transfer direction
1039  *
1040  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1041  * This is the scatter-gather version of the dma_map_single interface.
1042  * Here the scatter gather list elements are each tagged with the
1043  * appropriate dma address and length.  They are obtained via
1044  * sg_dma_{address,length}.
1045  *
1046  * Device ownership issues as mentioned for dma_map_single are the same
1047  * here.
1048  */
1049 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1050 		enum dma_data_direction dir, struct dma_attrs *attrs)
1051 {
1052 	struct dma_map_ops *ops = get_dma_ops(dev);
1053 	struct scatterlist *s;
1054 	int i, j;
1055 
1056 	for_each_sg(sg, s, nents, i) {
1057 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1058 		s->dma_length = s->length;
1059 #endif
1060 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1061 						s->length, dir, attrs);
1062 		if (dma_mapping_error(dev, s->dma_address))
1063 			goto bad_mapping;
1064 	}
1065 	return nents;
1066 
1067  bad_mapping:
1068 	for_each_sg(sg, s, i, j)
1069 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1070 	return 0;
1071 }
1072 
1073 /**
1074  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1075  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1076  * @sg: list of buffers
1077  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1078  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1079  *
1080  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1081  * rules concerning calls here are the same as for dma_unmap_single().
1082  */
1083 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1084 		enum dma_data_direction dir, struct dma_attrs *attrs)
1085 {
1086 	struct dma_map_ops *ops = get_dma_ops(dev);
1087 	struct scatterlist *s;
1088 
1089 	int i;
1090 
1091 	for_each_sg(sg, s, nents, i)
1092 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1093 }
1094 
1095 /**
1096  * arm_dma_sync_sg_for_cpu
1097  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1098  * @sg: list of buffers
1099  * @nents: number of buffers to map (returned from dma_map_sg)
1100  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1101  */
1102 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1103 			int nents, enum dma_data_direction dir)
1104 {
1105 	struct dma_map_ops *ops = get_dma_ops(dev);
1106 	struct scatterlist *s;
1107 	int i;
1108 
1109 	for_each_sg(sg, s, nents, i)
1110 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1111 					 dir);
1112 }
1113 
1114 /**
1115  * arm_dma_sync_sg_for_device
1116  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1117  * @sg: list of buffers
1118  * @nents: number of buffers to map (returned from dma_map_sg)
1119  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1120  */
1121 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1122 			int nents, enum dma_data_direction dir)
1123 {
1124 	struct dma_map_ops *ops = get_dma_ops(dev);
1125 	struct scatterlist *s;
1126 	int i;
1127 
1128 	for_each_sg(sg, s, nents, i)
1129 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1130 					    dir);
1131 }
1132 
1133 /*
1134  * Return whether the given device DMA address mask can be supported
1135  * properly.  For example, if your device can only drive the low 24-bits
1136  * during bus mastering, then you would pass 0x00ffffff as the mask
1137  * to this function.
1138  */
1139 int dma_supported(struct device *dev, u64 mask)
1140 {
1141 	return __dma_supported(dev, mask, false);
1142 }
1143 EXPORT_SYMBOL(dma_supported);
1144 
1145 int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1146 {
1147 	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1148 		return -EIO;
1149 
1150 	*dev->dma_mask = dma_mask;
1151 
1152 	return 0;
1153 }
1154 
1155 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
1156 
1157 static int __init dma_debug_do_init(void)
1158 {
1159 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1160 	return 0;
1161 }
1162 fs_initcall(dma_debug_do_init);
1163 
1164 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1165 
1166 /* IOMMU */
1167 
1168 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1169 
1170 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1171 				      size_t size)
1172 {
1173 	unsigned int order = get_order(size);
1174 	unsigned int align = 0;
1175 	unsigned int count, start;
1176 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1177 	unsigned long flags;
1178 	dma_addr_t iova;
1179 	int i;
1180 
1181 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1182 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1183 
1184 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1185 	align = (1 << order) - 1;
1186 
1187 	spin_lock_irqsave(&mapping->lock, flags);
1188 	for (i = 0; i < mapping->nr_bitmaps; i++) {
1189 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1190 				mapping->bits, 0, count, align);
1191 
1192 		if (start > mapping->bits)
1193 			continue;
1194 
1195 		bitmap_set(mapping->bitmaps[i], start, count);
1196 		break;
1197 	}
1198 
1199 	/*
1200 	 * No unused range found. Try to extend the existing mapping
1201 	 * and perform a second attempt to reserve an IO virtual
1202 	 * address range of size bytes.
1203 	 */
1204 	if (i == mapping->nr_bitmaps) {
1205 		if (extend_iommu_mapping(mapping)) {
1206 			spin_unlock_irqrestore(&mapping->lock, flags);
1207 			return DMA_ERROR_CODE;
1208 		}
1209 
1210 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1211 				mapping->bits, 0, count, align);
1212 
1213 		if (start > mapping->bits) {
1214 			spin_unlock_irqrestore(&mapping->lock, flags);
1215 			return DMA_ERROR_CODE;
1216 		}
1217 
1218 		bitmap_set(mapping->bitmaps[i], start, count);
1219 	}
1220 	spin_unlock_irqrestore(&mapping->lock, flags);
1221 
1222 	iova = mapping->base + (mapping_size * i);
1223 	iova += start << PAGE_SHIFT;
1224 
1225 	return iova;
1226 }
1227 
1228 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1229 			       dma_addr_t addr, size_t size)
1230 {
1231 	unsigned int start, count;
1232 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1233 	unsigned long flags;
1234 	dma_addr_t bitmap_base;
1235 	u32 bitmap_index;
1236 
1237 	if (!size)
1238 		return;
1239 
1240 	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1241 	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1242 
1243 	bitmap_base = mapping->base + mapping_size * bitmap_index;
1244 
1245 	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1246 
1247 	if (addr + size > bitmap_base + mapping_size) {
1248 		/*
1249 		 * The address range to be freed reaches into the iova
1250 		 * range of the next bitmap. This should not happen as
1251 		 * we don't allow this in __alloc_iova (at the
1252 		 * moment).
1253 		 */
1254 		BUG();
1255 	} else
1256 		count = size >> PAGE_SHIFT;
1257 
1258 	spin_lock_irqsave(&mapping->lock, flags);
1259 	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1260 	spin_unlock_irqrestore(&mapping->lock, flags);
1261 }
1262 
1263 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1264 static const int iommu_order_array[] = { 9, 8, 4, 0 };
1265 
1266 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1267 					  gfp_t gfp, struct dma_attrs *attrs)
1268 {
1269 	struct page **pages;
1270 	int count = size >> PAGE_SHIFT;
1271 	int array_size = count * sizeof(struct page *);
1272 	int i = 0;
1273 	int order_idx = 0;
1274 
1275 	if (array_size <= PAGE_SIZE)
1276 		pages = kzalloc(array_size, GFP_KERNEL);
1277 	else
1278 		pages = vzalloc(array_size);
1279 	if (!pages)
1280 		return NULL;
1281 
1282 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1283 	{
1284 		unsigned long order = get_order(size);
1285 		struct page *page;
1286 
1287 		page = dma_alloc_from_contiguous(dev, count, order);
1288 		if (!page)
1289 			goto error;
1290 
1291 		__dma_clear_buffer(page, size);
1292 
1293 		for (i = 0; i < count; i++)
1294 			pages[i] = page + i;
1295 
1296 		return pages;
1297 	}
1298 
1299 	/* Go straight to 4K chunks if caller says it's OK. */
1300 	if (dma_get_attr(DMA_ATTR_ALLOC_SINGLE_PAGES, attrs))
1301 		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1302 
1303 	/*
1304 	 * IOMMU can map any pages, so himem can also be used here
1305 	 */
1306 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1307 
1308 	while (count) {
1309 		int j, order;
1310 
1311 		order = iommu_order_array[order_idx];
1312 
1313 		/* Drop down when we get small */
1314 		if (__fls(count) < order) {
1315 			order_idx++;
1316 			continue;
1317 		}
1318 
1319 		if (order) {
1320 			/* See if it's easy to allocate a high-order chunk */
1321 			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1322 
1323 			/* Go down a notch at first sign of pressure */
1324 			if (!pages[i]) {
1325 				order_idx++;
1326 				continue;
1327 			}
1328 		} else {
1329 			pages[i] = alloc_pages(gfp, 0);
1330 			if (!pages[i])
1331 				goto error;
1332 		}
1333 
1334 		if (order) {
1335 			split_page(pages[i], order);
1336 			j = 1 << order;
1337 			while (--j)
1338 				pages[i + j] = pages[i] + j;
1339 		}
1340 
1341 		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
1342 		i += 1 << order;
1343 		count -= 1 << order;
1344 	}
1345 
1346 	return pages;
1347 error:
1348 	while (i--)
1349 		if (pages[i])
1350 			__free_pages(pages[i], 0);
1351 	kvfree(pages);
1352 	return NULL;
1353 }
1354 
1355 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1356 			       size_t size, struct dma_attrs *attrs)
1357 {
1358 	int count = size >> PAGE_SHIFT;
1359 	int i;
1360 
1361 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1362 		dma_release_from_contiguous(dev, pages[0], count);
1363 	} else {
1364 		for (i = 0; i < count; i++)
1365 			if (pages[i])
1366 				__free_pages(pages[i], 0);
1367 	}
1368 
1369 	kvfree(pages);
1370 	return 0;
1371 }
1372 
1373 /*
1374  * Create a CPU mapping for a specified pages
1375  */
1376 static void *
1377 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1378 		    const void *caller)
1379 {
1380 	return dma_common_pages_remap(pages, size,
1381 			VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1382 }
1383 
1384 /*
1385  * Create a mapping in device IO address space for specified pages
1386  */
1387 static dma_addr_t
1388 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1389 {
1390 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1391 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1392 	dma_addr_t dma_addr, iova;
1393 	int i;
1394 
1395 	dma_addr = __alloc_iova(mapping, size);
1396 	if (dma_addr == DMA_ERROR_CODE)
1397 		return dma_addr;
1398 
1399 	iova = dma_addr;
1400 	for (i = 0; i < count; ) {
1401 		int ret;
1402 
1403 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1404 		phys_addr_t phys = page_to_phys(pages[i]);
1405 		unsigned int len, j;
1406 
1407 		for (j = i + 1; j < count; j++, next_pfn++)
1408 			if (page_to_pfn(pages[j]) != next_pfn)
1409 				break;
1410 
1411 		len = (j - i) << PAGE_SHIFT;
1412 		ret = iommu_map(mapping->domain, iova, phys, len,
1413 				IOMMU_READ|IOMMU_WRITE);
1414 		if (ret < 0)
1415 			goto fail;
1416 		iova += len;
1417 		i = j;
1418 	}
1419 	return dma_addr;
1420 fail:
1421 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1422 	__free_iova(mapping, dma_addr, size);
1423 	return DMA_ERROR_CODE;
1424 }
1425 
1426 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1427 {
1428 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1429 
1430 	/*
1431 	 * add optional in-page offset from iova to size and align
1432 	 * result to page size
1433 	 */
1434 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1435 	iova &= PAGE_MASK;
1436 
1437 	iommu_unmap(mapping->domain, iova, size);
1438 	__free_iova(mapping, iova, size);
1439 	return 0;
1440 }
1441 
1442 static struct page **__atomic_get_pages(void *addr)
1443 {
1444 	struct page *page;
1445 	phys_addr_t phys;
1446 
1447 	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1448 	page = phys_to_page(phys);
1449 
1450 	return (struct page **)page;
1451 }
1452 
1453 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1454 {
1455 	struct vm_struct *area;
1456 
1457 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1458 		return __atomic_get_pages(cpu_addr);
1459 
1460 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1461 		return cpu_addr;
1462 
1463 	area = find_vm_area(cpu_addr);
1464 	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1465 		return area->pages;
1466 	return NULL;
1467 }
1468 
1469 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1470 				  dma_addr_t *handle)
1471 {
1472 	struct page *page;
1473 	void *addr;
1474 
1475 	addr = __alloc_from_pool(size, &page);
1476 	if (!addr)
1477 		return NULL;
1478 
1479 	*handle = __iommu_create_mapping(dev, &page, size);
1480 	if (*handle == DMA_ERROR_CODE)
1481 		goto err_mapping;
1482 
1483 	return addr;
1484 
1485 err_mapping:
1486 	__free_from_pool(addr, size);
1487 	return NULL;
1488 }
1489 
1490 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1491 				dma_addr_t handle, size_t size)
1492 {
1493 	__iommu_remove_mapping(dev, handle, size);
1494 	__free_from_pool(cpu_addr, size);
1495 }
1496 
1497 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1498 	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1499 {
1500 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1501 	struct page **pages;
1502 	void *addr = NULL;
1503 
1504 	*handle = DMA_ERROR_CODE;
1505 	size = PAGE_ALIGN(size);
1506 
1507 	if (!gfpflags_allow_blocking(gfp))
1508 		return __iommu_alloc_atomic(dev, size, handle);
1509 
1510 	/*
1511 	 * Following is a work-around (a.k.a. hack) to prevent pages
1512 	 * with __GFP_COMP being passed to split_page() which cannot
1513 	 * handle them.  The real problem is that this flag probably
1514 	 * should be 0 on ARM as it is not supported on this
1515 	 * platform; see CONFIG_HUGETLBFS.
1516 	 */
1517 	gfp &= ~(__GFP_COMP);
1518 
1519 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1520 	if (!pages)
1521 		return NULL;
1522 
1523 	*handle = __iommu_create_mapping(dev, pages, size);
1524 	if (*handle == DMA_ERROR_CODE)
1525 		goto err_buffer;
1526 
1527 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1528 		return pages;
1529 
1530 	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1531 				   __builtin_return_address(0));
1532 	if (!addr)
1533 		goto err_mapping;
1534 
1535 	return addr;
1536 
1537 err_mapping:
1538 	__iommu_remove_mapping(dev, *handle, size);
1539 err_buffer:
1540 	__iommu_free_buffer(dev, pages, size, attrs);
1541 	return NULL;
1542 }
1543 
1544 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1545 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1546 		    struct dma_attrs *attrs)
1547 {
1548 	unsigned long uaddr = vma->vm_start;
1549 	unsigned long usize = vma->vm_end - vma->vm_start;
1550 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1551 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1552 	unsigned long off = vma->vm_pgoff;
1553 
1554 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1555 
1556 	if (!pages)
1557 		return -ENXIO;
1558 
1559 	if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1560 		return -ENXIO;
1561 
1562 	pages += off;
1563 
1564 	do {
1565 		int ret = vm_insert_page(vma, uaddr, *pages++);
1566 		if (ret) {
1567 			pr_err("Remapping memory failed: %d\n", ret);
1568 			return ret;
1569 		}
1570 		uaddr += PAGE_SIZE;
1571 		usize -= PAGE_SIZE;
1572 	} while (usize > 0);
1573 
1574 	return 0;
1575 }
1576 
1577 /*
1578  * free a page as defined by the above mapping.
1579  * Must not be called with IRQs disabled.
1580  */
1581 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1582 			  dma_addr_t handle, struct dma_attrs *attrs)
1583 {
1584 	struct page **pages;
1585 	size = PAGE_ALIGN(size);
1586 
1587 	if (__in_atomic_pool(cpu_addr, size)) {
1588 		__iommu_free_atomic(dev, cpu_addr, handle, size);
1589 		return;
1590 	}
1591 
1592 	pages = __iommu_get_pages(cpu_addr, attrs);
1593 	if (!pages) {
1594 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1595 		return;
1596 	}
1597 
1598 	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1599 		dma_common_free_remap(cpu_addr, size,
1600 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1601 	}
1602 
1603 	__iommu_remove_mapping(dev, handle, size);
1604 	__iommu_free_buffer(dev, pages, size, attrs);
1605 }
1606 
1607 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1608 				 void *cpu_addr, dma_addr_t dma_addr,
1609 				 size_t size, struct dma_attrs *attrs)
1610 {
1611 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1612 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1613 
1614 	if (!pages)
1615 		return -ENXIO;
1616 
1617 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1618 					 GFP_KERNEL);
1619 }
1620 
1621 static int __dma_direction_to_prot(enum dma_data_direction dir)
1622 {
1623 	int prot;
1624 
1625 	switch (dir) {
1626 	case DMA_BIDIRECTIONAL:
1627 		prot = IOMMU_READ | IOMMU_WRITE;
1628 		break;
1629 	case DMA_TO_DEVICE:
1630 		prot = IOMMU_READ;
1631 		break;
1632 	case DMA_FROM_DEVICE:
1633 		prot = IOMMU_WRITE;
1634 		break;
1635 	default:
1636 		prot = 0;
1637 	}
1638 
1639 	return prot;
1640 }
1641 
1642 /*
1643  * Map a part of the scatter-gather list into contiguous io address space
1644  */
1645 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1646 			  size_t size, dma_addr_t *handle,
1647 			  enum dma_data_direction dir, struct dma_attrs *attrs,
1648 			  bool is_coherent)
1649 {
1650 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1651 	dma_addr_t iova, iova_base;
1652 	int ret = 0;
1653 	unsigned int count;
1654 	struct scatterlist *s;
1655 	int prot;
1656 
1657 	size = PAGE_ALIGN(size);
1658 	*handle = DMA_ERROR_CODE;
1659 
1660 	iova_base = iova = __alloc_iova(mapping, size);
1661 	if (iova == DMA_ERROR_CODE)
1662 		return -ENOMEM;
1663 
1664 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1665 		phys_addr_t phys = page_to_phys(sg_page(s));
1666 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1667 
1668 		if (!is_coherent &&
1669 			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1670 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1671 
1672 		prot = __dma_direction_to_prot(dir);
1673 
1674 		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1675 		if (ret < 0)
1676 			goto fail;
1677 		count += len >> PAGE_SHIFT;
1678 		iova += len;
1679 	}
1680 	*handle = iova_base;
1681 
1682 	return 0;
1683 fail:
1684 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1685 	__free_iova(mapping, iova_base, size);
1686 	return ret;
1687 }
1688 
1689 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1690 		     enum dma_data_direction dir, struct dma_attrs *attrs,
1691 		     bool is_coherent)
1692 {
1693 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1694 	int i, count = 0;
1695 	unsigned int offset = s->offset;
1696 	unsigned int size = s->offset + s->length;
1697 	unsigned int max = dma_get_max_seg_size(dev);
1698 
1699 	for (i = 1; i < nents; i++) {
1700 		s = sg_next(s);
1701 
1702 		s->dma_address = DMA_ERROR_CODE;
1703 		s->dma_length = 0;
1704 
1705 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1706 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1707 			    dir, attrs, is_coherent) < 0)
1708 				goto bad_mapping;
1709 
1710 			dma->dma_address += offset;
1711 			dma->dma_length = size - offset;
1712 
1713 			size = offset = s->offset;
1714 			start = s;
1715 			dma = sg_next(dma);
1716 			count += 1;
1717 		}
1718 		size += s->length;
1719 	}
1720 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1721 		is_coherent) < 0)
1722 		goto bad_mapping;
1723 
1724 	dma->dma_address += offset;
1725 	dma->dma_length = size - offset;
1726 
1727 	return count+1;
1728 
1729 bad_mapping:
1730 	for_each_sg(sg, s, count, i)
1731 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1732 	return 0;
1733 }
1734 
1735 /**
1736  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1737  * @dev: valid struct device pointer
1738  * @sg: list of buffers
1739  * @nents: number of buffers to map
1740  * @dir: DMA transfer direction
1741  *
1742  * Map a set of i/o coherent buffers described by scatterlist in streaming
1743  * mode for DMA. The scatter gather list elements are merged together (if
1744  * possible) and tagged with the appropriate dma address and length. They are
1745  * obtained via sg_dma_{address,length}.
1746  */
1747 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1748 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1749 {
1750 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1751 }
1752 
1753 /**
1754  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1755  * @dev: valid struct device pointer
1756  * @sg: list of buffers
1757  * @nents: number of buffers to map
1758  * @dir: DMA transfer direction
1759  *
1760  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1761  * The scatter gather list elements are merged together (if possible) and
1762  * tagged with the appropriate dma address and length. They are obtained via
1763  * sg_dma_{address,length}.
1764  */
1765 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1766 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1767 {
1768 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1769 }
1770 
1771 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1772 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1773 		bool is_coherent)
1774 {
1775 	struct scatterlist *s;
1776 	int i;
1777 
1778 	for_each_sg(sg, s, nents, i) {
1779 		if (sg_dma_len(s))
1780 			__iommu_remove_mapping(dev, sg_dma_address(s),
1781 					       sg_dma_len(s));
1782 		if (!is_coherent &&
1783 		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1784 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1785 					      s->length, dir);
1786 	}
1787 }
1788 
1789 /**
1790  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1791  * @dev: valid struct device pointer
1792  * @sg: list of buffers
1793  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1794  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1795  *
1796  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1797  * rules concerning calls here are the same as for dma_unmap_single().
1798  */
1799 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1800 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1801 {
1802 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1803 }
1804 
1805 /**
1806  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1807  * @dev: valid struct device pointer
1808  * @sg: list of buffers
1809  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1810  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1811  *
1812  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1813  * rules concerning calls here are the same as for dma_unmap_single().
1814  */
1815 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1816 			enum dma_data_direction dir, struct dma_attrs *attrs)
1817 {
1818 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1819 }
1820 
1821 /**
1822  * arm_iommu_sync_sg_for_cpu
1823  * @dev: valid struct device pointer
1824  * @sg: list of buffers
1825  * @nents: number of buffers to map (returned from dma_map_sg)
1826  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1827  */
1828 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1829 			int nents, enum dma_data_direction dir)
1830 {
1831 	struct scatterlist *s;
1832 	int i;
1833 
1834 	for_each_sg(sg, s, nents, i)
1835 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1836 
1837 }
1838 
1839 /**
1840  * arm_iommu_sync_sg_for_device
1841  * @dev: valid struct device pointer
1842  * @sg: list of buffers
1843  * @nents: number of buffers to map (returned from dma_map_sg)
1844  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1845  */
1846 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1847 			int nents, enum dma_data_direction dir)
1848 {
1849 	struct scatterlist *s;
1850 	int i;
1851 
1852 	for_each_sg(sg, s, nents, i)
1853 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1854 }
1855 
1856 
1857 /**
1858  * arm_coherent_iommu_map_page
1859  * @dev: valid struct device pointer
1860  * @page: page that buffer resides in
1861  * @offset: offset into page for start of buffer
1862  * @size: size of buffer to map
1863  * @dir: DMA transfer direction
1864  *
1865  * Coherent IOMMU aware version of arm_dma_map_page()
1866  */
1867 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1868 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1869 	     struct dma_attrs *attrs)
1870 {
1871 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1872 	dma_addr_t dma_addr;
1873 	int ret, prot, len = PAGE_ALIGN(size + offset);
1874 
1875 	dma_addr = __alloc_iova(mapping, len);
1876 	if (dma_addr == DMA_ERROR_CODE)
1877 		return dma_addr;
1878 
1879 	prot = __dma_direction_to_prot(dir);
1880 
1881 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1882 	if (ret < 0)
1883 		goto fail;
1884 
1885 	return dma_addr + offset;
1886 fail:
1887 	__free_iova(mapping, dma_addr, len);
1888 	return DMA_ERROR_CODE;
1889 }
1890 
1891 /**
1892  * arm_iommu_map_page
1893  * @dev: valid struct device pointer
1894  * @page: page that buffer resides in
1895  * @offset: offset into page for start of buffer
1896  * @size: size of buffer to map
1897  * @dir: DMA transfer direction
1898  *
1899  * IOMMU aware version of arm_dma_map_page()
1900  */
1901 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1902 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1903 	     struct dma_attrs *attrs)
1904 {
1905 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1906 		__dma_page_cpu_to_dev(page, offset, size, dir);
1907 
1908 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1909 }
1910 
1911 /**
1912  * arm_coherent_iommu_unmap_page
1913  * @dev: valid struct device pointer
1914  * @handle: DMA address of buffer
1915  * @size: size of buffer (same as passed to dma_map_page)
1916  * @dir: DMA transfer direction (same as passed to dma_map_page)
1917  *
1918  * Coherent IOMMU aware version of arm_dma_unmap_page()
1919  */
1920 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1921 		size_t size, enum dma_data_direction dir,
1922 		struct dma_attrs *attrs)
1923 {
1924 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1925 	dma_addr_t iova = handle & PAGE_MASK;
1926 	int offset = handle & ~PAGE_MASK;
1927 	int len = PAGE_ALIGN(size + offset);
1928 
1929 	if (!iova)
1930 		return;
1931 
1932 	iommu_unmap(mapping->domain, iova, len);
1933 	__free_iova(mapping, iova, len);
1934 }
1935 
1936 /**
1937  * arm_iommu_unmap_page
1938  * @dev: valid struct device pointer
1939  * @handle: DMA address of buffer
1940  * @size: size of buffer (same as passed to dma_map_page)
1941  * @dir: DMA transfer direction (same as passed to dma_map_page)
1942  *
1943  * IOMMU aware version of arm_dma_unmap_page()
1944  */
1945 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1946 		size_t size, enum dma_data_direction dir,
1947 		struct dma_attrs *attrs)
1948 {
1949 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1950 	dma_addr_t iova = handle & PAGE_MASK;
1951 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1952 	int offset = handle & ~PAGE_MASK;
1953 	int len = PAGE_ALIGN(size + offset);
1954 
1955 	if (!iova)
1956 		return;
1957 
1958 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1959 		__dma_page_dev_to_cpu(page, offset, size, dir);
1960 
1961 	iommu_unmap(mapping->domain, iova, len);
1962 	__free_iova(mapping, iova, len);
1963 }
1964 
1965 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1966 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1967 {
1968 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1969 	dma_addr_t iova = handle & PAGE_MASK;
1970 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1971 	unsigned int offset = handle & ~PAGE_MASK;
1972 
1973 	if (!iova)
1974 		return;
1975 
1976 	__dma_page_dev_to_cpu(page, offset, size, dir);
1977 }
1978 
1979 static void arm_iommu_sync_single_for_device(struct device *dev,
1980 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1981 {
1982 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1983 	dma_addr_t iova = handle & PAGE_MASK;
1984 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1985 	unsigned int offset = handle & ~PAGE_MASK;
1986 
1987 	if (!iova)
1988 		return;
1989 
1990 	__dma_page_cpu_to_dev(page, offset, size, dir);
1991 }
1992 
1993 struct dma_map_ops iommu_ops = {
1994 	.alloc		= arm_iommu_alloc_attrs,
1995 	.free		= arm_iommu_free_attrs,
1996 	.mmap		= arm_iommu_mmap_attrs,
1997 	.get_sgtable	= arm_iommu_get_sgtable,
1998 
1999 	.map_page		= arm_iommu_map_page,
2000 	.unmap_page		= arm_iommu_unmap_page,
2001 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
2002 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
2003 
2004 	.map_sg			= arm_iommu_map_sg,
2005 	.unmap_sg		= arm_iommu_unmap_sg,
2006 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
2007 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
2008 
2009 	.set_dma_mask		= arm_dma_set_mask,
2010 };
2011 
2012 struct dma_map_ops iommu_coherent_ops = {
2013 	.alloc		= arm_iommu_alloc_attrs,
2014 	.free		= arm_iommu_free_attrs,
2015 	.mmap		= arm_iommu_mmap_attrs,
2016 	.get_sgtable	= arm_iommu_get_sgtable,
2017 
2018 	.map_page	= arm_coherent_iommu_map_page,
2019 	.unmap_page	= arm_coherent_iommu_unmap_page,
2020 
2021 	.map_sg		= arm_coherent_iommu_map_sg,
2022 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
2023 
2024 	.set_dma_mask	= arm_dma_set_mask,
2025 };
2026 
2027 /**
2028  * arm_iommu_create_mapping
2029  * @bus: pointer to the bus holding the client device (for IOMMU calls)
2030  * @base: start address of the valid IO address space
2031  * @size: maximum size of the valid IO address space
2032  *
2033  * Creates a mapping structure which holds information about used/unused
2034  * IO address ranges, which is required to perform memory allocation and
2035  * mapping with IOMMU aware functions.
2036  *
2037  * The client device need to be attached to the mapping with
2038  * arm_iommu_attach_device function.
2039  */
2040 struct dma_iommu_mapping *
2041 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2042 {
2043 	unsigned int bits = size >> PAGE_SHIFT;
2044 	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2045 	struct dma_iommu_mapping *mapping;
2046 	int extensions = 1;
2047 	int err = -ENOMEM;
2048 
2049 	/* currently only 32-bit DMA address space is supported */
2050 	if (size > DMA_BIT_MASK(32) + 1)
2051 		return ERR_PTR(-ERANGE);
2052 
2053 	if (!bitmap_size)
2054 		return ERR_PTR(-EINVAL);
2055 
2056 	if (bitmap_size > PAGE_SIZE) {
2057 		extensions = bitmap_size / PAGE_SIZE;
2058 		bitmap_size = PAGE_SIZE;
2059 	}
2060 
2061 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2062 	if (!mapping)
2063 		goto err;
2064 
2065 	mapping->bitmap_size = bitmap_size;
2066 	mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
2067 				GFP_KERNEL);
2068 	if (!mapping->bitmaps)
2069 		goto err2;
2070 
2071 	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2072 	if (!mapping->bitmaps[0])
2073 		goto err3;
2074 
2075 	mapping->nr_bitmaps = 1;
2076 	mapping->extensions = extensions;
2077 	mapping->base = base;
2078 	mapping->bits = BITS_PER_BYTE * bitmap_size;
2079 
2080 	spin_lock_init(&mapping->lock);
2081 
2082 	mapping->domain = iommu_domain_alloc(bus);
2083 	if (!mapping->domain)
2084 		goto err4;
2085 
2086 	kref_init(&mapping->kref);
2087 	return mapping;
2088 err4:
2089 	kfree(mapping->bitmaps[0]);
2090 err3:
2091 	kfree(mapping->bitmaps);
2092 err2:
2093 	kfree(mapping);
2094 err:
2095 	return ERR_PTR(err);
2096 }
2097 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2098 
2099 static void release_iommu_mapping(struct kref *kref)
2100 {
2101 	int i;
2102 	struct dma_iommu_mapping *mapping =
2103 		container_of(kref, struct dma_iommu_mapping, kref);
2104 
2105 	iommu_domain_free(mapping->domain);
2106 	for (i = 0; i < mapping->nr_bitmaps; i++)
2107 		kfree(mapping->bitmaps[i]);
2108 	kfree(mapping->bitmaps);
2109 	kfree(mapping);
2110 }
2111 
2112 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2113 {
2114 	int next_bitmap;
2115 
2116 	if (mapping->nr_bitmaps >= mapping->extensions)
2117 		return -EINVAL;
2118 
2119 	next_bitmap = mapping->nr_bitmaps;
2120 	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2121 						GFP_ATOMIC);
2122 	if (!mapping->bitmaps[next_bitmap])
2123 		return -ENOMEM;
2124 
2125 	mapping->nr_bitmaps++;
2126 
2127 	return 0;
2128 }
2129 
2130 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2131 {
2132 	if (mapping)
2133 		kref_put(&mapping->kref, release_iommu_mapping);
2134 }
2135 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2136 
2137 static int __arm_iommu_attach_device(struct device *dev,
2138 				     struct dma_iommu_mapping *mapping)
2139 {
2140 	int err;
2141 
2142 	err = iommu_attach_device(mapping->domain, dev);
2143 	if (err)
2144 		return err;
2145 
2146 	kref_get(&mapping->kref);
2147 	to_dma_iommu_mapping(dev) = mapping;
2148 
2149 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2150 	return 0;
2151 }
2152 
2153 /**
2154  * arm_iommu_attach_device
2155  * @dev: valid struct device pointer
2156  * @mapping: io address space mapping structure (returned from
2157  *	arm_iommu_create_mapping)
2158  *
2159  * Attaches specified io address space mapping to the provided device.
2160  * This replaces the dma operations (dma_map_ops pointer) with the
2161  * IOMMU aware version.
2162  *
2163  * More than one client might be attached to the same io address space
2164  * mapping.
2165  */
2166 int arm_iommu_attach_device(struct device *dev,
2167 			    struct dma_iommu_mapping *mapping)
2168 {
2169 	int err;
2170 
2171 	err = __arm_iommu_attach_device(dev, mapping);
2172 	if (err)
2173 		return err;
2174 
2175 	set_dma_ops(dev, &iommu_ops);
2176 	return 0;
2177 }
2178 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2179 
2180 static void __arm_iommu_detach_device(struct device *dev)
2181 {
2182 	struct dma_iommu_mapping *mapping;
2183 
2184 	mapping = to_dma_iommu_mapping(dev);
2185 	if (!mapping) {
2186 		dev_warn(dev, "Not attached\n");
2187 		return;
2188 	}
2189 
2190 	iommu_detach_device(mapping->domain, dev);
2191 	kref_put(&mapping->kref, release_iommu_mapping);
2192 	to_dma_iommu_mapping(dev) = NULL;
2193 
2194 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2195 }
2196 
2197 /**
2198  * arm_iommu_detach_device
2199  * @dev: valid struct device pointer
2200  *
2201  * Detaches the provided device from a previously attached map.
2202  * This voids the dma operations (dma_map_ops pointer)
2203  */
2204 void arm_iommu_detach_device(struct device *dev)
2205 {
2206 	__arm_iommu_detach_device(dev);
2207 	set_dma_ops(dev, NULL);
2208 }
2209 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2210 
2211 static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2212 {
2213 	return coherent ? &iommu_coherent_ops : &iommu_ops;
2214 }
2215 
2216 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2217 				    struct iommu_ops *iommu)
2218 {
2219 	struct dma_iommu_mapping *mapping;
2220 
2221 	if (!iommu)
2222 		return false;
2223 
2224 	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2225 	if (IS_ERR(mapping)) {
2226 		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2227 				size, dev_name(dev));
2228 		return false;
2229 	}
2230 
2231 	if (__arm_iommu_attach_device(dev, mapping)) {
2232 		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2233 				dev_name(dev));
2234 		arm_iommu_release_mapping(mapping);
2235 		return false;
2236 	}
2237 
2238 	return true;
2239 }
2240 
2241 static void arm_teardown_iommu_dma_ops(struct device *dev)
2242 {
2243 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2244 
2245 	if (!mapping)
2246 		return;
2247 
2248 	__arm_iommu_detach_device(dev);
2249 	arm_iommu_release_mapping(mapping);
2250 }
2251 
2252 #else
2253 
2254 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2255 				    struct iommu_ops *iommu)
2256 {
2257 	return false;
2258 }
2259 
2260 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2261 
2262 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2263 
2264 #endif	/* CONFIG_ARM_DMA_USE_IOMMU */
2265 
2266 static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2267 {
2268 	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2269 }
2270 
2271 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2272 			struct iommu_ops *iommu, bool coherent)
2273 {
2274 	struct dma_map_ops *dma_ops;
2275 
2276 	dev->archdata.dma_coherent = coherent;
2277 	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2278 		dma_ops = arm_get_iommu_dma_map_ops(coherent);
2279 	else
2280 		dma_ops = arm_get_dma_map_ops(coherent);
2281 
2282 	set_dma_ops(dev, dma_ops);
2283 }
2284 
2285 void arch_teardown_dma_ops(struct device *dev)
2286 {
2287 	arm_teardown_iommu_dma_ops(dev);
2288 }
2289